Integrated Safety and Security
Engineering for Mission-Critical
Systems

Dr. Sam Procter

Carnegie Mellon University
Software Engineering Institute

Research Review 2019

Copyright 2019 Carnegie Mellon University.

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8702-15-D-0002 with Carnegie Mellon University for the operation of
the Software Engineering Institute, a federally funded research and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as an official Government position, policy, or decision, unless
designated by other documentation.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN "AS-1S" BASIS. CARNEGIE
MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY
OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES
NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and
distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without requesting formal permission. Permission is required
for any other use. Requests for permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu.

Carnegie Mellon® is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

DM19-1076

Carncgio Mellon University © 2019 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

. . . unlimited distribution. 2
Software Engineering Institute

Research Review 2019

Making Critical Systems Safer and More Secure

 Modern embedded systems — such as those found in the CH47F Chinook, TARDEC
Autonomous Truck, and Little Bird — need to be both safe and secure, but too often,
a system’s safety is designed and assessed separately from its security.

 The pace and scale of these systems’ development are such that traditional analysis
cannot keep up. We're developing software and processes that use a system’s
architecture to support developer intuition and improve safety and security.

« But AADL - the internationally standardized Architecture Analysis and Design
Language — is for more than research: Alex Boydston will talk about how the U.S.
Army is using prior research in model-based engineering to build systems that are
safer and less expensive.

Carncgio M(‘"Oﬂ Lfn iV(‘I'Sily © 2019 Car rnegie Mellon Univer rsity L[:]IE;EE;J;I{SDE;?TEMENT A] Approved for public release and
Software Engineering Institute

Integrated Safety and Security Engineering

AADL Overview

Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and
e v unlimited distribution.

Software Engineering Institute

Research Review 2019

AADL Overview

TempControlProcess.i®

—

: This box represents a
Ie_::i(gei:elcgrtsogr?vsdeir;hg;y The difference I?etween _ computer process — a
on their whiteboards AADL and a whltebpard is protected region of
AADL consists of box’e . that AADL has precise memory and a space
d1 semantics where we can allocate
and fines individual threads
Carncgi(‘ Mellon ljnivcrsity © 2019 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Software Engineering Institute

Research Review 2019

AADL Overview

TempControlProcess.i®

,r ----t:m-pﬁ-er;;*------. I tempControl* I I fan® h
er a
I I . X I
! / [I] !
" 2 ¢ k [ll"
' I !

—

Those threads are also
boxes — but they have
very precise meanings.

[DISTRIBUTION STATEMENT A] Approved for public release and

© 2019 Carnegie Mellon University
unlimited distribution.

Carnegie Mellon University
Software Engineering Institute

Research Review 2019

AADL Overview

TempControlProcess.i®
[_ N N N N BN BN _ B B B B B B B | G B B N & & N § N & N § § N _§ § § § .} N BN BN BN BN BN BN BN .
r tempSensor* .] tempControl* ,' r fan*
" ~\\ tempChanged tempChanged fanCmd fanCmd Il "
~
~ .]
I “., T4 B——3 J I
~
" currenmnnp currentTemp fanAck fanAck ,’ ",'
> /

I »ﬁ_t‘ setPoint ":'\"'i._T":'_"!i" / I

We can connect the threads
together using lines to
represent different types of

This box shows a periodic
thread — it is dispatched
regularly according to some

clock

intra-process
communication

We add more semantics via
properties —they are useful
for both system analyses
and to guide code
generation

And this thread is sporadic
— it is dispatched whenever
a message arrives at a
specified port

Carnegie Mellon University
Software Engineering Institute

© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

Integrated Safety and Security Engineering

Transitioning Research
to Practice

Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and
7 = ‘ unlimited distribution.

Software Engineering Institute

Research Review 2019

Research into Practice

Previous SEl Research External Research . . .
- - o * This project consists of a handful of tasks. Some are more
AL —@) & O theoretical and some more mature.
Researcyh O DoD/DHS/ . .
O O eoermeral o All of the tasks, though, are implemented using AADL: a
sy @° @ reeran language already used by practitioners.
Annex Standards
= - = * This lets us rapidly move ideas from research — conducted
This Project here at the SEI, in academia, or in industry — to practice.

! !
2 2 2

System System System
Auditors Testers Designers

Carnegie Mellon University © 2019 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and
o) /) unlimited distribution. 9

Software Engineering Institute

Research Review 2019

Hazard Analysis: Re-tooled for Modern System Development
‘ « Hazard analysis — a way of assessing a system’s safety —
. traditionally results in a large report.

