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INTRODUCTION
• Cybersecurity Data Science practitioner – SAS Institute
• Lecturer / PhD candidate – Nyenrode Business University

• Qualitative research
• 43 global cybersecurity data scientists
• Key challenges and best practices
• Organizational & methodological guidance
• Book early 2020  #CSDS2020

‘Cybersecurity Data Science: Prescribed Best Practices’
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Research Motivation:
Genesis in Six Memes
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Three Year Genesis of This Talk
FloCon 2017 – San Diego
• Interest in data analytics percolates
• But… cautious: ‘I’ll know it when I see it’

Labeled for non-commercial reuse
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2017: “THE CAUTIOUS TRADITIONALISTS”
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Three Year Genesis of This Talk
FloCon 2017 – San Diego
• Interest in data analytics percolates
• But… cautious: ‘I’ll know it when I see it’

FloCon 2018 – Tucson 
• Spike in analytics and machine learning cases
• But… questions emerge: ‘How do we get from here to there?’

Labeled for non-commercial reuse Wikipedia Commons
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2018: “THE DATA REVOUTIONARIES”
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2018:  SAY ‘DATA SCIENCE’…

ONE… MORE… TIME!
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Three Year Genesis of This Talk
FloCon 2017 – San Diego
• Interest in analytics percolates
• But…: ‘I’ll know it when I see it’

FloCon 2018 – Tucson 
• Spike in analytics and ML cases
• But…: ‘How do we get there?’

FloCon 2019 – New Orleans 
• Deafening market / vendor buzz
• But, caveats abound: ‘Many are drowning in data lakes’

Labeled for non-commercial reuse Wikipedia Commons
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2019: Drowning in Data Lakes
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2019:  ONE DOES NOT SIMPLY…

“PUSH A DEEP LEARNING MODEL TO PRODUCTION” 
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2019
But…
substantial
issues
grow



13 2019: Reactive militarization
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2019
CSDS
Cyber
Security
Data

Science

CYBERSECURITY
GOALS

DATA SCIENCE
METHODS
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2019
CSDS
Cyber
Security
Data

Science

• Rapid emergence
• Early stages of professionalization
• Affected by maturity of ‘data science’ more generally 

Taking stock
“Data scientists and practitioners can 

talk past each other.”
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Data Science in 30 Seconds…

?
See YouTube lectures: https://bit.ly/SS9rCT

https://bit.ly/SS9rCT


Copyright  © 2019 Scott  Mongeau A l l  r ights reserved.

CSDS Interview Research
What Type of Data Science is CSDS?
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Participants - Sample

• Linked-In search 
• ‘cybersecurity’ + (‘data scientist’ or ‘analytics’)

• ~350 professionals globally
• Direct outreach
• Follow-on referrals 

• Gating to exclude ‘ceremonial CSDS’ 
• i.e. sales, recruiting, marketing, technology strategists

43 participants + 130 years collective CSDS experience (3 yr mean)



Demographic Profile (n=43)
Current Region

25% (n=11) relocated from native region
19% (n=8) relocated to US specifically
12% (n=5) relocated from Asia to US

Current Industry

n %
North America 27 63%
Western Europe 10 23%
Asia / Pacific 2 5%
Eastern Europe 2 5%
Middle East 1 2%
South America 1 2%
Total 43 100%

n %
Software & Services 22 51%
Consulting 7 16%
Finance/Svcs/Ins 7 16%
Government / military 3 7%
Consumer products 2 5%
Academics / Research 1 2%
Telecom 1 2%

43 100%

Gender

n %
Male 38 88%
Female 5 12%

43 100%



Demographic Profile (n=43)
Age* # Yrs Employed*

Mean 37
StdDev 9

Mean 15
StdDev 10

* Estimates inferred from LinkedIn profile data

# Yrs CSDS*

Mean 3
StdDev 3
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Interview Questions and Analysis
43 Cybersecurity Data Scientists (Dis-)Agree…
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CSDS Practitioner Interview Research
Qualitative: Open Response 30 Minute Interviews

• ENTRY:  How did you become involved in domain?

• What TRENDS are emerging? 
• What are perceived central CHALLENGES? 
• What are key BEST PRACTICES?

