

Software Engineering Institute
Carnegie Mellon University
4500 Fifth Avenue
Pittsburgh, PA 15213-2612

Phone: 412-268-5800
Toll-free: 1-888-201-4479

www.sei.cmu.edu

The Role of Computer Security
Incident Response Teams in the
Software Development Life Cycle

ABSTRACT: This article describes one type of organizational entity that can be
involved in the incident management process, a Computer Security Incident Re-
sponse Team (CSIRT), and discusses what input such a team can provide to the
software development process and what role it can play in the SDLC. CSIRTs in
organizations performing software development and in related customer organi-
zations may have valuable information to contribute to the life cycle. They may
also be able to learn valuable information from developers concerning the criti-
cality, operation, and architecture of software and system components that will
help them identify, diagnose, and resolve computer security incidents in a more
timely manner.

INTRODUCTION
Incident management activities, while not specifically called out in the software
development life cycle (SDLC), are an important part of the maintenance, opera-
tions, and sustainment of any software or hardware product. Decisions made dur-
ing the SDLC, from user interface design to providing facilities for patch man-
agement, can significantly change the likelihood of incidents and the success of
any response to them.

Knowledge gained from detecting and responding to computer security incidents
provides insight into real risks and threats to the integrity, confidentiality, and
availability of software and hardware products. This information can be used at
the beginning of the SDLC to help define better security requirements in prod-
ucts and provide a better understanding of the threat environment within which
these products must operate. Knowledge gained from containing and mitigating
computer security risks and threats can also help identify auditing and recovery
requirements for systems and software. Such requirements can include building
in alerting capabilities when files and components that should not be changing
are modified, establishing policy and configuration setting capabilities to identify
and control specific software and hardware components that should not be
changed during normal operations, or providing functionality for logging unau-

Robin Ruefle

January 2007

thorized changes or malicious attacks in a manner that would preserve evidence
in a forensically sound manner.

Although computer security incident management may seem to come at the end
of the SDLC, the more knowledge from such activities are applied throughout
the design, development and implementation of operating, application, enterprise
systems and networks the more effective both the SDLC process and the incident
management process will be.

In the long run, feedback from incident management activities can be used to
produce systems that are easier to manage, have reduced operational risk, are
less impacted by cyber attacks, and have improved networked systems security
and survivability.

Knowledge of the intricacies of how specific software and hardware components
function and interface with each other is critical to understanding how those sys-
tems are at risk, how they can be exploited, and how incidents can be successful-
ly mitigated. This type of information is usually known by the systems' develop-
ers, administrators, and owners. Incident management staff, especially in a large
software-diverse organization, may not have this knowledge. Being able to rely
on the expertise of developers for assistance in analyzing not only the risks but
the best resolution strategies for systems can decrease the time it takes to contain
and recover from malicious activity.

How successfully information is collected and shared between product develop-
ers and incident management staff will depend not only on the group responsible
for incident management activities but also on the structured relationships be-
tween that group and the system developers.

Best practices in CSIRT development and implementation call for the CSIRT to
identify staff and departments throughout the enterprise with whom they must
coordinate and work. Although this list includes many throughout the IT, securi-
ty, and management structure, it very rarely if ever includes system developers.
This article will build a case for why such an interface is important and will ex-
plore some methods for encouraging such interaction.

Before proceeding, some basic introductory information on what a CSIRT is and
what it does may be required. For details, see the BSI article Defining Computer
Security Incident Response Teams.

1 | THE ROLE OF COMPUTER SECURITY INCIDENT RESPONSE TEAMS IN THE
SOFTWARE DEVELOPMENT LIFE CYCLE

CSIRTS AND THE SOFTWARE DEVELOPMENT LIFE CYCLE
Computer security incidents can often be the first place where symptoms of wid-
er, ongoing problems are noticed. Such information—if properly captured and
disseminated—can help to identify root causes of vulnerabilities, recurring secu-
rity problems and incidents, and mitigation and resolution strategies related to
such incidents and vulnerabilities. Historically, this information has not been
passed to developers or introduced into the SDLC. Incident response personnel
or CSIRT staff have not generally had an established interface with developers.
This is beginning to change as more people in both fields (security and software
engineering) have begun to understand the benefits of such information sharing.

