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Classification algorithm development using “pre-
audited” and manually-audited data, that

accurately classifies most of the 
diagnostics as: 

Expected True Positive (e-TP) or 
Expected False Positive (e-FP), 

and 
the rest as Indeterminate (I) 

Problem: too many alerts
Solution: automate handling
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Background: Automatic Alert Classification
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One collaborator reported using the determination True to indicate 
that the issue reported by the alert was a real problem in the code.

Another collaborator used True to indicate that something was 
wrong with the diagnosed code, even if the specific issue reported 
by the alert was a false positive!

What is truth?
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Background: Automatic Alert Classification

Static 
Analysis 
Tool(s)

Alerts

Alert 
Consolidation 

(SCALe)

Potential Rule 
Violations

Auditing

Determinations

ML Classifier 
Development

Codebase 
1

Codebase 
2

Codebase 
3

Training Data Inconsistent assignment of 
audit determinations may 
have a negative impact on 
classifier development!



12Challenges and Progress: Automating Static Analysis Alert Handling with Machine Learning
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited 
distribution.

Solution: Lexicon And Rules

• We developed a lexicon and auditing rule set for our 
collaborators

• Includes a standard set of well-defined determinations for static 
analysis alerts

• Includes a set of auditing rules to help auditors make 
consistent decisions in commonly-encountered situations

Different auditors should make the same 
determination for a given alert!

Improve the quality and consistency of audit data for 
the purpose of building machine learning classifiers

Help organizations make better-informed decisions 
about bug-fixes, development, and future audits.



13Challenges and Progress: Automating Static Analysis Alert Handling with Machine Learning
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited 
distribution.

© 2018 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for 
public release and unlimited distribution.

Audit Lexicon And Rules

Lexicon



14Challenges and Progress: Automating Static Analysis Alert Handling with Machine Learning
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited 
distribution.

Lexicon: Audit Determinations

Basic Determinations Supplemental Determinations

Audit 
Determinations

True False

Complex Dependant

Unknown 
(default)

Dangerous 
construct Dead

Ignore Inapplicable 
environment

Choose ONE Per Alert!

Choose ANY NUMBER 
Per Alert!

Dependent
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Lexicon: Basic Determinations

True
• The code in question violates the condition indicated by 
the alert.

• A condition is a constraint or property of validity.
- E.g. A valid program should not deference NULL pointers.

• The condition can be determined from the definition of the 
alert itself, or from the coding taxonomy the alert 
corresponds to.
- CERT Secure Coding Rules
- CWEs
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Lexicon: Basic Determinations
True Example

char *build_array(size_t size, char first) {
if(size == 0) {

return NULL;
}

char *array = malloc(size * sizeof(char));
array[0] = first;
return array;

}
ALERT: Do not 
dereference 

NULL 
pointers!

Determination
:

TRUE
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Lexicon: Basic Determinations

False
• The code in question does not violate the condition indicated 

by the alert.

char *build_array(int size, char first) {
if(size == 0) {

return NULL;
}

char *array = malloc(size * sizeof(char));
if(array == NULL) {

abort();
}
array[0] = first;
return array;

}
ALERT: Do not 
dereference 

NULL 
pointers!

Determination
:

FALSE
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Lexicon: Basic Determinations

Complex
• The alert is too difficult to judge in a reasonable amount of 

time and effort
• “Reasonable” is defined by the individual organization.

Dependent
• The alert is related to a True alert that occurs earlier in the code.

• Intuition: fixing the first alert would implicitly fix the second one.

Unknown
• None of the above. This is the default determination.
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Lexicon: Basic Determinations
Dependent Example

char *build_array(size_t size, char first, char last) {
if(size == 0) {

return NULL;
}

char *array = malloc(size * sizeof(char));
array[0] = first;
array[size - 1] = last;
return array;

}

ALERT: Do not 
dereference 

NULL 
pointers!

Determination:
TRUE

ALERT: Do not 
dereference 

NULL 
pointers!

Determination:
DEPENDENT
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Lexicon: Supplemental Determinations
Dangerous Construct

• The alert refers to a piece of code that poses risk if it is not 
modified.

• Risk level is specified as High, Medium, or Low
• Independent of whether the alert is true or false!

Dead
• The code in question not reachable at runtime.

Inapplicable Environment
• The alert does not apply to the current environments where the 

software runs (OS, CPU, etc.)
• If a new environment were added in the future, the alert may 

apply.
Ignore

• The code in question does not require mitigation.
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Lexicon: Supplemental Determinations
Dangerous Construct Example

#define BUF_MAX 128

void create_file(const char *base_name) {
// Add the .txt extension!
char filename[BUF_MAX];
snprintf(filename, 128, "%s.txt", base_name);

// Create the file, etc...
}

ALERT: 
potential 

buffer 
overrun!