. « What if that report could be split into its constituent parts and

— generated dynamically based on the system architecture?
We exploit state-of-the-art data-dependence analysis
. (developed by colleagues at Kansas State University) to power
the report.

— queried interactively by an auditor?

Carnegie Me]]()n Un iversity © 2019 Carnegie Mellon University [Dll_ST_ngz_ﬂQt;\l ST.
v unlimited distribution
Software Engineering Institute

10

Research Review 2019

Slang and HAMR: Verification
Generation

TempLontrolfrocess. /*
| tempsensors . A fane '
: ______ rempChenged ¢ ¢ tompChanged fanCmnar , fooCrwt : s Modell nd Analysi
P8 Hteth [. S o Sy ¢ ¢ oY R o
:, _______ cumentons ;. orenrens 4 fo ‘_"_“_ _______ :
S Al Lokl g RS R ASCS g Ol =S
v 1 1 1 v] 1 1 si¥as
AADL to Slang Code Generation ® 4
v v L »

v
E Source Code, Simulation,
éé Analysss, Verification

| | I I L
Slang to C Code Generation

¥ L. FEDy

E Deploymant on
% Embedded/Distributed Platforms

Derived from a model built by John Hatcliff, Kansas State University.

Integrated with Code

We’'re working with Kansas State
University on two related technologies
that translate a system architecture (in
AADL):
» Slang — an analyzable intermediate
representation, and then

« C/ C++ - HAMR produces low-level
source code targeted at a given
platform

Carncgi(‘ M(‘"O" L‘vniV(‘rSity © 2019 Carnegie Mellon University
Software Engineering Institute

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

11

Research Review 2019

Safety and Security Design Patterns

. . . Global composition
Operationalize existing patterns: P Contract on interface

(tool: AWAS)
e Stated in unambiguous AADL \ (tool: RESOLUTE)

. . , . \
* Machine checkable (via ALISA) TMR_Archetype.impr
_____________________________ -
1 &
Input | Input Module_3 Output i
y 0 g N N TER NER NN PRI D D — —-_—
. '=' Y |h H Ilnpul_3 vmr*Error_Covered} Error_Cover '\
1 = >
............................. -
1 ®
vl Input Module_1 Output ' :Inpul_1 Error_Detected : Error_Detectgd
o = > =
e e ——————————— I 1
I Input_2 QOutput I Outppt
----------------------------- -
1 *
Linput Module - output L[> r 2 H
1

Outputs: . j— \\ ” \

 Atool-supported library of patterns \ \
« Moving through AADL standardization process Faulty components Safeguard
(AADL/EMV?2) (AADL/BA)
Carncgio Mellon Un ivcrsity © 2019 Carnegie Mellon University L[:]Ilisn':}ggggllﬁgluﬁ;:TEMENT A] Approved for public release and 12

Software Engineering Institute

mailto:christopher.preschern@tugraz.at
mailto:christopher.preschern@tugraz.at

Integrated Safety and Security Engineering

DoD Impact

Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and
e v unlimited distribution.

Software Engineering Institute

APPROVED FOR PUBLIC RELEASE

*

(U.S.ARMY]

Z DoevoomM

U.S. ARMY COMBAT CAPABILITIES DEVELOPMENT
COMMAND —
AVIATION & MISSILE CENTER

Architecture Centric Virtual Integration on
Joint Multi-Role (JMR) Mission Systems Architecture Demonstration (MSAD)

Alex Boydston, MSEE

DISTRIBUTION A: Approved for public release; distribution

JMR MSAD / FARA Project Engineer

CCDC AvMC

1 Oct 2019
APPROVED FOR PUBLIC RELEASE

APPROVED FOR PUBLIC RELEASE

JMR TD MISSION SYSTEMS
ARCHITECTURE DEMO (MSAD

Effective Acquisition
{ p.m.? — Competitive Opportunities
m;_.{mj;;f\ ‘ — Reduced Vendor Lock
— Increased Affordability
Efficient Integration
— Reduced Time to Field
Improved Capabilities
— Portable / Reusable
— Interoperable
— Upgradeable / Resilient
— Planned Variability
We need tools that help do — Virtual Integration/Analysis
the job, not become the job! Efficient Qualification
— Safe/Secure

DEVCOM

l’r -'1 J.l-'n’l'