There are many points in the SDLC where information exchange between these
two communities can provide useful information for designing better systems as
well as handling incidents on those systems.

Because CSIRT staff know what type of information they need in order to un-
derstand and resolve incidents, they will have their own set of requirements for
how detection, response, and remediation processes should be built into or at
least supported by software systems and applications. These types of require-
ments need to be incorporated early in the design phase. Such requirements
might relate to what type of event logging is required at an application or host
level, what type of a notification is required for alerting staff to unauthorized
system changes, or what type of functionality would allow for rapid contain-
ment. A good example of incident response functional requirements might be
designing software that is forensically friendly. This means designing software
that has been engineered to capture information and evidence in a forensically
sound manner, providing a record of where information came from and how it
was collected in a way that cannot be repudiated. When collecting incident data
or evidence, developers could work with incident handlers to understand how the
data is to be analyzed, used, and archived as part of the response process. There
may be specific information that can be collected and structured for automatic
input into a tracking system or repository or collected in a way to increase the
completeness and confidence in the information.

Many of the topic and content areas within the BSI Web site describe compo-
nents of the SDLC where knowledge between developers and CSIRT staff can
be exchanged. Many topics provide best practices and guidance, outlining both
requirements for better software and systems and ways to improve the develop-
ment process. Reviewing some of these requirements and methods identifies
multiple areas where information on software and hardware vulnerabilities and
malicious attacks and events are used to identify potential risks and threats to the
security and quality of products. Understanding the cause, history, and mitiga-

2 | THE ROLE OF COMPUTER SECURITY INCIDENT RESPONSE TEAMS IN THE
SOFTWARE DEVELOPMENT LIFE CYCLE

tion of these risks and threats can provide information that can be used to design
better software requirements, model threat environments, test and evaluate soft-
ware security and recovery components, and measure software survivability.

A CSIRT, by virtue of its mission and function, is a repository of incident and
vulnerability information affecting its parent organization as well as its constitu-
ency. This information can be used to provide real life risk and threat infor-
mation. It can also be used to provide guidance for reviewing and testing the se-
curity components and requirements of developed or acquired hardware and
software.

The following sections support this assertion by presenting various topics from
the BSI collection and highlighting where they call out the need for information
that could be provided by a CSIRT. The following sections also discuss some
potential interfaces where CSIRT information and bi-directional interaction can
be introduced into the SDLC.

Software Assurance
The draft document Security in the Software Life Cycle states that “Software
assurance … includes the disciplines of software reliability…, software safety,
and software security.” Software security is defined in the same document as
“the ability of software to resist, tolerate, and recover from events that intention-
ally threaten its dependability.” The document goes on to say that

The objective of software security is to design, implement, configure, and sup-
port software systems in ways that enable them to

1. "Continue operation correctly in the presence of most attacks by either re-
stricting the exploitation of faults or other weakness in the software by the
attacker, or tolerating the errors and failures that result from such exploits;

2. "Isolate, contain, and limit the damage resulting from any failures caused
by attack-triggered faults that the software was unable to resist or tolerate,
and recover as quickly as possible from those failures" [Goertzel 2006].

Because of the nature of CSIRT activities, information is continually collected
on how various exploits and vulnerabilities work, what new and emerging trends
and threats are developing, and what new mitigation tactics and strategies work
best to isolate, contain, limit, or eradicate any damage. CSIRTs often perform
these analysis and response functions or coordinate with other groups in the or-
ganization that perform these functions.

3 | THE ROLE OF COMPUTER SECURITY INCIDENT RESPONSE TEAMS IN THE
SOFTWARE DEVELOPMENT LIFE CYCLE

Knowledge from such activities can be used to develop abuse and business cases
that can be used in the development of system requirements as well as operation-
al exercises that can be used to test the security of system components. This in-
formation can also be used to understand the root cause of vulnerabilities so that
preventive measures and configurations can be built into software and hardware.
Information on how vulnerabilities are exploited can provide guidance to soft-
ware developers on how to eliminate those vulnerabilities by building defenses
into systems, software, and hardware. Knowing what intruders are trying to ob-
tain or compromise identifies what needs to be protected and gives software de-
velopers information on what components need to crash or recover gracefully
without exposure to exploitation.

