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Overview Problem: too many alerts

Solution: automate handling
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Background: Automatic Alert Classification

Codebase Codebase Codebase|| Select
1 L_/z/_\l 3 candidate code
bases for
evaluation

Static Alert
Analysis Consolidation Auditing
Tool(s) (SCALe)

Potential Rule N
Alerts . ) i Determinations

Violations

\_/_\

:

ML Classifier
Carnegie Mellon University Challenges and Progress: Automating Static Analysis Alert Handling with Machine Learning DISTRIBUTION STATEMENT A] Approved for public release and unlimited
- 2018 Carnegie Mellon University -

distribution



Background: Automatic Alert Classification

Codebase Codebase Codebase
1 2 3

Static Alert
Analysis Consolidation Auditing
Tool(s) (SCALe)
Lﬁrts‘_\ Potfantlafl Rule [ | M
Violations
-
Run SA Tool(s) L
collecting code alerts Training Data
and metrics (e.g. L{\l
complexity)
ML Classifier
Development

Challenges and Progress: Automating Static Analysis Alert Handling with Machine Learning DISTRIBUTION STATEMENT A] Approved for public release and unlimited
2018 ¢ ) distribution.

2018 Carnegie Mellon University

Carnegie Mellon University



Background: Automatic Alert Classification

Codebase Codebase Codebase
1 2 3

Static Alert
Analysis Consolidation Auditing
Tool(s) (SCALe)
Alerts - POt?ntI?I Rule || Determinations
Violations

\_/_\

Convert alerts to
common format and

map to CERT Secure
Coding Rules/CWEs
IVIL Classitier
Development
Carnegie Mellon Univ ersity L\T!Pri(f”‘%jtﬂdF"‘V?ELJ‘\’G"%?H/\utom"mnq Static Analysis Alert Handling with Machine Learning l[jEI)SItSrIJFUi:ianTION STATEMENT A] Approved for public release and unlimited



Background: Automatic Alert Classification
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Background: Automatic Alert Classification
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Background: Automatic Alert Classification
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What is truth?

One collaborator reported using the determination True to indicate
that the issue reported by the alert was a real problem in the code.

Another collaborator used True to indicate that something was
wrong with the diagnosed code, even if the specific issue reported
by the alert was a false positive!
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Background: Automatic Alert Classification
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Solution: Lexicon And Rules

» We developed a lexicon and auditing rule set for our
collaborators

* Includes a standard set of well-defined determinations for static
analysis alerts

* Includes a set of auditing rules to help auditors make
consistent decisions in commonly-encountered situations

Different auditors should make the same
determination for a given alert!

Improve the quality and consistency of audit data for
the purpose of building machine learning classifiers

Help organizations make better-informed decisions
about bug-fixes, development, and future audits.
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Audit Lexicon And Rules
Lexicon
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Lexicon: Audit Determinations

Audit
Determinations
Basic Determinations Supplemental Determinations
Dangerous
True &
construct
Inapplicable
Complex Dependent !)p
environment
Unknown Choose ANY NUMBER
(default) Per Alert!
Choose ONE Per Alert!
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Lexicon: Basic Determinations

True

* The code in question violates the condition indicated by
the alert.

* A condition is a constraint or property of validity.

- E.g. Avalid program should not deference NULL pointers.

* The condition can be determined from the definition of the
alert itself, or from the coding taxonomy the alert
corresponds to.

- CERT Secure Coding Rules
- CWEs
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Lexicon: Basic Determinations
True Example

if(size == 0) {
return NULL;
}

char *build_array(size_ t size, char first) {

char *array = malloc(size * sizeof(char));

(:;u'[]q-’r_vi(x Mellon U 'ni\(-r_-.'i|‘\- Challenges and Progress: Automating Static Analysis Alert Handling with Machine Learning
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Lexicon: Basic Determinations

False
* The code in question does not violate the condition indicated

by the alert.

char *build_array(int size, char first) {

if(size ==

}

char *array

return NULL;

0) {

= malloc(size * sizeof(char));

if(array ==

}

abort();

NULL) | {

array| 0| -

first;

Determination

FALSE

return array,;
J
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Lexicon: Basic Determinations

Complex

* The alert is too difficult to judge in a reasonable amount of
time and effort

» “Reasonable” is defined by the individual organization.

