
Challenges and Progress: Automating Static Analysis Alert Handling with Machine Learning
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited 
distribution.

Challenges and Progress: 
Automating Static Analysis Alert 
Handling with Machine Learning

Lori Flynn, PhD
Software Security Researcher
Software Engineering Institute of Carnegie Mellon University



2Challenges and Progress: Automating Static Analysis Alert Handling with Machine Learning
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited 
distribution.

Copyright 2018 Carnegie Mellon University. All Rights Reserved.

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8702-15-D-0002 with Carnegie 
Mellon University for the operation of the Software Engineering Institute, a federally funded research and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as an official 
Government position, policy, or decision, unless designated by other documentation.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON 
AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS 
TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, 
EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY 
WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.  Please see Copyright notice 
for non-US Government use and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without requesting 
formal permission. Permission is required for any other use.  Requests for permission should be directed to the Software Engineering 
Institute at permission@sei.cmu.edu.

Carnegie Mellon® and CERT® are registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

DM18-0547



3Challenges and Progress: Automating Static Analysis Alert Handling with Machine Learning
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited 
distribution.

s
cs

Overview

Analyzer

Analyzer

Analyzer

Codebases

Alerts

Today

Project Goal

3,147

11,772

48,690

0

10,000

20,000

30,000

40,000

50,000

60,000

TP FP Susp

66 effort days

Image of woman and laptop from http://www.publicdomainpictures.net/view-image.php?image=47526&picture=woman-and-laptop   “Woman And Laptop”

12,076

45,172

6,361

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

45,000

50,000

e-TP e-FP I

Classification algorithm development using “pre-
audited” and manually-audited data, that

accurately classifies most of the 
diagnostics as: 

Expected True Positive (e-TP) or 
Expected False Positive (e-FP), 

and 
the rest as Indeterminate (I) 

Problem: too many alerts
Solution: automate handling



4Challenges and Progress: Automating Static Analysis Alert Handling with Machine Learning
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited 
distribution.

Background: Automatic Alert Classification

Static 
Analysis 
Tool(s)

Alerts

Alert 
Consolidation 

(SCALe)

Potential Rule 
Violations

Auditing

Determinations

ML Classifier 
Development

Codebase 
1

Codebase 
2

Codebase 
3

Training Data

Select 
candidate code 
bases for 
evaluation 



5Challenges and Progress: Automating Static Analysis Alert Handling with Machine Learning
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited 
distribution.

Background: Automatic Alert Classification

Static 
Analysis 
Tool(s)

Alerts

Alert 
Consolidation 

(SCALe)

Potential Rule 
Violations

Auditing

Determinations

ML Classifier 
Development

Codebase 
1

Codebase 
2

Codebase 
3

Training Data
Run SA Tool(s) 
collecting code alerts 
and metrics (e.g. 
complexity)



6Challenges and Progress: Automating Static Analysis Alert Handling with Machine Learning
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited 
distribution.

Static 
Analysis 
Tool(s)

Alerts

Alert 
Consolidation 

(SCALe)

Potential Rule 
Violations

Auditing

Determinations

ML Classifier 
Development

Codebase 
1

Codebase 
2

Codebase 
3

Training Data

Background: Automatic Alert Classification

Convert alerts to 
common format and 
map to CERT Secure 
Coding Rules/CWEs



7Challenges and Progress: Automating Static Analysis Alert Handling with Machine Learning
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited 
distribution.

Static 
Analysis 
Tool(s)

Alerts

Alert 
Consolidation 

(SCALe)

Potential Rule 
Violations

Auditing

Determinations

ML Classifier 
Development

Codebase 
1

Codebase 
2

Codebase 
3

Training Data

Background: Automatic Alert Classification

Humans evaluate the 
violations, e.g. 
marking them as 
TRUE or FALSE



8Challenges and Progress: Automating Static Analysis Alert Handling with Machine Learning
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited 
distribution.