As active participants in the handling of computer security incidents and vulner-
abilities, CSIRT staff understand the type of tools required to perform such work
efficiently and effectively. CSIRTs can provide information to system develop-
ers about what software functions need to be built into products to support inci-
dent detection, analysis, and mitigation activities.

Security Requirements Engineering
Of course it makes sense that CSIRTs and software developers would work to-
gether during the requirements elicitation phase of the SDLC, specifically in de-
fining security requirements. The BSI site describes requirements elicitation as
“best practices for security requirements engineering, including processes that
are specific to eliciting, specifying, analyzing, and validating security require-
ments.” In Security Requirements Engineering, Mead talks about various meth-
ods that can be used to help define security requirements specific to particular
applications and then test that those requirements are being met [Mead 2006b].
With their understanding of attackers, motives, targets, and techniques, CSIRTs
should be involved in any security requirements elicitation activity to provide
different views and probabilities for what type of attacks might be realistically
executed. In Requirements Elicitation Introduction, Mead reviews numerous
elicitation methods ranging from controlled requirements expression (CORE) to
misuse cases to Joint Application Development (JAD). CSIRTs would be valid
participants in any of these methods as they can help identify security problems
based on historical incident data and trends as well as predictions of future in-
truder activity.

Attack Patterns
Another strategy for understanding software risks and corresponding mitigation
strategies is the area of attack patterns. Attack patterns, as described by Barnum
and Sethi, provide insight into methods used to exploit, compromise, and basi-

4 | THE ROLE OF COMPUTER SECURITY INCIDENT RESPONSE TEAMS IN THE
SOFTWARE DEVELOPMENT LIFE CYCLE

cally “break” software. According to the authors, attack patterns are “an abstrac-
tion mechanism for describing how a type of observed attack is executed [Bar-
num 2006a].” The attack is described from the perspective of the intruder or at-
tacker

The BSI content area related to attack patterns lists common fields of infor-
mation that are captured to describe the details of an attack [Attack Patterns
2006]:

• Pattern name and classification
• Attack prerequisites
• Description
• Targeted vulnerabilities or weaknesses
• Method of attack
• Attacker goal
• Attacker skill level required
• Resources required
• Blocking solutions
• References

Such information can be very useful in the development of software security
requirements. In Introduction to Attack Patterns, Barnum and Sethi explain how
understanding attack patterns can provide software developers with insight into
the real environment in which software and hardware must exist. Software de-
velopers can then use this information to develop software requirements and re-
sulting products that are not only more resistant to such attacks but able to re-
cover more quickly when attacked.

The incentive behind using attack patterns is that software developers must think
like attackers to anticipate threats and thereby effectively secure their software.
Due to the absence of information about software security in many curricula and
the traditional shroud of secrecy surrounding exploits, software developers are
often ill-informed in the field of software security and especially software ex-
ploitation. The concept of attack patterns can be used to teach the software de-
velopment community how software is exploited in reality and to implement
proper ways to avoid the attacks [Barnum 2006a].

CSIRT staff and their incident and vulnerability repositories are valuable valid
sources of information about current and new attack patterns and trends. CSIRT
staff can also serve as subject matter experts to provide an in-depth perspective
on how these attacks and corresponding mitigation strategies work and how they
can be translated into software development requirements. Through their day-to-

5 | THE ROLE OF COMPUTER SECURITY INCIDENT RESPONSE TEAMS IN THE
SOFTWARE DEVELOPMENT LIFE CYCLE

day work, CSIRT staff can help distill the patterns that are evident across various
attacks. Organizing joint sessions to brainstorm new attack patterns or review
existing patterns could be one way that managers stimulate interaction between
software developers and incident management staff. The output of this interac-
tion can provide input into software requirements for products to be able to de-
fend against such attacks.

It is not enough to just understand the specifics of one attack. Looking at the
higher level problem or the pattern across the attacks is what will help develop-
ers build more secure and resilient software. In Attack Pattern Usage, Barnum
and Sethi state that

Attack patterns can be an invaluable resource for helping to identify both posi-
tive and negative security requirements…Many vulnerabilities result from vague
specifications and requirements…Requirements should specifically address these
ambiguities to avoid opening up multiple security holes [Barnum 2006b].