• METHODS: Borrowing from adjacent domains?
• THREATS:   Trends on the adversarial side?
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Methodology: Interview Topic Labeling (CODING)
Inductive Extrapolation and Deductive Refinement

training  +industry  'machine learning'  +apply  pretty  'data science'  +market  
analysis  ml  +area  machine  +algorithm  +domain  +defense  'as well'
+behavior  false  +anomaly  +positive  'as well'  +event  +'false positive'  
detection  +point  well  important  +solution  +automate  learning  +label

+instance  +'false positive'  +allow  +depend  +extract  +obtain  +amount  
+'different thing'  +add  +deal  +positive  +collect  +mention  false  information
+integrate  'cyber security'  +trend  +approach  cyber  better  +business  +field  
+depend  +large  +know  +good  +machine  +hard  +scientist
cybersecurity  definitely  +address  +increase  +automate  +complexity  
+defense  +industry  +mention  +threat  +attacker  +issue  right  +device  +tool
'big data'  privacy  +implement  +process  +decision  +technique  +big  quality  
+algorithm  +bring  +solve  difficult  +method  +year  +apply
+buy  +day  money  +long  +aspect  +source  +network  especially  +case  right  
+area  +start  +bring  cybersecurity  +big

+scientist,science,+activity,+data scientist,cyber
+instance,+positive,false,+false positive,+obtain
+behavior,+anomaly,detection,+attack,false
right,+risk,+day,+case,+aspect
machine,machine learning,learning,+industry,ml
quality,+process,+process,collection,data quality
cyber security,+tool,+little,+hard,malicious
+tool,+integrate,job,+user,knowledge

• Text analytics processing
• Engine: SAS Contextual Analysis
• Natural Language Processing (NLP)
• Latent Semantic Indexing (LSI)
• Singular Value Decomposition (SVD) 

Topic extraction 
Agglomerative => multi-doc

Concept clustering 
Divisive => unique doc

Key topics (codes)

Domain literature review Practitioner review

Content analytics extrapolated themes

‘Coding’ of processed 
interview transcripts
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CSDS Objectives - Conceptual Model for Responses
Framing and Relationships Amongst Topics

CHALLENGES

TRENDS

THREATS

BEST 
PRACTICES

ADJACENT 
DOMAINS
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Threats & Adjacent Domains
CSDS Professional Perspectives
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THREATS: 13 Adversarial TrendsInternal threats

Inherent vulnerabilities

Reverse engineering detection

Adversarial ML

Automated attacks increasing

Exploiting new tech vectors

Social engineering 

Ransomware-as-a-service

Crypto-jacking

Continual adaptation

State actors => machine learning

Time-to-detection / dwell time

Industry-specific attacks
i.e. Reverse engineering and confusing / tricking ML 

models (seeding false data)… Although a ‘hot topic’ in 
academic research, few indications of incidents.

White hat tools (i.e. PEN testing) often quickly end 
up being repurposed for black hat purposes…

Adversarial objectives 
evolve to optimize 

economic risk-reward

Much disagreement, from 
indignant disbelief to notion of 

manifest destiny
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METHODS: 8 Influential Adjacent Domains

Social & behavioral sciences

Fraud / forensics / criminology

Medical, epidemiological, ecological

Enterprise risk management

Network graph analytics

NLP & semantic engineering

Forecasting / time-series analysis

Computer vision / deep learning

QUOTE: “Still a work in progress, and one does need 
to step over the hype, but there are some early 

indications that deep learning can be quite efficacious 
if one is handling immense amounts of labeled data.”

QUOTE:  “It is almost a crime how little we learn 
from the fraud domain being as they have been at it 
for almost a century.”

QUOTE:  “As networks and devices become 
increasingly complex and intertwined, they begin to 

resemble organic systems and act in biological ways.”

QUOTE: “Whereas cybersecurity seeks 
to safeguard, it isn’t going to get very far 
without quantifying risks and impacts.” 
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CHALLENGES
Perceived CSDS Gaps
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Challenges: 
12 Topics

Confusion

ORGANIZATION

Regulatory 
uncertainty

Inherent costs

Marketing hype

TECHNOLOGY

PROCESS

Decision uncertainty

Scientific process?False alerts volume

Data preparation / 
quality

Normal vs. 
anomalous?