Background: Automatic Alert Classification

Static 
Analysis 
Tool(s)

Alerts

Alert 
Consolidation 

(SCALe)

Potential Rule 
Violations

Auditing

Determinations

ML Classifier 
Development

Codebase 
1

Codebase 
2

Codebase 
3

Training Data
Use the training data to 
build machine learning 
classifiers that predict 
TRUE and FALSE 
determinations for new 
alerts



9Challenges and Progress: Automating Static Analysis Alert Handling with Machine Learning
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited 
distribution.

Static 
Analysis 
Tool(s)

Alerts

Alert 
Consolidation 

(SCALe)

Potential Rule 
Violations

Auditing

Determinations

ML Classifier 
Development

Codebase 
1

Codebase 
2

Codebase 
3

Training Data

Background: Automatic Alert Classification

What do TRUE/FALSE 
mean? Are there 
other determinations 
I can use?



10Challenges and Progress: Automating Static Analysis Alert Handling with Machine Learning
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited 
distribution.

One collaborator reported using the determination True to indicate 
that the issue reported by the alert was a real problem in the code.

Another collaborator used True to indicate that something was 
wrong with the diagnosed code, even if the specific issue reported 
by the alert was a false positive!

What is truth?



11Challenges and Progress: Automating Static Analysis Alert Handling with Machine Learning
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited 
distribution.

Background: Automatic Alert Classification

Static 
Analysis 
Tool(s)

Alerts

Alert 
Consolidation 

(SCALe)

Potential Rule 
Violations

Auditing

Determinations

ML Classifier 
Development

Codebase 
1

Codebase 
2

Codebase 
3

Training Data Inconsistent assignment of 
audit determinations may 
have a negative impact on 
classifier development!



12Challenges and Progress: Automating Static Analysis Alert Handling with Machine Learning
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited 
distribution.

Solution: Lexicon And Rules

• We developed a lexicon and auditing rule set for our 
collaborators

• Includes a standard set of well-defined determinations for static 
analysis alerts

• Includes a set of auditing rules to help auditors make 
consistent decisions in commonly-encountered situations

Different auditors should make the same 
determination for a given alert!

Improve the quality and consistency of audit data for 
the purpose of building machine learning classifiers

Help organizations make better-informed decisions 
about bug-fixes, development, and future audits.



13Challenges and Progress: Automating Static Analysis Alert Handling with Machine Learning
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited 
distribution.

© 2018 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for 
public release and unlimited distribution.

Audit Lexicon And Rules

Lexicon



14Challenges and Progress: Automating Static Analysis Alert Handling with Machine Learning
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited 
distribution.

Lexicon: Audit Determinations

Basic Determinations Supplemental Determinations

Audit 
Determinations

True False

Complex Dependant

Unknown 
(default)

Dangerous 
construct Dead

Ignore Inapplicable 
environment

Choose ONE Per Alert!

Choose ANY NUMBER 
Per Alert!

Dependent



15Challenges and Progress: Automating Static Analysis Alert Handling with Machine Learning
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited 
distribution.

Lexicon: Basic Determinations

True
• The code in question violates the condition indicated by 
the alert.

• A condition is a constraint or property of validity.
- E.g. A valid program should not deference NULL pointers.

• The condition can be determined from the definition of the 
alert itself, or from the coding taxonomy the alert 
corresponds to.
- CERT Secure Coding Rules
- CWEs



16Challenges and Progress: Automating Static Analysis Alert Handling with Machine Learning
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited 
distribution.

Lexicon: Basic Determinations
True Example

char *build_array(size_t size, char first) {
if(size == 0) {

return NULL;
}

char *array = malloc(size * sizeof(char));
array[0] = first;
return array;

}
ALERT: Do not 
dereference 

NULL 
pointers!

Determination
:

TRUE



17Challenges and Progress: Automating Static Analysis Alert Handling with Machine Learning
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited 
distribution.

Lexicon: Basic Determinations

False
• The code in question does not violate the condition indicated 

by the alert.

char *build_array(int size, char first) {
if(size == 0) {

return NULL;
}

char *array = malloc(size * sizeof(char));
if(array == NULL) {

abort();
}
array[0] = first;
return array;

}
ALERT: Do not 
dereference 

NULL 
pointers!