Attack patterns can provide information on common security flaws and prob-
lems. These problems can be addressed in various parts of the SDLC. Initially,
they can be used to identify those security requirements that need to be met
through the development and design phases. They can then be used to help gen-
erate sample attacks that can be used to test that the software security require-
ments have been met and that the software reacts to the attacks in the desired
manner.

In general, attack patterns allow the requirements gatherer to ask “what if” ques-
tions to make the requirements more specific. If an attack pattern states “Condi-
tion X can be leveraged by an attacker to cause Y,” a valid question may be
“What should the application do if it encounters condition X?” [Barnum 2006b].

During the testing phase, the same attack should be executed or simulated and
then the question becomes “Does the application react to condition X according
to the identified security requirements?” This should be followed by the question
“Does the reaction prevent the attack from succeeding (or at least mitigate its
impact)”? CSIRT and other incident management staff can help design and exe-
cute these tests and corroborate that the reaction is the desired one.

Other questions might include “Are there any other conditions that would cause
Y to happen?” or “Can condition X be leveraged by an attacker to cause a differ-
ent result?” Again, CSIRT experience in the areas of incident and vulnerability
handling and mitigation, along with collected historical attack information, can
be used to help create and understand attack patterns and corresponding mitiga-
tion strategies. This information, as previously said, can then be used to develop

6 | THE ROLE OF COMPUTER SECURITY INCIDENT RESPONSE TEAMS IN THE
SOFTWARE DEVELOPMENT LIFE CYCLE

software requirements related to preventing, deterring, or mitigating such at-
tacks.

Threat Modeling
Threat modeling, in a general sense, addresses who would want to attack you,
how they might do it, and what resources they might use to do it. CSIRTs should
be actively participating in such threat modeling to help software developers un-
derstand who might want to attack their applications, what these attackers are
looking for (i.e., what’s valuable to them), and what type of techniques they
might use to perform the attacks. CSIRT staff can also use their experience and
knowledge of the intruder community to help identify how realistic different at-
tack scenarios will be based on their understanding of the likely threat. CSIRT
staff can contribute case studies for threat modeling and also explain new trends,
emerging attack techniques, and intruder behavior and motivations.

Threat modeling has also been defined as “a structured approach for identifying,
evaluating, and mitigating risks to system security” [Goertzel 2006]. This is an-
other area where input from CSIRTs’ real-life experiences, expertise, and re-
search can be used to help determine new and emerging threats and risks. Goert-
zel and colleagues recommend building risk analysis throughout the
development process. Risk assessments can be used to help verify that identified
risks and threats are being adequately addressed or handled through either safe
and secure software failure modes, secure configurations, implemented auditing
and alerting mechanisms or planned incident response procedures. CSIRT staff,
although not usually trained in risk assessment methodologies, can provide input
about how their organization’s critical systems and data may be at risk. They
may participate on the assessment team or be interviewed by the assessment
team as subject matter experts.

Architectural Risk Analysis
The Architectural Risk Analysis section of the BSI Web site discusses the pro-
cess for conducting architectural risk assessments. The Architectural Risk Anal-
ysis document defines this process as “a risk management process that identifies
flaws in software architecture and determines risks to business information assets
that result from those flaws" [Hope 2005].

The document outlines the process and lists the key steps as

• Asset identification
• Architectural risk analysis (threats and vulnerabilities)
• Risk mitigation
• Risk management and measurement

7 | THE ROLE OF COMPUTER SECURITY INCIDENT RESPONSE TEAMS IN THE
SOFTWARE DEVELOPMENT LIFE CYCLE

Here again, CSIRT case studies, situational awareness, and expertise can provide
information into the SDLC. By virtue of their expertise and day-to-day opera-
tional tasks, CSIRTs collect, track, record, and analyze real-life information on
threats and vulnerabilities that may impact their parent organization or constitu-
ency’s enterprise. As previously discussed, they can also provide input about
attack patterns and identified historical risks. All of this information is useful in
performing architectural risk analysis.