Own infrastructure 
& shadow IT?

Lack of labeled 
incidents

Few resources
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Challenges:  12 Topics => 5 Themes*

1. Leadership has ‘lost the plot’
• Uncertainty: nature of threats, what is being protected, how to react

2. Can’t do it all!
• Expansive domain: not cost effective to cover everything in house

3. Between a rock and a hard place…
• Rules-based approaches failing, but alternate approaches overhyped

4. Scientific contextualists
• Need to improve representation of environment & tracking of events

5. Data cleansing: ‘the ugly stepchild’
• Critical underinvestment in data engineering to stage analytics

* Utilizing exploratory factor analysis (extraction of latent factors)
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Best Practices
Perceived CSDS Treatments
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Best Practices:  26 Topics => 8 Themes*

ORGANIZATION
• Management-driven change
• Training & program governance

* Utilizing exploratory factor analysis (extraction of latent factors)

PROCESS
• Organizational process engineering
• Structured risk quantification
• Focused scientific processes 

TECHNOLOGY
• Data engineering practices~
• Ontologies & normalization
• Architecture-driven solutions
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Key Guidance
CSDS Gap Prescriptions
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Key Prescribed Treatments: Correlation Between Factors

Challenge Themes Best Practice Themes
1. Leadership has ‘lost the plot’ • Management-driven change

• Training & program governance

2. Can’t do it all! • Organizational process engineering
• Focused scientific processes

3. Between a rock and a hard place…   
(limits of rules vs. hype)

• Architecture-driven solutions
• Ontologies & normalization

4. Scientific contextualists • Training & program governance
• Data engineering practices

5. Data cleansing: ‘the ugly stepchild’ • Management-driven change
• Training & program governance
• Structured risk quantification
• Focused scientific processes
• Data engineering practices
• Ontologies & normalization



Data Engineering Advanced Analytics Triage / Validate Remediate

?Diagnostics & 
patterns

Predictive 
modelling

Establishing 
baselines

Anomaly 
detection

Behavioral
insights

INVESTIGATORScientist CASE MGMT
DATA 

ENGINEERData Engineer
Data Scientist Infosec ResponseCyber 

Investigator

CYBER RISK ANALYTICS PROCESS

RECURSIVE FEEDBACK

Organization:  Interdisciplinary Collaboration
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Organization:  Interdisciplinary Collaboration

Security 
Experts

Data 
Scientists

Data 
EngineersMGMT

•Decision & ownership clarity
•Training & team building
•Orchestrate cross-functional 
collaboration (incentives)

•Call “AI = automation” bluff

•Core data ‘pipeline’ processing
•Facilitate processes / quality
•Call “data lake = strategy” bluff

•Architect exploration and 
detection processes

•Collaborative model building
•Model transparency
•De-escalate “AI hype cycle”

•Collaborate in process re-
engineering 

•Collaborate in establishing 
model context

•Admit limits of signatures
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People - Process - Technology
Management of Information System



People: Anomaly Detection - Simply Complex
Identifying targeted anomalies amongst an ocean of noise…

SOURCE
Aggarwal, Charu C. (2017). “Outlier Analysis: Second 
Edition”. Springer International Publishing AG.

PROBLEM 
FRAMING

DATA
PREPARATION

DATA EXPLORATION

TRANSFORM & 
SELECT

MODEL 
BUILDING

MODEL VALIDATION

EVALUATE & 
MONITOR RESULTS

TARGETED
ALERTS

MODEL 
DEPLOYMENT



Process: Analytics Life Cycle

Raw Data Features    Modeling Insights  Feature 
Selection

Feature 
Engineering

SAS: ‘Managing the Analytics Life Cycle for Decisions at Scale’

https://www.sas.com/content/dam/SAS/en_us/doc/whitepaper1/manage-analytical-life-cycle-continuous-innovation-106179.pdf
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Technology: Architect Exploratory & Detection Platforms*
Functional Architectural Segmentation

Exploratory ‘big 
data’ repository

* Runs counter to the industry vendor stance of store ‘all-the-data-all-the-time’