Determination
:

FALSE



18Challenges and Progress: Automating Static Analysis Alert Handling with Machine Learning
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited 
distribution.

Lexicon: Basic Determinations

Complex
• The alert is too difficult to judge in a reasonable amount of 

time and effort
• “Reasonable” is defined by the individual organization.

Dependent
• The alert is related to a True alert that occurs earlier in the code.

• Intuition: fixing the first alert would implicitly fix the second one.

Unknown
• None of the above. This is the default determination.



19Challenges and Progress: Automating Static Analysis Alert Handling with Machine Learning
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited 
distribution.

Lexicon: Basic Determinations
Dependent Example

char *build_array(size_t size, char first, char last) {
if(size == 0) {

return NULL;
}

char *array = malloc(size * sizeof(char));
array[0] = first;
array[size - 1] = last;
return array;

}

ALERT: Do not 
dereference 

NULL 
pointers!

Determination:
TRUE

ALERT: Do not 
dereference 

NULL 
pointers!

Determination:
DEPENDENT



20Challenges and Progress: Automating Static Analysis Alert Handling with Machine Learning
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited 
distribution.

Lexicon: Supplemental Determinations
Dangerous Construct

• The alert refers to a piece of code that poses risk if it is not 
modified.

• Risk level is specified as High, Medium, or Low
• Independent of whether the alert is true or false!

Dead
• The code in question not reachable at runtime.

Inapplicable Environment
• The alert does not apply to the current environments where the 

software runs (OS, CPU, etc.)
• If a new environment were added in the future, the alert may 

apply.
Ignore

• The code in question does not require mitigation.



21Challenges and Progress: Automating Static Analysis Alert Handling with Machine Learning
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited 
distribution.

Lexicon: Supplemental Determinations
Dangerous Construct Example

#define BUF_MAX 128

void create_file(const char *base_name) {
// Add the .txt extension!
char filename[BUF_MAX];
snprintf(filename, 128, "%s.txt", base_name);

// Create the file, etc...
}

ALERT: 
potential 

buffer 
overrun!

Determination:
False 

+ 
Dangerous 
Construct

Seems ok…but 
why not use 
BUF_MAX

instead of 128?



22Challenges and Progress: Automating Static Analysis Alert Handling with Machine Learning
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited 
distribution.

© 2018 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for 
public release and unlimited distribution.

Audit Lexicon And Rules

Rules



23Challenges and Progress: Automating Static Analysis Alert Handling with Machine Learning
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited 
distribution.

Audit Rules

Goals
• Clarify ambiguous or complex auditing scenarios
• Establish assumptions auditors can make 
• Overall: help make audit determinations more consistent

We developed 12 rules
• Drew on our own experiences auditing code bases at CERT
• Trained 3 groups of engineers on the rules, and incorporated their feedback
• In the following slides, we will inspect three of the rules in more detail.



24Challenges and Progress: Automating Static Analysis Alert Handling with Machine Learning
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited 
distribution.

Example Rule: Assume external inputs to the program are 
malicious
An auditor should assume that inputs to a program module (e.g. function parameters, 
command line arguments, etc.) may have arbitrary, potentially malicious, values.

• Unless they have a strong guarantee to the contrary

Example from recent history: Java Deserialization
• Suppose an alert is raised for a call to readObject, citing a violation of the CERT 

Secure Coding Rule SER12-J, Prevent deserialization of untrusted data
• An auditor can assume that external data passed to the readObject method may be 

malicious, and mark this alert as True
- Assuming there are no other mitigations in place in the code



25Challenges and Progress: Automating Static Analysis Alert Handling with Machine Learning
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited 
distribution.

Audit Rules
External Inputs Example

import java.io.*;

class DeserializeExample {
public static Object deserialize(byte[] buffer)

throws Exception {
ByteArrayInputStream bais;
ObjectInputStream ois;
bais = new ByteArrayInputStream(buffer);
ois = new ObjectInputStream(bais);
return ois.readObject();

}
}

ALERT: Don’t 
deserialize 
untrusted 

data!