Architectural Risk Analysis is described in the IEEE article “Bridging the Gap
between Software Development and Information Security” by Gary McGraw
and Kenneth van Wyk, as one of a series of touchpoints where coordination and
data sharing between software developers, risk analysts, and CSIRT staff (along
with other information security experts) can provide real-life information on the
types of risks and threats that software developers must take into account when
designing and implementing software and systems [McGraw 2005].

Touchpoints in the SDLC
McGraw and van Wyk go on to describe other touchpoints that, like Architectur-
al Risk Analysis, illustrate how the expertise and lessons learned from infor-
mation security staff and specialists (e.g., CSIRTs) can enhance secure software
development efforts. These touchpoints, which are presented as best practices
that can be implemented in the SDLC in an effort to allow for collaboration and
coordination between the normally isolated areas of information security and
software development, include

• "developing abuse cases that can be used to help refine requirements and
build business cases

• performing business risk analysis
• implementing test planning such as security functionality and risk-driven

testing
• performing code review
• performing penetration testing
• deploying and operating applications in a secure …environment" [McGraw

2005]

Abuse Cases
It’s easy to see how CSIRTs can provide real examples for developing abuse
cases. They know the real abuse that goes on within their own environment and
study abuses that happen to others. They share information on attacks with other
CSIRTs, read articles on such cases, and attend conferences to learn about this

8 | THE ROLE OF COMPUTER SECURITY INCIDENT RESPONSE TEAMS IN THE
SOFTWARE DEVELOPMENT LIFE CYCLE

type of information. They work to understand the technical details of attacks and
vulnerability exploits and can use this knowledge to develop abuse scenarios.

Business Risk Analysis
Working with auditors and risk analysts, infrastructure groups, and software de-
velopers, CSIRTs—whether internal to the software development organization
or coming from the organization’s customers—can provide input into the types
of risks and threats that may impact business operations. By itself, the CSIRT is
not generally the group that calculates the business impact, but it is important
that they understand the business impact so that they can prioritize response ac-
tions. The CSIRT though, through their experiences, will be able to explain how
various attacks and compromises can occur, providing the true details of the risk.
Auditors, along with financial and risk analysts working with the groups that
maintain and support enterprise software and systems, can use this information
to determine what impacts such malicious activity will have on the infrastructure
and thereby the business.

CSIRTs within customer organizations can provide more in-depth information
about their own environment and the risk and threats they face as well as the
general remedial assistance they require in handling computer security incidents.
This group may be a good reference for software developers to understand cus-
tomers’ day-to-day incident handling requirements. Engaging customer CSIRTs
through focus groups, as part of a needs analysis or software design processes,
may alert developers to common problems that can be remediated in the initial
software development activity.

Software Testing
Although the CSIRT is not the group that will normally perform any software
testing, they can provide test scenarios based on their real-life experiences or
research. Real-life scenarios will provide a good method of testing how well
software stands up to and handles current risks as well as what type of security
functions have been configured and implemented. Just because they are not gen-
erally part of the testing group does not mean that the CSIRT shouldn’t be part
of the testing group. This could be another approach to ensuring interaction be-
tween developers, testers, and incident management specialists. CSIRT staff
could focus any testing they might do on looking for common secure coding er-
rors and vulnerabilities.

Code Reviews
McGraw and van Wyk state that it is generally not the information security staff
(CSIRTs, in our case) that reviews code to ensure that security bugs and weak-

9 | THE ROLE OF COMPUTER SECURITY INCIDENT RESPONSE TEAMS IN THE
SOFTWARE DEVELOPMENT LIFE CYCLE

nesses have been removed or mitigated [McGraw 2005]. However, some mem-
bers of CSIRTs may actually have the expertise to do this type of review. There
is a small cadre of CSIRT staff and security experts who are well versed in cer-
tain malicious code and artifact analysis techniques—such as surface analysis
(including source code review) and reverse engineering techniques (disassembly
and decompilation of binary code)—who have the skills to do a security code
review. However, many teams may not always have the resources and time to
allow such proactive activities to occur. However, it may be possible, though, to
take some general lessons learned from CSIRT artifact analysis work and syn-
thesize these into best practices that can then be incorporated into secure pro-
gramming methods, techniques, and training. Such information may also be used
to implement security quality testing as part of a code review.