Dependent

» The alertis related to a True alert that occurs earlier in the code.

 Intuition: fixing the first alert would implicitly fix the second one.

Unknown
 None of the above. This is the default determination.
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Lexicon: Basic Determinations
Dependent Example

char *build_array(size.
if(size == 0) {
retur

= first;
array|[size - 1] = last;

malloc{size * sizeof(char));

r first, char last) {

Carnegie Mellon University
Software Engineering Institute
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Lexicon: Supplemental Determinations

Dangerous Construct

» The alert refers to a piece of code that poses risk if it is not
modified.

* Risk level is specified as High, Medium, or Low
 Independent of whether the alert is true or false!

Dead
» The code in question not reachable at runtime.

Inapplicable Environment

» The alert does not apply to the current environments where the
software runs (OS, CPU, etc.)

* If a new environment were added in the future, the alert may
apply.
Ignore
» The code in question does not require mitigation.

distribution.
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Lexicon: Supplemental Determinations
Dangerous Construct Example

#define BUF_MAX 128

void create file(const char *base name) {
// Add the .txt extension!
char filename|BUF_MAX];
snprintf(filenam{i::QS, "%s . txt"

/

reate the file, etc...

, base name);

} Determination:
Seems ok...but
False
why not use +

BUF_MAX Dangerous
instead of 128?

Construct
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Audit Lexicon And Rules
Rules
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Audit Rules

Goals
* Clarify ambiguous or complex auditing scenarios
 Establish assumptions auditors can make
» Overall: help make audit determinations more consistent

We developed 12 rules
* Drew on our own experiences auditing code bases at CERT
 Trained 3 groups of engineers on the rules, and incorporated their feedback
* In the following slides, we will inspect three of the rules in more detalil.
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Example Rule: Assume external inputs to the program are
malicious

An auditor should assume that inputs to a program module (e.g. function parameters,
command line arguments, etc.) may have arbitrary, potentially malicious, values.

» Unless they have a strong guarantee to the contrary

Example from recent history: Java Deserialization

» Suppose an alert is raised for a call to readObject, citing a violation of the CERT
Secure Coding Rule SER12-J, Prevent deserialization of untrusted data

» An auditor can assume that external data passed to the readObject method may be
malicious, and mark this alert as True

- Assuming there are no other mitigations in place in the code
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Audit Rules
External Inputs Example

import java.io.*;
class DeserializeExample {
throws Exception {
ByteArrayInputStream bais;
ObjectInputStream ois;

ois = new ObjectInputStream(bais);
returnois.readObject();

Without strong
evidence to the
contrary, assume
the buffer could be
malicious!

public static Object deserialize(byte[] buffer)

bais = new ByteArrayInputStream(buffer);

(.:;u'[“-_r_rip Mellon University allenges and Progress: Automating Static Analysis Alert Handling with Machine Learning
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Software Engineering Institute
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Example Rule: Unless instructed otherwise, assume code must be
portable.

When auditing alerts for a code base where the target

platform is not specified, the auditor should err on the side
of portability.

If a diagnosed segment of code malfunctions on certain
platforms, and in doing so violates a condition, this is
suitable justification for marking the alert True.
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Audit Rules
Portability Example

} else {
}

int strcmp(const char *strl, const char
while(*strl == *str2)

if(*strl < *str2)

str2) {

if(*strl == "\
retur

strl++;
str2++;

This code would be safe on a
platform where chars are unsigned,
but that hasn’t been guaranteed!

return -1;

return 1;

Carnegie Mellon University Challenges an
Software Engineering Institute
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Example Rule: Handle an alert in unreachable code depending on
whether it is exportable.

Certain code segments may be unreachable at runtime. Also called dead code.

A static analysis tool might not be able to realize this, and still mark alerts in code that
cannot be executed.

The Dead supplementary determination can be applied to these alerts.
However, an auditor should take care when deciding if a piece of code is truly dead.

In particular: just because a given program module (function, class) is not used does not
mean it is dead. The module might be exported as a public interface, for use by another
application.