Without strong 
evidence to the 

contrary, assume 
the buffer could be 

malicious!

Determination:
TRUE



26Challenges and Progress: Automating Static Analysis Alert Handling with Machine Learning
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited 
distribution.

Example Rule: Unless instructed otherwise, assume code must be 
portable.

When auditing alerts for a code base where the target 
platform is not specified, the auditor should err on the side 
of portability. 
If a diagnosed segment of code malfunctions on certain 
platforms, and in doing so violates a condition, this is 
suitable justification for marking the alert True.



27Challenges and Progress: Automating Static Analysis Alert Handling with Machine Learning
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited 
distribution.

Audit Rules
Portability Example

int strcmp(const char *str1, const char *str2) {
while(*str1 == *str2) {

if(*str1 == '\0') {
return 0;

}
str1++;
str2++;

}

if(*str1 < *str2) {
return -1;

} else {
return 1;

}
}

ALERT: Cast to 
unsigned char 

before comparing!

This code would be safe on a 
platform where chars are unsigned, 

but that hasn’t been guaranteed!

Determination:
TRUE



28Challenges and Progress: Automating Static Analysis Alert Handling with Machine Learning
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited 
distribution.

Example Rule: Handle an alert in unreachable code depending on 
whether it is exportable.
Certain code segments may be unreachable at runtime. Also called dead code.
A static analysis tool might not be able to realize this, and still mark alerts in code that 
cannot be executed. 

The Dead supplementary determination can be applied to these alerts. 

However, an auditor should take care when deciding if a piece of code is truly dead. 

In particular: just because a given program module (function, class) is not used does not
mean it is dead. The module might be exported as a public interface, for use by another 
application.

This rule was developed as a result of a scenario encountered by one of our 
collaborators!



29Challenges and Progress: Automating Static Analysis Alert Handling with Machine Learning
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited 
distribution.

Scientific Approach

Build on novel (in FY16) combined use of:  
1) multiple analyzers, 2) variety of features, 
3) competing classification techniques

Problem: too many alerts
Solution: automate handling
Competing Classifiers to Test
Lasso Logistic Regression
CART (Classification and Regression 
Trees)
Random Forest
Extreme Gradient Boosting (XGBoost)

Some of the features used (many more)
Analysis tools used
Significant LOC
Complexity
Coupling
Cohesion
SEI coding rule



30Challenges and Progress: Automating Static Analysis Alert Handling with Machine Learning
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited 
distribution.

Rapid Expansion of Alert 
Classification

Problem 2
Too few manually audited alerts 
to make classifiers (i.e., to 
automate!)
Problems 1 & 2: Security-related 
code flaws detected by static analysis 
require too much manual effort to 
triage, plus it takes too long to audit 
enough alerts to develop classifiers to 
automate the triage accurately for 
many types of flaws. 

Extension of our previous alert 
classification work to address challenges:
1. Too few audited alerts for accurate 

classifiers for many flaw types
2. Manually auditing alerts is expensive

Solution 2
Automate auditing alerts, using 
test suites

Solution for 1 & 2: Rapid expansion 
of number of classification models by 
using “pre-audited” code, plus 
collaborator audits of DoD code.

Approach
1. Automated analysis of “pre-audited” 
(not by SEI) tests to gather sufficient 
code & alert feature info for classifiers

2. Collaboration with MITRE: 
Systematically map CERT rules to 
CWE IDs in subsets of “pre-audited” 
test code (known true or false for 
CWE) 

3. Modify SCALe research tool to 
integrate CWE (MITRE’s Common 
Weakness Enumeration)

4. Test classifiers on alerts from real-
world code: DoD data  

Problem 1: too many alerts
Solution 1: automate handling



31Challenges and Progress: Automating Static Analysis Alert Handling with Machine Learning
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited 
distribution.

Rapidly create many coding-rule-level classifiers for static analysis alerts, then use DoD-
audited data to validate the classifiers.