There are a few books on secure coding that have been released over the past few
years that present these types of best practices. These include

• Graff, Mark G. & van Wyk, Kenneth R. Secure Coding Principles and Prac-
tices. Cambridge, MA: O’Reilly Media, 2003.

• McGraw, Gary. Software Security: Building Security In. Boston, MA: Addi-
son-Wesley, 2006.

• Seacord, Robert. Secure Coding in C and C++. Boston, MA: Addison-
Wesley Professional, 2005

Penetration Testing
Depending on the services provided, a CSIRT may perform penetration testing
as part of its operational activities (either by request or on a periodic basis with
management approval). If the CSIRT is performing this function, it is important
for any weaknesses and vulnerabilities discovered in systems to be relayed back
to developers so that they can fix current problems and also incorporate these
lessons into any future software development activities.

If the CSIRT does not perform penetration testing, they again can provide real-
life exploit scripts and malicious code that might be incorporated into a penetra-
tion testing toolkit that can be used by other groups in the enterprise that are re-
sponsible for performing this activity. Use of such malicious code, though,
should always be done cautiously.

CSIRTs often keep a database of such exploit and malicious code in their inci-
dent tracking system or in its own secure repository. Such code can be analyzed
for comparative purposes or to identify patterns and trends in exploitation across

10 | THE ROLE OF COMPUTER SECURITY INCIDENT RESPONSE TEAMS IN THE
SOFTWARE DEVELOPMENT LIFE CYCLE

protocols, applications, or operating systems. It can also be used to help build
anti-virus and intrusion detection signatures.

Another significant area where penetration testing can play a part in the SDLC is
discussed by van Wyk in his BSI document Adapting Penetration Testing for
Software Development Purposes. He states that penetration testing is usually not
incorporated early enough into the SDLC, being done after a product is deployed
rather than as part of the testing phase. He recommends involving security and
incident management staff earlier to perform penetration testing to help deter-
mine significant security problems before products are placed into production.
This will allow for remediation of risks that, if left until deployment, could open
software and hardware components to significant malicious impact [van Wyk
2006].

He also discusses the benefits of black box and white box penetration testing
approaches. “In a black box test, the tester starts with no knowledge whatsoever
of the target system, whereas in a white box test, the tester gets details about the
system and can assess it from a knowledgeable insider’s point of view" [van
Wyk 2006]. White box testing is one activity where CSIRT or other incident
management staff and software developers could collaborate. This is one way to
develop an interface or communications channel between these diverse groups.
The software developers have the detailed view of how the components operate,
and the CSIRT or incident management staff can apply this knowledge during
penetration testing exercises.

Deployment and Operations
McGraw and van Wyk argue that deployment and operations should be viewed
as part of the SDLC [McGraw 2005]. If accepting this argument, then this pro-
vides another touchpoint where CSIRT staff can have input into the SDLC by
providing information that can be used during deployment and operations activi-
ties to prevent incidents and protect critical assets. Specifically CSIRTs can pro-
vide best practice guidance for implementing secure default network and system
configurations to prevent incidents. They, by virtue of their position, will also be
the key players in instituting any type of incident reporting guidelines and re-
sponse plans for handling computer security incidents that do occur.

CSIRTs collect and analyze data to determine the cause of computer security
incident as well as the correct strategy to mitigate the resulting danger. Infor-
mation resulting from this analysis can be fed back into the software design, de-
ployment, and operations phases to help prevent similar incidents in the future.

11 | THE ROLE OF COMPUTER SECURITY INCIDENT RESPONSE TEAMS IN THE
SOFTWARE DEVELOPMENT LIFE CYCLE

The deployment and operations phases of the SDLC should include activities to
detect, analyze, and respond to computer security incidents. Performing such
activities successfully is critical to the sustainment of any software and hardware
product. Software design should also then include requirements for supporting
these activities. Since CSIRT or incident management staff generally perform
these functions, they can be a good source of information for building such soft-
ware requirements. Involving CSIRTs early in the SDLC, through joint design
meetings or requirements setting interviews, can help determine what software
products require to be easily remediable. For example, most incident handlers
will agree that software logging features are not adequate and the currently
available analysis and archival tools are not optimized or easy to use. Searching
and correlating information can be difficult and retaining incident information in
a way that can be reviewed to help understand current problems and needed re-
mediation leaves much to be desired. CSIRTs can provide information to soft-
ware developers concerning what information should be automatically collected
as well as how that information should be stored and structured to maximize and
support analysis, trending, and response activities.