Determination:
False 

+ 
Dangerous 
Construct

Seems ok…but 
why not use 
BUF_MAX

instead of 128?
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Audit Lexicon And Rules

Rules
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Audit Rules

Goals
• Clarify ambiguous or complex auditing scenarios
• Establish assumptions auditors can make 
• Overall: help make audit determinations more consistent

We developed 12 rules
• Drew on our own experiences auditing code bases at CERT
• Trained 3 groups of engineers on the rules, and incorporated their feedback
• In the following slides, we will inspect three of the rules in more detail.
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Example Rule: Assume external inputs to the program are 
malicious
An auditor should assume that inputs to a program module (e.g. function parameters, 
command line arguments, etc.) may have arbitrary, potentially malicious, values.

• Unless they have a strong guarantee to the contrary

Example from recent history: Java Deserialization
• Suppose an alert is raised for a call to readObject, citing a violation of the CERT 

Secure Coding Rule SER12-J, Prevent deserialization of untrusted data
• An auditor can assume that external data passed to the readObject method may be 

malicious, and mark this alert as True
- Assuming there are no other mitigations in place in the code
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Audit Rules
External Inputs Example

import java.io.*;

class DeserializeExample {
public static Object deserialize(byte[] buffer)

throws Exception {
ByteArrayInputStream bais;
ObjectInputStream ois;
bais = new ByteArrayInputStream(buffer);
ois = new ObjectInputStream(bais);
return ois.readObject();

}
}

ALERT: Don’t 
deserialize 
untrusted 

data!

Without strong 
evidence to the 

contrary, assume 
the buffer could be 

malicious!

Determination:
TRUE
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Example Rule: Unless instructed otherwise, assume code must be 
portable.

When auditing alerts for a code base where the target 
platform is not specified, the auditor should err on the side 
of portability. 
If a diagnosed segment of code malfunctions on certain 
platforms, and in doing so violates a condition, this is 
suitable justification for marking the alert True.
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Audit Rules
Portability Example

int strcmp(const char *str1, const char *str2) {
while(*str1 == *str2) {

if(*str1 == '\0') {
return 0;

}
str1++;
str2++;

}

if(*str1 < *str2) {
return -1;

} else {
return 1;

}
}

ALERT: Cast to 
unsigned char 

before comparing!

This code would be safe on a 
platform where chars are unsigned, 

but that hasn’t been guaranteed!

Determination:
TRUE
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Example Rule: Handle an alert in unreachable code depending on 
whether it is exportable.
Certain code segments may be unreachable at runtime. Also called dead code.
A static analysis tool might not be able to realize this, and still mark alerts in code that 
cannot be executed. 

The Dead supplementary determination can be applied to these alerts. 

However, an auditor should take care when deciding if a piece of code is truly dead. 

In particular: just because a given program module (function, class) is not used does not
mean it is dead. The module might be exported as a public interface, for use by another 
application.

This rule was developed as a result of a scenario encountered by one of our 
collaborators!
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Scientific Approach

Build on novel (in FY16) combined use of:  
1) multiple analyzers, 2) variety of features, 
3) competing classification techniques

Problem: too many alerts
Solution: automate handling
Competing Classifiers to Test
Lasso Logistic Regression
CART (Classification and Regression 
Trees)
Random Forest
Extreme Gradient Boosting (XGBoost)

Some of the features used (many more)
Analysis tools used
Significant LOC
Complexity
Coupling
Cohesion
SEI coding rule
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Rapid Expansion of Alert 
Classification

Problem 2
Too few manually audited alerts 
to make classifiers (i.e., to 
automate!)
Problems 1 & 2: Security-related 
code flaws detected by static analysis 
require too much manual effort to 
triage, plus it takes too long to audit 
enough alerts to develop classifiers to 
automate the triage accurately for 
many types of flaws. 

Extension of our previous alert 
classification work to address challenges:
1. Too few audited alerts for accurate 

classifiers for many flaw types
2. Manually auditing alerts is expensive

Solution 2
Automate auditing alerts, using 
test suites

Solution for 1 & 2: Rapid expansion 
of number of classification models by 
using “pre-audited” code, plus 
collaborator audits of DoD code.

Approach
1. Automated analysis of “pre-audited” 
(not by SEI) tests to gather sufficient 
code & alert feature info for classifiers

2. Collaboration with MITRE: 
Systematically map CERT rules to 
CWE IDs in subsets of “pre-audited” 
test code (known true or false for 
CWE) 

3. Modify SCALe research tool to 
integrate CWE (MITRE’s Common 
Weakness Enumeration)

4. Test classifiers on alerts from real-
world code: DoD data  

Problem 1: too many alerts
Solution 1: automate handling
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Rapidly create many coding-rule-level classifiers for static analysis alerts, then use DoD-
audited data to validate the classifiers.