Technical methods:
- Use test suites’ CWE flaw metadata, to quickly and automatically generate many “audited” alerts. 

o Juliet (NSA CAS) 61,387 C/C++ tests
o IARPA’s STONESOUP: 4,582 C tests
o Refine test sets for rules: use mappings, metadata, static analyses 

- Metrics analyses of test suite code, to get feature data
- Use DoD-collaborator enhanced-SCALe audits of their own codebases, to validate classifiers. Real 

codebases with more complex structure than most pre-audited code. 

Overview: Method, Approach, Validity
Problem 2: too few manually audited alerts to make accurate classifiers for many flaw types 
Solution 2: automate auditing alerts, using test suites



32Challenges and Progress: Automating Static Analysis Alert Handling with Machine Learning
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited 
distribution.

Precise mappings: Defines what kind of non-null relationship, and if overlapping, how. 
Enhanced-precision added to “imprecise” mappings. 

If a condition of a program violates a CERT rule R and also 
exhibits a CWE weakness W, that condition is in the overlap. 

Mappings
Precise 248
Imprecise TODO 364
Total 612

Imprecise mappings
(“some relationship”)

Precise mappings
(set notation, often more)

Now: all CERT C rules 
mappings to CWE precise

Make Mappings Precise
Problem 3: Test suites in different taxonomies (most use CWEs)
Solution 3: Precisely map between taxonomies, then partition tests using  precise mappings

2 CWEs subset of CERT rule, 
AND partial overlap

CWE YCWE Z

CWE N

CERT 
Rule c

Problem 2: too few manually audited alerts to make classifiers
Solution 2: automate auditing alerts, using test suites



33Challenges and Progress: Automating Static Analysis Alert Handling with Machine Learning
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited 
distribution.

Test Suite Cross-Taxonomy Use

Some types of CERT rule violations not tested, in 
partitioned test suites (“0”s).
- Possible coverage in other suites

CWE test programs useful to test CERT rules
STONESOUP: 2,608 tests  
Juliet: 80,158 tests
• Test set partitioning incomplete (32% left)

Partition sets of thousands of tests relatively quickly. 
Examine together:
- Precise mapping
- Test suite metadata (structured filenames)
- Rarely examine small bit of code (variable type)  

CERT rule CWE Count files that match
ARR38-C CWE-119 0
ARR38-C CWE-121 6,258
ARR38-C CWE-122 2,624
ARR38-C CWE-123 0
ARR38-C CWE-125 0
ARR38-C CWE-805 2,624
INT30-C CWE-190 1,548
INT30-C CWE-191 1,548
INT30-C CWE-680 984
INT32-C CWE-119 0
INT32-C CWE-125 0
INT32-C CWE-129 0
INT32-C CWE-131 0
INT32-C CWE-190 3,875
INT32-C CWE-191 3,875
INT32-C CWE-20 0
INT32-C CWE-606 0
INT32-C CWE-680 984

Problem 3: Test suites in different taxonomies 
(most use CWEs)
Solution 3: Precisely map between taxonomies, 
then partition tests with precise mappings



34Challenges and Progress: Automating Static Analysis Alert Handling with Machine Learning
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited 
distribution.

Generate data for Juliet

Generate data for STONESOUP

Write classifier development and testing scripts

Build classifiers
• Directly for CWEs 
• Using partitioned test suite data for CERT rules

Test classifiers

Process

Problem 1: too many alerts
Solution 1: automate handling
Problem 2: too few manually audited alerts to 
make classifiers accurate for some flaws
Solution 2: automate auditing alerts, using 
test suites
Problem 3: Test suites in different 
taxonomies (most use CWEs)
Solution 3: Precisely map between 
taxonomies, then partition tests using  precise 
mappings



35Challenges and Progress: Automating Static Analysis Alert Handling with Machine Learning
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited 
distribution.