This rule was developed as a result of a scenario encountered by one of our
collaborators!
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Scientific Approach

Build on novel (in FY16) combined use of:
1) multiple analyzers, 2) variety of features,
3) competing classification techniques

Problem: too many alerts
Solution: automate handling

Competing Classifiers to Test

Lasso Logistic Regression

Archived Audit Data CART (Classification and Regression
l Trees)

l 1 Random Forest
All Data, and RulelDs Extreme Gradient Boosting (XGBoost)
Rule n Data as a feature

! ! ! !

Some of the features used (many more)

Training Set Test Set Training Set Analysis tools used
l 1 l 1 Significant LOC
Complexity
N Develop Validate Develop Validate .
Model Model Model Mode! Coupling
. J Cohesion
Per-rule alert classifiers Classifiers for all alerts SEl coding rule
Carnegie Mellon | ||i\q-|-~i[.\ Challenges and Progress: Automating Static Analysis Alert Handling with Machine Learning [DISTRIBUTION STATEMENT A] Approved for public release and unlimited
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Rapid Expansion of Alert

Classification

Problem 2

Too few manually audited alerts
to make classifiers (i.e., to
automate!)

Problems 1 & 2: Security-related
code flaws detected by static analysis
require too much manual effort to
triage, plus it takes too long to audit
enough alerts to develop classifiers to
automate the triage accurately for
many types of flaws.

Extension of our previous alert

classification work to address challenges:

1. Too few audited alerts for accurate
classifiers for many flaw types

2. Manually auditing alerts is expensive

Problem 1: too many alerts
Solution 1: automate handling

Solution 2

Automate auditing alerts, using
test suites

Solution for 1 & 2: Rapid expansion
of number of classification models by
using “pre-audited” code, plus
collaborator audits of DoD code.

[DISTI
distrib

Approach

1. Automated analysis of “pre-audited”
(not by SEI) tests to gather sufficient
code & alert feature info for classifiers

2. Collaboration with MITRE:
Systematically map CERT rules to
CWE IDs in subsets of “pre-audited”
test code (known true or false for
CWE)

3. Modify SCALe research tool to
integrate CWE (MITRE’s Common
Weakness Enumeration)

4. Test classifiers on alerts from real-
world code: DoD data

RIBUTION STATEMENT A] Approved for public release and unlimited
ution.



Overview: Method, Approach, Validity

Problem 2: too few manually audited alerts to make accurate classifiers for many flaw types
Solution 2: automate auditing alerts, using test suites

Rapidly create many coding-rule-level classifiers for static analysis alerts, then use DoD-
audited data to validate the classifiers.

Technical methods:
- Use test suites’ CWE flaw metadata, to quickly and automatically generate many “audited” alerts.

0 Juliet (NSA CAS) 61,387 C/C++ tests
0 IARPA's STONESOUP: 4,582 C tests
0 Refine test sets for rules: use mappings, metadata, static analyses

- Metrics analyses of test suite code, to get feature data
- Use DoD-collaborator enhanced-SCALe audits of their own codebases, to validate classifiers. Real
codebases with more complex structure than most pre-audited code.

DISTRIBUTION STATEMENT A] Approved for public release and unlimited 3 l
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: . Problem 2: too few manually audited alerts to make classifiers
Make Mappmgs Precise Solution 2: automate auditing alerts, using test suites

Problem 3: Test suites in different taxonomies (most use CWES)
Solution 3: Precisely map between taxonomies, then partition tests using precise mappings

Precise mappings: Defines what kind of non-null relationship, and if overlapping, how.
Enhanced-precision added to “imprecise” mappings.

Imprecise mappings ‘ Precise mappings W ET T

(“some relationship”) (set notation, often more) Precise
2 CWESs subset of CERT rule, Imprecise TODO 364
AND partial overlap TOtaI 612

Now: all CERT C rules
mappings to CWE precise

If a condition of a program violates a CERT rule R and also
exhibits a CWE weakness W, that condition is in the overlap.

Carnegie Mellon University Challenges and Progress: Automating Static Analysis Alert Handling with Machine Learning [DISTRIBUTION STATEMENT A] Approved for public release and unlimited
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Problem 3: Test suites in different taxonomies
(most use CWES)

Solution 3: Precisely map between taxonomies,
then partition tests with precise mappings

Test Suite Cross-Taxonomy Use

Partition sets of thousands of tests relatively quickly.