Technical methods:
- Use test suites’ CWE flaw metadata, to quickly and automatically generate many “audited” alerts. 

o Juliet (NSA CAS) 61,387 C/C++ tests
o IARPA’s STONESOUP: 4,582 C tests
o Refine test sets for rules: use mappings, metadata, static analyses 

- Metrics analyses of test suite code, to get feature data
- Use DoD-collaborator enhanced-SCALe audits of their own codebases, to validate classifiers. Real 

codebases with more complex structure than most pre-audited code. 

Overview: Method, Approach, Validity
Problem 2: too few manually audited alerts to make accurate classifiers for many flaw types 
Solution 2: automate auditing alerts, using test suites
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Precise mappings: Defines what kind of non-null relationship, and if overlapping, how. 
Enhanced-precision added to “imprecise” mappings. 

If a condition of a program violates a CERT rule R and also 
exhibits a CWE weakness W, that condition is in the overlap. 

Mappings
Precise 248
Imprecise TODO 364
Total 612

Imprecise mappings
(“some relationship”)

Precise mappings
(set notation, often more)

Now: all CERT C rules 
mappings to CWE precise

Make Mappings Precise
Problem 3: Test suites in different taxonomies (most use CWEs)
Solution 3: Precisely map between taxonomies, then partition tests using  precise mappings

2 CWEs subset of CERT rule, 
AND partial overlap

CWE YCWE Z

CWE N

CERT 
Rule c

Problem 2: too few manually audited alerts to make classifiers
Solution 2: automate auditing alerts, using test suites
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Test Suite Cross-Taxonomy Use

Some types of CERT rule violations not tested, in 
partitioned test suites (“0”s).
- Possible coverage in other suites

CWE test programs useful to test CERT rules
STONESOUP: 2,608 tests  
Juliet: 80,158 tests
• Test set partitioning incomplete (32% left)

Partition sets of thousands of tests relatively quickly. 
Examine together:
- Precise mapping
- Test suite metadata (structured filenames)
- Rarely examine small bit of code (variable type)  

CERT rule CWE Count files that match
ARR38-C CWE-119 0
ARR38-C CWE-121 6,258
ARR38-C CWE-122 2,624
ARR38-C CWE-123 0
ARR38-C CWE-125 0
ARR38-C CWE-805 2,624
INT30-C CWE-190 1,548
INT30-C CWE-191 1,548
INT30-C CWE-680 984
INT32-C CWE-119 0
INT32-C CWE-125 0
INT32-C CWE-129 0
INT32-C CWE-131 0
INT32-C CWE-190 3,875
INT32-C CWE-191 3,875
INT32-C CWE-20 0
INT32-C CWE-606 0
INT32-C CWE-680 984

Problem 3: Test suites in different taxonomies 
(most use CWEs)
Solution 3: Precisely map between taxonomies, 
then partition tests with precise mappings
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Generate data for Juliet

Generate data for STONESOUP

Write classifier development and testing scripts

Build classifiers
• Directly for CWEs 
• Using partitioned test suite data for CERT rules

Test classifiers

Process

Problem 1: too many alerts
Solution 1: automate handling
Problem 2: too few manually audited alerts to 
make classifiers accurate for some flaws
Solution 2: automate auditing alerts, using 
test suites
Problem 3: Test suites in different 
taxonomies (most use CWEs)
Solution 3: Precisely map between 
taxonomies, then partition tests using  precise 
mappings



35Challenges and Progress: Automating Static Analysis Alert Handling with Machine Learning
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited 
distribution.

- We automated defect identification of Juliet flaws with location 2 ways

- Used static analysis tools on Juliet programs 
- We automated alert-to-defect matching

- We automated alert-to-alert matching (alerts fused: same line & CWE)

- These are initial metrics (more EC as use more tools, STONESOUP)

Analysis of Juliet Test Suite: Initial CWE Results

Number of “Bad” Functions 103,376
Number of “Good” Functions 231,476

Tool A Tool B Tool C Tool D Total
“Pre-audited” TRUE 1,655 162 7,225 16,958 26,000
“Pre-audited” FALSE 8,539 3,279 2,394 23,475 37,687

Alert Type Equivalence Classes: 
(EC counts a fused alert once)

Number of Alerts Fused
(from different tools)

TRUE 22,885 3,115
FALSE 29,507 8,180

- A Juliet program tells about only one type of CWE
- Bad functions definitely have that flaw
- Good functions definitely don’t have that flaw
- Function line spans, for FPs
- Exact line defect metadata, for TPs

- Ignore unrelated alerts (other CWEs) for program
- Alerts give line number

Lots of new 
data for creating 
classifiers!