- We automated defect identification of Juliet flaws with location 2 ways

- Used static analysis tools on Juliet programs 
- We automated alert-to-defect matching

- We automated alert-to-alert matching (alerts fused: same line & CWE)

- These are initial metrics (more EC as use more tools, STONESOUP)

Analysis of Juliet Test Suite: Initial CWE Results

Number of “Bad” Functions 103,376
Number of “Good” Functions 231,476

Tool A Tool B Tool C Tool D Total
“Pre-audited” TRUE 1,655 162 7,225 16,958 26,000
“Pre-audited” FALSE 8,539 3,279 2,394 23,475 37,687

Alert Type Equivalence Classes: 
(EC counts a fused alert once)

Number of Alerts Fused
(from different tools)

TRUE 22,885 3,115
FALSE 29,507 8,180

- A Juliet program tells about only one type of CWE
- Bad functions definitely have that flaw
- Good functions definitely don’t have that flaw
- Function line spans, for FPs
- Exact line defect metadata, for TPs

- Ignore unrelated alerts (other CWEs) for program
- Alerts give line number

Lots of new 
data for creating 
classifiers!

Successfully generated lots of data for classifiers



36Challenges and Progress: Automating Static Analysis Alert Handling with Machine Learning
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited 
distribution.

Juliet: Data from 4 Tools, per CWE

0

1000

2000

3000

4000

5000

6000

121 126 134 190 194 196 242 253 328 369 398 404 416 467 469 478 481 483 561 563 571 590 665 680 685 690 761 775 843

FALSE
TRUE

35 CWEs with at least 5 HCFPs and 45 HCTPs

More data to be added
• Tools
• STONESOUP

Classifier development 
requires 

True and False

• 457
• 195
• 197
• 134
• 758
• 194
• 190
• 401

• 680
• 404
• 415
• 665
• 191
• 761
• 127
• 563

• 252
• 369
• 606
• 122
• 121
• 681
• 476
• 775

• 843
• 377
• 398
• 196
• 468
• 469
• 688
• 587

• 483
• 126
• 835

The 35 CWEs
Successfully generated lots of data for classifiers



37Challenges and Progress: Automating Static Analysis Alert Handling with Machine Learning
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited 
distribution.

Classifiers: Accuracy, #Alerts, AUROC

Lasso per-CWE-ID classifiers (31)

Model Accuracy AUROC
lightgbm 83.7% 93.8%
xgboost 82.4% 92.5%
rf 78.6% 86.3%
lasso 82.5% 92.5%

All-data
CWE classifiers

Lasso per-CERT-rule classifiers (36) 

Rule Accuracy # Alerts AUROC
ARR30-C 96.9% 483 99.8%
ARR32-C 100.0% 947 100.0%
ARR36-C 63.3% 30 50.0%
ARR37-C 74.0% 77 83.6%
ARR38-C 94.0% 397 98.0%
ARR39-C 67.7% 31 50.0%
CON33-C 100.0% 88 100.0%
ERR33-C 91.2% 376 94.9%
ERR34-C 100.0% 947 100.0%
EXP30-C 100.0% 947 100.0%
EXP33-C 89.5% 5214 96.3%
EXP34-C 91.8% 546 95.4%
EXP39-C 70.7% 116 83.1%
EXP46-C 82.5% 143 87.8%
FIO30-C 86.5% 1065 95.1%
FIO34-C 72.5% 1132 78.5%
FIO42-C 83.9% 933 93.2%
FIO46-C 100.0% 947 100.0%

Rule Accuracy # Alerts AUROC
FIO47-C 86.4% 1070 95.4%
FLP32-C 100.0% 947 100.0%
FLP34-C 70.5% 3619 78.0%
INT30-C 63.7% 1365 66.4%
INT31-C 68.7% 5139 77.5%
INT32-C 69.9% 1599 75.7%
INT33-C 79.8% 228 86.3%
INT34-C 100.0% 947 100.0%
INT35-C 64.3% 622 72.2%
INT36-C 100.0% 967 100.0%

MEM30-C 94.5% 1461 99.3%
MEM31-C 83.9% 933 93.2%
MEM35-C 66.7% 2514 76.0%
MSC37-C 100.0% 947 100.0%
POS54-C 90.0% 239 94.5%
PRE31-C 97.8% 46 99.1%
STR31-C 94.0% 397 98.0%
WIN30-C 95.6% 1465 97.8%

Avg. 
accuracy

Count 
accuracy 
95+%

Count 
accuracy 
85-94.9%

Count 
accuracy 
0-84.9%

85.8% 12 9 15
99.2% 90.9% 72.1%

Similar for 
other classifier 
methods

Similar for 
other classifier 
methods

Avg. 
accuracy

Count 
accuracy 
95+%

Count 
accuracy 
85-94.9%

Count 
accuracy 
0-84.9%

81.8% 7 10 14
98.4% 89.6% 67.9%

Improvement: 67 per-rule classifiers (and 
more coming) vs. only 3 in FY16



38Challenges and Progress: Automating Static Analysis Alert Handling with Machine Learning
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited 
distribution.