Examine together: CERT rule |CWE Count files that match

) g i ’ ARR38-C (CWE-119 0

- Precise mapping ARR38-C |CWE-121 6,258

- Test suite metadata (structured filenames) ARR38-C |CWE-122 2,624
] ] i ARR38-C |CWE-123 0
- Rarely examine small bit of code (variable type) ARR38-C_|CWE-125 0

ARR38-C [CWE-805 2,624

CWE test programs useful to test CERT rules :m;gg Ex:g‘; 1232
STONESOUP: 2,608 tests INT30-C | CWE-680 984
. . INT32-C |[CWE-119 0
Juliet: 80,158-t-estt5 | T YERPY: 5
* Test set partitioning incomplete (32% left) INT32-C |CWE-129 0
INT32-C |[CWE-131 0

. . . INT32-C |[CWE-190 3,875

Some types of CERT rule violations not tested, in INT32-C_|CWE-191 3.875
partitioned test suites (“0”s). LEC |(EhEAD L
. . . INT32-C |CWE-606 0

- Possible coverage in other suites INT32C |CWE-€80 984

Carnegie Mellon University Challenges and Progress
- 2018 Carne

2018 Carnegie Mellon University
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Process

Problem 1: too many alerts
Solution 1: automate handling

Generate data for Juliet

Generate data for STONESOUP Problem 2: too few manually audited alerts to
make classifiers accurate for some flaws
Write classifier development and testing scripts Solution 2: automate auditing alerts, using
_ - test suites
Build classifiers Problem 3: Test suites in different
* Directly for CWEs taxonomies (most use CWES)

¢ Using partitioned test suite data for CERT rules Solution 3: Precisely map between

Test classifiers taxonomies, then partition tests using precise
mappings

{.:;lr"p.r_rip Mellon University Challenges and Progress: Automating Static Analysis Alert Handling with Machine Learning [DISTRIBUTION STATEMENT A] Approved for public release and unlimited
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Successfully generated lots of data for classifiers

Analysis of Juliet Test Suite: Initial CWE Results

- We automated defect identification of Juliet flaws with location 2 ways
- A Juliet program tells about only one type of CWE
- Bad functions definitely have that flaw Number of “Bad” Functions |103,376
- Good functions definitely don’t have that flaw Number of “Good” Functions | 231,476
- Function line spans, for FPs
- Exact line defect metadata, for TPs

- Used static analysis tools on Juliet programs

- We automated alert-to-defect matching Tool A|Tool B| Tool C| Tool D| Total
- Ignore unrelated alerts (other CWEs) for program “Pre-audited” TRUE | 1 g55( 162| 7,225/16,958| 26,000
- Alerts give line number “Pre-audited” FALSE | 8,539| 3,279| 2,394|23,475|37,687

- We automated alert-to-alert matching (alerts fused: same line & CWE)

Lots of new — Alert Type [ Equivalence Classes: Number of Alerts Fused
data f ti EC counts a fused alert once (from different tools)

22,885
classifiers! FALSE 29,507 8,180

- These are initial metrics (more EC as use more tools, STONESOUP)

Carnegie Mellon University Challenges and Progress: Automating Static Analysis Alert Handling with Machine Learning [DISTRIBUTION STATEMENT A] Approved for public release and unlimited
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Juliet: Data from 4 Tools, per CWE

Successfully generated lots of data for classifiers

35 CWEs with at least 5 HCFPs and 45 HCTPs The 35 CWEs
More data to be added | classifier development *457 +680 252 +843 -483
: 195 404 <369 377 <126
e Tools requires
True and False +197 +415 <606 +398 *835
e STONESOUP ©134 665 122 +196
e/58 191 121 <468
6000 ©194 761 681 <469
*]190 127 <476 <688
>000 W FALSE 401 +563 +775 <587
4000 B TRUE
3000
2000
S AT
O I_ |, | - | I| . n . S II al || I| | | R |l - . || . II || II I | || il

121 126 134 190 194 196 242 253 328 369 398 404 416 467 469 478 481 483 561 563 571 590 665 680 685 690 761 775 843
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Classifiers: Accuracy, #Alerts, AUROC