Purpose:
Investigate/Mature processes, tools and standards necessary to
specify, analyze, design, implement and qualify a Mission Systems
Architecture in support of emerging FVL PoR that meets Army business
goals
Approach:
— Leverage or develop the standards and tools necessary to
successfully implement a mission systems architecture
— Execute a series of increasingly complex demos - Learn by doing
Focus Areas:
— Implementation of Open Systems Architectures (OSA)
» Joint Common Architecture (JCA)
* FACE™ Technical Standard -
» Hardware Open Systems Technologies (HOST) 3
— Application of Model Based Engineering (MBE) : =
+ Model-based specification/acquisition
— Execution of an Architecture Centric Virtual Integration Process

BEEEE
D“‘° : « Predictive performance assessment ==

APPROVED FOR PUBLIC RELEASE

.l.q !

o1
il 1

15

http://www.google.com/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&uact=8&ved=0CAcQjRw&url=http://mta-inc.com/Joomla/index.php/customers&ei=1bMiVeHdOePasASYuIDoBg&bvm=bv.89947451,d.cWc&psig=AFQjCNFHF9sSP1Zvh357y2ipCrIznRFiDQ&ust=1428424018975002
http://www.google.com/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&uact=8&ved=0CAcQjRw&url=http://www.opengroup.org/face&ei=Ud1AVfCXMoGoNofugbgN&psig=AFQjCNF8FMrtWL067TVjeBUgxAVuGpe4JQ&ust=1430400713327774
http://savi.avsi.aero/index.html
http://www.pivotpt.com/training/mbse-sysml/

APPROVED FOR PUBLIC RELEASE

RAH-66 COMANCHE SOFTWARE REWORK
& INTEGRATION COSTS [BEvconm

* In 1983, the Army planned to buy 5,023 vehicles at $12.1 million/copy.

» Test schedule delays and increasing development costs scaled down the
planned buy to 650 aircraft at $58.9 million/copy.

* Most testing involved integration of the complete Mission Equipment
Package, which incorporated a radar, infrared, and image-intensified
television sensors for night flying and target acquisition.

« Technical challenges remained in software development, integration of
mission equipment, radar and infrared signatures, and radar perf.

* The first flight had been originally planned to take place during August 1995,
but was delayed by a number of structural and software problems that had
been encountered.

« Key program elements, including development and integration of certain

Photo Credit: Boeing-Sikorsky

(\ software capabilities, failed to foster confidence with Army overseers; several
wo major software (SW) rebuilds capabilities were viewed as having been unproven and risky.
occurred during development « The anticipated consumption of up to 40% of the aviation budget by the
indicating significant integration Comanche alone for a number of years was considered to be extreme.
issues
_ References:
* 1stincrement: 75% of SW replaced + http://www.defense-aerospace.com/articles-view/release/3/32273/pentagon-hit-over-comanche-failings-(jan.-23).html
_ * https://en.wikipedia.org/wiki/Boeing%E2%80%93Sikorsky RAH-66_Comanche#cite_note-26
* 2"dincrement: 50% of SW replaced / + https://en.wikipedia.org/wiki/Boeing%E2%80%93Sikorsky RAH-66_Comanchetcite_note-Eden_p139-9)

Comanche costs were expected to consume up to 40% of US Army Aviation budget resulting in
cancellation. Integration and software rework were significant cost contributors.

APPROVED FOR PUBLIC RELEASE

APPROVED FOR PUBLIC RELEASE

--—--- ARCHITECTURE CENTRIC

VIRTUAL INTEGRATION PROCESS (ACVIP) DEVCOM
» Origin (2009): Aerospace Vehicle Systems Institute’s System | ol &
Architecture Virtual Integration (SAVI) concept for incremental virtual e |3 S| Pt
integration using AADL. m‘ =
® ==

» First step, embedded systems architecture modeling in AADL, a
language for precisely specifying key components and properties of
embedded systems. l

 Virtual integration process uses AADL-enabled analyses of real-time
safety- and security-critical computing systems to identify issues early

before integration. _-»-;;53“’
: : : : : R ACVIP B
« Automated continuous virtual integration enables architecture-based % g/
incremental and compositional modeling & analysis as system evolves. | 3/
» Provides increasing assurance confidence; complements testing. | e
« Provides a “Single Authoritative Source of Truth. “Model, Integrate,
« Enabler of MOSA to provide a standard analyzable and processable Analyze, then Build”

architecture description for embedded systems.