Successfully generated lots of data for classifiers
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Juliet: Data from 4 Tools, per CWE

0

1000

2000

3000

4000

5000

6000

121 126 134 190 194 196 242 253 328 369 398 404 416 467 469 478 481 483 561 563 571 590 665 680 685 690 761 775 843

FALSE
TRUE

35 CWEs with at least 5 HCFPs and 45 HCTPs

More data to be added
• Tools
• STONESOUP

Classifier development 
requires 

True and False

• 457
• 195
• 197
• 134
• 758
• 194
• 190
• 401

• 680
• 404
• 415
• 665
• 191
• 761
• 127
• 563

• 252
• 369
• 606
• 122
• 121
• 681
• 476
• 775

• 843
• 377
• 398
• 196
• 468
• 469
• 688
• 587

• 483
• 126
• 835

The 35 CWEs
Successfully generated lots of data for classifiers
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Classifiers: Accuracy, #Alerts, AUROC

Lasso per-CWE-ID classifiers (31)

Model Accuracy AUROC
lightgbm 83.7% 93.8%
xgboost 82.4% 92.5%
rf 78.6% 86.3%
lasso 82.5% 92.5%

All-data
CWE classifiers

Lasso per-CERT-rule classifiers (36) 

Rule Accuracy # Alerts AUROC
ARR30-C 96.9% 483 99.8%
ARR32-C 100.0% 947 100.0%
ARR36-C 63.3% 30 50.0%
ARR37-C 74.0% 77 83.6%
ARR38-C 94.0% 397 98.0%
ARR39-C 67.7% 31 50.0%
CON33-C 100.0% 88 100.0%
ERR33-C 91.2% 376 94.9%
ERR34-C 100.0% 947 100.0%
EXP30-C 100.0% 947 100.0%
EXP33-C 89.5% 5214 96.3%
EXP34-C 91.8% 546 95.4%
EXP39-C 70.7% 116 83.1%
EXP46-C 82.5% 143 87.8%
FIO30-C 86.5% 1065 95.1%
FIO34-C 72.5% 1132 78.5%
FIO42-C 83.9% 933 93.2%
FIO46-C 100.0% 947 100.0%

Rule Accuracy # Alerts AUROC
FIO47-C 86.4% 1070 95.4%
FLP32-C 100.0% 947 100.0%
FLP34-C 70.5% 3619 78.0%
INT30-C 63.7% 1365 66.4%
INT31-C 68.7% 5139 77.5%
INT32-C 69.9% 1599 75.7%
INT33-C 79.8% 228 86.3%
INT34-C 100.0% 947 100.0%
INT35-C 64.3% 622 72.2%
INT36-C 100.0% 967 100.0%

MEM30-C 94.5% 1461 99.3%
MEM31-C 83.9% 933 93.2%
MEM35-C 66.7% 2514 76.0%
MSC37-C 100.0% 947 100.0%
POS54-C 90.0% 239 94.5%
PRE31-C 97.8% 46 99.1%
STR31-C 94.0% 397 98.0%
WIN30-C 95.6% 1465 97.8%

Avg. 
accuracy

Count 
accuracy 
95+%

Count 
accuracy 
85-94.9%

Count 
accuracy 
0-84.9%

85.8% 12 9 15
99.2% 90.9% 72.1%

Similar for 
other classifier 
methods

Similar for 
other classifier 
methods

Avg. 
accuracy

Count 
accuracy 
95+%

Count 
accuracy 
85-94.9%

Count 
accuracy 
0-84.9%

81.8% 7 10 14
98.4% 89.6% 67.9%

Improvement: 67 per-rule classifiers (and 
more coming) vs. only 3 in FY16
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Summary and Future

FY17 Line “Rapid Classifiers” built on the FY16 LENS “Prioritizing vulnerabilities”. 
• Developed widely useful general method to use test suites across taxonomies
• Developed large archive of “pre-audited” alerts

- Overcame challenge to classifier development
- For CWEs and CERT rules

• Developed code infrastructure (extensible) 
• In-progress:

- Classifier development and testing in process
- Continue to gather data
- Enhanced SCALe audit tool for collaborator testing: distribute to collaborators soon

• FY18-19 plan: architecture for rapid deployment of classifiers in varied systems 
• Goal: improve automation of static alert auditing (and other code analysis and repair)

Publications:
• New mappings (CWE/CERT rule): 

MITRE and CERT websites
• IEEE SecDev 2017 “Hands-on Tutorial: 

Alert Auditing with Lexicon & Rules” 
• SEI blogposts on classifier development
• Research papers (SQUADE’18), others in 

progress
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Ideas for collaboration welcome

Collaborative work topics might include:
• Continuous integration: 

- Optimizing alert analysis of developing project over time
- Modifications to previously-developed techniques

• Enhancements to algorithms/architecture, to enable more widespread use
• ??
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