Rule [Accuracy|# Alerts| AUROC Rule |Accuracy|# Alerts| AUROC
ARR30-C | 96.9%| 483| 99.8%| | FI047-C | 86.4%| 1070| 95.4%
ARR32-C | 100.0%| 947|100.0%| | FLP32-c | 100.0%| 947| 100.0%
ARR36-C 30| 50.0%| | FLP34-c | 70.5%| 3619| 78.0%
ARR37-C 74.0% 77| 83.6% INT30-C 63.7% 1365| 66.4%
ARR38-C 94.0% 397| 98.0% INT31-C 68.7%| 5139| 77.5%
ARR39-C 67.7% 31| 50.0% INT32-C 69.9%| 1599 75.7%
CON33-C| 100.0% 88| 100.0%| | INT33-C || 79.8%| 228 86.3%
ERR33-C 91.2% 376| 94.9% INT34-C 100.0% 947( 100.0%
ERR34-C | 100.0%| 947/ 100.0%| | INT3>-C | 64.3%| 622 /2.2%
EXP30-C | 100.0%|  947]100.0%| | INT36-C | 100.0% 967 100.0%
EXP33-C | 89.5%| 5214| 96.3%| [MEM30-C| 94.5%] 1461] 99.3%
EXP34-C | 91.8%| 546| 95.4%| [MEM31-C 83.9%| 933 93.2%
xp3oc T 909% 16| 8310 [MEM35-C|  66.7%| 2514| 76.0%
cxpaec | 825% 143 87 gv| |MSC37-C| 100.0%|  947]100.0%
FIO30-C | 86.5%| 1065] 95.1% ii:iig 23'::2 222 :gi;
FIO34-C | 72.5%| 1132] 78.5%| -t
FIO42-C | 83.9%| 933] 93.2%

WIN30-C| 95.6%| 1465 97.8%
FIO46-C | 100.0%|  947|100.0%

Improvement: 67 per-rule classifiers (and

more coming) vs. only 3in FY16

Model Accuracy AUROC
lightgbm  83.7% 93.8%
xgboost 82.4% 92.5%
rf 78.6% 86.3%
lasso 82.5% 92.5%

All-data
: CWE classifiers

{—ILasso per-CERT-rule classifiers (36)

Avg.
accuracy

Count
accuracy
95+%

Count
accuracy
85-94.9%

Count
accuracy
0-84.9%

85.8%

12

9

15

99.2%

90.9%

72.1%

Similar for
other classifier
methods

Lasso per-CWE-ID classifiers (31)

Count Count Count
Avg. accuracy |accuracy |accuracy | Similar for
accuracy |95+% 85-94.9% |0-84.9% | other classifier
81.8% 7 10 14 |methods
98.4% 89.6% 67.9%
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Summary and Future

FY17 Line “Rapid Classifiers” built on the FY16 LENS “Prioritizing vulnerabilities”.
» Developed widely useful general method to use test suites across taxonomies

» Developed large archive of “pre-audited” alerts
- Overcame challenge to classifier development

Publications:
- For CWEs and CERT rules « New mappings (CWE/CERT rule):
. . MITRE and CERT websites
» Developed code infrastructure (extensible) . IEEE SecDev 2017 “Hands-on Tutorial:
° In-progress: Alert Auditing with Lexigc_)n & Rules”
o ] ] » SEI blogposts on classifier development
- Classifier development and testing in process - Research papers (SQUADE’18), others in
progress

- Continue to gather data
- Enhanced SCALe audit tool for collaborator testing: distribute to collaborators soon

* FY18-19 plan: architecture for rapid deployment of classifiers in varied systems
* Goal: improve automation of static alert auditing (and other code analysis and repair)
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Ideas for collaboration welcome

Collaborative work topics might include:
» Continuous integration:
- Optimizing alert analysis of developing project over time
- Modifications to previously-developed techniques

* Enhancements to algorithms/architecture, to enable more widespread use
o ??

Carnegie Mellon University Challenges and Progress: Automating Static Analysis Alert Handling with Machine Learning [DISTRIBUTION STATEMENT A] Approved for public release and unlimited
- 2018 Carnegie Mellon University distribution.
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