Virtual Integration of Software, Hardware, and System
supporting verification, airworthiness, safety and cybersecurity certification

APPROVED FOR PUBLIC RELEASE

APPROVED FOR PUBLIC RELEASE

15T JIMR MSAD DEMONSTRATION:
t EVCOM

Do JCA DEMO LESSONS LEARNED

(v v]

Requirements

v s Use of AADL for virtual integration and analysis
Led Report Model identified >85 issues

Requirements NI
Specification
{ALRS)
Analysis

DCFM
Supplemental
Requirements

DCFM
EA UML Data
Wodel

« ACVIP analyses identified errors prior to system
mtegratlon (as early as during the kickoff
DCFM suppliers)

Integration
Model

"‘j-,- Architecture Functional integration analysis (SAVI 2008)
Led Safety Latency jitter analysis (Line 2006)
Analysis .| | Fault taxonomy and analysis (Line 2012)

LEDML | | Incremental assurance (ALISA 2015-16) FACE'>'_A"_A‘DL and SysML->AADL
wooro Trave oeen beneficial to automate and reduce
human error

Mis
Stakeholder
Requirements g

AADL Model
Construction
In OSATE

Timing

I:t‘e'gr‘;'g:n - Report Modd - ACVIP training proved beneficial
Model LedTiming - Boeing used AADL to extend their demo for timing

Analysis g and control stability analysis and found issues
Mis

Build 2 Plan

(system

Architecture analysis is critical for the successful
and affordable integration of systems

APPROVED FOR PUBLIC RELEASE

APPROVED FOR PUBLIC RELEASE

DEMOS OF EFFECTIVENESS IN USE OF

Finding Problems Early Using AADL (CCDC/SEI)
. Summary: 6 Week Virtual Integration of HUMS on CH47F using AADL

. Result: Identified 20 major integration issues early Virtual Upgrade Validation Method (2012)
. Benefit: Avoided 12-month delay on 24-month program Error Model V2 Annex (2015)

Decreased fielding time DOK

Discovering Performance Issues Early Using AADL (UH-60V)
« Summary: Applied AADL ana wacons ae
- Result:. Predicted multicore g_Multi-core Scheduling (Line 2014)

+ Benefit: Provided early performance insight and risk reduction

UH60V Blackhawk ' Early Risk Reduction

Improvmg System Security (DARPA / AFRL)
AADL applied to Unmanned Aerial Vehicles & Autonomous Truck using
formal methods analysis and trusted system generation Unmanned

* Result: AADL models enforced security policies and were used to auto :
build the trusted system

+ Benefit: Combined with formal methods verification, prevented security
intrusion by a red team

Architecture Concurrency (Line 2005)

AADL strong typing (2002)
MILS Security (Line 2009)
ARINC653 Annex (2011)

ber Military
cmMms)

TARDEC Autonomous Truck

Increased Cybersecurity
Transforming procurement supoorting MBE and ACVIP (JMR MSAD)

. Summary: Increasingly compley MDS Reference Architecture (2010) bnstrations
,A using Model Based Engineeringl Reliability Validation & Improvement (2014)
(.
/l kv‘ D\ R . Result: Pre-integration fault idef AADL Workbench (Line 2015)
. Benefit: ~3x incr {0 requir Incremental Assurance (ALISA 2015-16) 10
Gl w : enetit. =ax increase 1o require Integrated Safety & Security (ISSE 2018-20) X

Unmanned Little Bird

reduction on test and integratior

Decreased development costs, supports MOSA & certification

Makes complex capabilities possible through Agile analytic and virtual integration of real-time

safety and security critical cyber physical embedded systems
APPROVED FOR PUBLIC RELEASE

ACVIP & AADL | | =/ A v

19

APPROVED FOR PUBLIC RELEASE

oDEeEvCOM

Web Site
https://www.avmc.army.mil/

Facebook
www.facebook.com/ccdc.avm

Instagram
www.instagram.com/CCDC_AVM

Twitter
@CCDC_AVM

Public Affairs
usarmy.redstone.ccdc-avmc.mbx.pao@mail.mil

APPROVED FOR PUBLIC RELEASE 20

Integrated Safety and Security Engineering

Looking Ahead

Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and
e v unlimited distribution.

Software Engineering Institute

Research Review 2019

Looking Ahead

What other assumptions How can models be used at To what extent can we use
underlying various emerging runtime? ML / Al to help develop
technologies (e.g., ML/ Al, What data do we need to models, rather than the

DevOps, formal verification
of behavior) would be
beneficial in architectural
models?

more effectively let systems ~ Other way around?

autonomously use models
of themselves?

We are also looking for sponsors to try out our tools, or just tell us their
challenges with critical and embedded system development — please reach out!

Carnegie Mellon University © 2019 Carne! gie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.
Software Engineering Institute

22