Operationally 
focused detection

Feature engineering
i.e. selection, refinement, 

binning, correlations

Canonical ontology / 
schemas

Analytical models
• Statistical
• Supervised

Analytical models
• Descriptive
• Unsupervised

Analytical models
• Semi-supervised
• Human-in-the-loop
• Reinforcement
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Summary
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Cybersecurity Data Science (CSDS)

• Process of Professionalization:  a work in progress
• Named professionals 
• Set of methods and techniques
• Standards, best practices
• Training programs
• Certifications 
• Academic degree programs
• Focused research journals
• Formal sub-specialization Researcher Primary Care

Diagnostician
Specialist

Surgeon Emergency Care
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Thank You!
Interested to participate?

scott.mongeau@sas.com
Scott Mongeau

Cybersecurity
Data Scientist

+31 68 370 3097
(Netherlands GMT+1)

mailto:scott.mongeau@sas.com
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APPENDIX
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Organization:  Building Disciplinary Bridges

• Growing pressure/urgency
• Cyber = general enterprise risk 

• Structured processes
• Meshing discovery, model building/ 

validation, alerting/remediation

• Data engineering as a process 
• Discovery / exploration
• Detection / remediation
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Key Prescribed Treatments: Correlation Between Factors

Challenge Themes (Factors) Best Practice Themes (Factors)
1. Leadership has ‘lost the plot’ • Management-driven change

• Training & program governance

2. Can’t do it all! • Organizational process engineering
• Focused scientific processes

3. Between a rock and a hard place…   
(limits of rules vs. hype)

• Architecture-driven solutions
• Semantic frameworks

4. Scientific contextualists • Training & program governance
• Data engineering practices

5. Data cleansing: ‘the ugly stepchild’ • Management-driven change
• Training & program governance
• Structured risk quantification
• Focused scientific processes
• Data engineering practices
• Semantic frameworks
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Process: Machine Learning Segmentation versus Classification

https://medium.com/datadriveninvestor/differences-between-ai-and-machine-learning-and-why-it-matters-1255b182fc6

https://medium.com/datadriveninvestor/differences-between-ai-and-machine-learning-and-why-it-matters-1255b182fc6


Anomaly Detection Predictive Detection Risk Awareness / 
Resource Optimization

• Big data overload
• Flags, rules, and alerts Learning

• Human-in-the-loop 
reinforcement 
learning

•Semi- and 
Supervised ML

Risk Optimal
• Champion-

challenger model 
management

• Automating alert 
triage

• Resource 
optimization

Cybersecurity Analytics Maturity Model
Data-aware 

Investigations

Understanding
•Feature 
engineering

•Unsupervised ML
•Labeling
•Diagnostics

Chasing  
phantom 
patterns



Cyber Defense Economics:  Optimizing Accessibility Versus Exposure
Invest to point of optimality

global 
optimal

Profits

Costs

under-
invested

premium
investing

(P) 
Profits 

from digital 
participation

(Q) Quantity of cyber threat assurance 

break
even

SOURCE
Partnering for Cyber Resilience: Towards the Quantification of Cyber Threats
WEF report in collaboration with Deloitte:  
http://www3.weforum.org/docs/WEFUSA_QuantificationofCyberThreats_Report2015.pdf
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http://www3.weforum.org/docs/WEFUSA_QuantificationofCyberThreats_Report2015.pdf
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The ‘Meta Picture’ for Technologists and Methodologists
• Cybersecurity: hybrid techno-economic-

behavioral context = many latent variables
• Research methodology 

• Multivariate inferential statistics 
• Social science: grounded theory (inductive)
• Cross-applicability to ‘core’ cybersecurity?
• e.g. Increase in complex multi-domain models?

• Extrapolating & validating patterns
• Content analysis / text analytics

• Cluster Analysis 

• Principal Component Analysis (PCA)

• Discriminant Analysis

• Factor Analysis* => latent factors 

• Correspondence Analysis

• Structural equation modeling (SEM)

• Extrapolating latent behavioral indicators
• i.e. User IT ‘technical sophistication’ 

• ‘Organizational importance’ of a device 

• ‘Adversarial determination’

• Validating theoretical models
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