Summary and Future

FY17 Line “Rapid Classifiers” built on the FY16 LENS “Prioritizing vulnerabilities”. 
• Developed widely useful general method to use test suites across taxonomies
• Developed large archive of “pre-audited” alerts

- Overcame challenge to classifier development
- For CWEs and CERT rules

• Developed code infrastructure (extensible) 
• In-progress:

- Classifier development and testing in process
- Continue to gather data
- Enhanced SCALe audit tool for collaborator testing: distribute to collaborators soon

• FY18-19 plan: architecture for rapid deployment of classifiers in varied systems 
• Goal: improve automation of static alert auditing (and other code analysis and repair)

Publications:
• New mappings (CWE/CERT rule): 

MITRE and CERT websites
• IEEE SecDev 2017 “Hands-on Tutorial: 

Alert Auditing with Lexicon & Rules” 
• SEI blogposts on classifier development
• Research papers (SQUADE’18), others in 

progress



39Challenges and Progress: Automating Static Analysis Alert Handling with Machine Learning
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited 
distribution.

Ideas for collaboration welcome

Collaborative work topics might include:
• Continuous integration: 

- Optimizing alert analysis of developing project over time
- Modifications to previously-developed techniques

• Enhancements to algorithms/architecture, to enable more widespread use
• ??



40Challenges and Progress: Automating Static Analysis Alert Handling with Machine Learning
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited 
distribution.

Contact Information

Presenter / Point(s) of Contact
Lori Flynn (Principal Investigator)
Software Security Researcher

Email:  lflynn@cert.org

Telephone:  +1 412.268.7886

Contributors
SEI Staff
William Snavely
David Svoboda
Zach Kurtz

SEI Student Interns
Lucas Bengtson (CMU)
Charisse Haruta (CMU)
Baptiste Vauthey (CMU)
Michael Spece (Pitt)
Christine Baek (CMU)


	�Challenges and Progress: Automating Static Analysis Alert Handling with Machine Learning
	Slide Number 2
	Overview
	Background: Automatic Alert Classification
	Background: Automatic Alert Classification
	Background: Automatic Alert Classification
	Background: Automatic Alert Classification
	Background: Automatic Alert Classification
	Background: Automatic Alert Classification
	What is truth?
	Background: Automatic Alert Classification
	Solution: Lexicon And Rules
	Audit Lexicon And Rules
	Lexicon: Audit Determinations
	Lexicon: Basic Determinations
	Lexicon: Basic Determinations�True Example
	Lexicon: Basic Determinations
	Lexicon: Basic Determinations
	Lexicon: Basic Determinations�Dependent Example
	Lexicon: Supplemental Determinations
	Lexicon: Supplemental Determinations�Dangerous Construct Example
	Audit Lexicon And Rules
	Audit Rules
	Example Rule: Assume external inputs to the program are malicious
	Audit Rules�External Inputs Example
	Example Rule: Unless instructed otherwise, assume code must be portable.
	Audit Rules�Portability Example
	Example Rule: Handle an alert in unreachable code depending on whether it is exportable.
	Scientific Approach
	Rapid Expansion of Alert �Classification
	Overview: Method, Approach, Validity	 	
	Slide Number 32
	Test Suite Cross-Taxonomy Use
	Process�
	Analysis of Juliet Test Suite: Initial CWE Results
	Juliet: Data from 4 Tools, per CWE
	Classifiers: Accuracy, #Alerts, AUROC
	Summary and Future
	Ideas for collaboration welcome
	Contact Information