Obtaining customer or product CSIRT input into the design of user interfaces
and deployment features can provide a reality check that software is indeed easi-
ly remediable. An example of this could be building software in a modularized
fashion so that patching can occur in an optimized way. Another can be ensuring
that patches themselves are not the same size as the original program.

CSIRTs can provide recommendations for the best security configurations for
applications and even provide some pre-incident planning and preparation rec-
ommendations that can help developers support the CSIRT mission. For exam-
ple, in prioritizing incidents, it is important for CSIRT staff to understand not
only the criticality of a service or server but how that component fits into the
total enterprise architecture, what trusted relationships it has with other compo-
nents, what data is contained on the system, and what data is shared (including
how it is shared and with whom). The CSIRT can obtain some of this infor-
mation from the system developers and administrators. They can also work with
the developers to identify ways that the recognition of these issues can be in-
cluded in the initial system requirements and design phases. Understanding how
the software and hardware products work and interrelate will help the CSIRT
determine the severity, scope, and impact of an incident.

Improving Development Practice
In Essential Factors for Successful Software Security Awareness Training, van
Wyk and Steven discuss methods for socializing security experts and developers.
They propose a curriculum for educating developers, management, and execu-

12 | THE ROLE OF COMPUTER SECURITY INCIDENT RESPONSE TEAMS IN THE
SOFTWARE DEVELOPMENT LIFE CYCLE

tives about security issues with a focus for developers on understanding attacker
exploits and corresponding mitigation strategies and methods for executing
software security touchpoints within the SDLC [Steven 2006].

CSIRT staff who work in an organization developing software products or de-
signing and implementing enterprise systems would be good candidates to help
build such a curriculum within their organization. Their knowledge of incident
and vulnerability activity and history within the organization along with their
general understanding of security concepts, risks, and threats, their expertise in
attack methods and corresponding mitigation strategies, and) their experience
with existing organizational systems will allow them to provide real-life, rele-
vant examples to the course attendees.

Another way to create communications channels between CSIRT and develop-
ment staff is holding joint discussions to review new vulnerabilities and their
long-term impacts. A third way may be to specifically assign a member of the
CSIRT to participate in design reviews or development work (if time and re-
sources permit.)

Evolutionary Systems Design
CSIRT involvement in the SDLC does not stop with deployment and operations.
Once a system is installed, the development cycle still continues. In an article on
evolutionary software design, Lipson talks about the need for installed software
to be able to adapt to changes in its environment, usage, or components. He in-
troduces the concept of “perpetual design,” saying that “all SDLC activities must
be perpetual if the quality attributes of a system are to be sustained over time”
[Lipson 2006].

Lipson goes on to explain that

Any significant change in system requirements can certainly affect the
underlying risk management assumptions [for the system], but the ef-
fects of other changes might not be as obvious. Therefore, one of the
most essential uses for risk management resources would be to sup-
port security and survivability monitoring to provide early warnings of
emerging threats and increased risks to the system.

Lipson states that “the first step in evolving to meet new threats to your system’s
security is to recognize the need for change.” Information gathered as a result of
recognizing this need for change will be used to institute evolutionary design
changes. He then lists the following change factors or triggers that must be moni-
tored as influences on the evolutionary design of secure systems:

• business and organizational

13 | THE ROLE OF COMPUTER SECURITY INCIDENT RESPONSE TEAMS IN THE
SOFTWARE DEVELOPMENT LIFE CYCLE

• threat environment
• operating environment
• economic environment and the acquisition marketplace
• political, social, legal, and regulatory environment
• relationships to other systems and infrastructures
• lessons learned and system feedback

Two of the triggers mentioned by Lipson should be familiar by now as obvious
areas where CSIRTs can provide business and risk intelligence:

• threat environment
• attack techniques – new and existing techniques used by intruders
• malicious adversaries – changes in attackers such as the rise in new cyber

criminals
• lessons learned and system feedback from sources including
• system instrumentation and audits – network monitoring and alerts
• operational experience (attacks, accidents, and failures) – real-life incidents

and experiences
• results of periodic security and survivability evaluations – operational exer-

cises, penetration testing, and vulnerability scanning
• technical society meetings, security courses, seminars, journals, news reports

– learning from what has happened to others

All of the above sources of change information are related to activities that
CSIRT staff may perform, information that they may collect and analyze, or in-
cidents they may receive and respond to. Because CSIRT staff perform these
functions on a day-to-day basis, they will also have the most up-to-date infor-
mation and therefore knowledge on what evolutionary changes might be re-
quired. Such knowledge needs to be fed back into the SDLC.

Some not so obvious triggers where CSIRTs may have knowledge that can be
useful to identifying evolutionary changes include

• the operating environment. New technologies or trends related to security
tools and best practices may provide new techniques for hardening system
configurations and preventing or containing attacks.

• the legal or regulatory environment. New requirements for organizations to
report security breaches or any unauthorized release of personal privacy in-
formation may change the monitoring and alerting requirements for soft-
ware, change the reporting requirements related to security events and inci-
dents, or mandate response capabilities to be established.1

14 | THE ROLE OF COMPUTER SECURITY INCIDENT RESPONSE TEAMS IN THE
SOFTWARE DEVELOPMENT LIFE CYCLE

• the organizational environment and its relationships to other systems and
infrastructures. Changes in business practice and user behavior may require
significant changes to the threat model used in designing software. Changes
can be both technical or socially based. For example, the availability of in-
formation can be improved and its confidentiality threatened by both the
widespread availability of large-capacity personal storage devices (USB
sticks, mobile phones, PDAs, and MP3 players) and the increasing practice
of home or remote working. Changes such as moving connectivity from ded-
icated private lines to communication over the shared Internet should be re-
flected in software design.

Though not always directly responsible for these areas, CSIRTS are often the
groups who learn about such changes first and can pass this information on to
other parts of the enterprise. Such information is often gathered through public
monitoring of security sites and mailing lists. This type of technology watch
function performed by CSIRTs results in information that is important for soft-
ware developers to know, understand, and eventually synthesize into software
and hardware requirements.

SUMMARY
“It will be easier to produce software that is secure if risk management activities
and checkpoints are integrated throughout the development life cycle” [Goertzel
2006].

CSIRTs are one source of information and expertise that can provide real insight
into current and emerging computer security risk and threats. This experience
can be translated into strategies for preventing and responding to computer secu-
rity incidents. At the most proactive level, such information and corresponding
analysis can be fed into the SDLC and used to better define security, alerting,
and recovery requirements in systems, hardware, and software.

It is important for CSIRTs—as well as product developers and managers—to
understand the role that CSIRTs can play in the SDLC. An effective organization
will look to establish methods and communication channels that encourage and
support interaction between these two communities. It is also important for these
groups to understand that this interaction should be bidirectional: the CSIRT
providing risk and threat information and attack explanations, and the product
developers helping the CSIRT to understand how software and hardware com-
ponents and processes work and are intended to be used. CSIRT staff and soft-
ware developers working together, result in the design and implementation of

15 | THE ROLE OF COMPUTER SECURITY INCIDENT RESPONSE TEAMS IN THE
SOFTWARE DEVELOPMENT LIFE CYCLE

better software requirements, which in turn, results in more effective analysis
and mitigation of computer security attacks and threats allowing critical business
functions to be resilient and successful.

16 | THE ROLE OF COMPUTER SECURITY INCIDENT RESPONSE TEAMS IN THE
SOFTWARE DEVELOPMENT LIFE CYCLE

BIBLIOGRAPHY

[Attack Pat-
terns 2006]

"Attack Patterns.” Build Security In. (2006).

[Barnum
2006a]

Barnum, Sean & Sethi, Amit. “Introduction to Attack Patterns.” Build Security
In. (2006).

[Barnum
2006b]

Barnum, Sean & Sethi, Amit. “Attack Pattern Usage.” Build Security In. (2006).

[Goertzel
2006]

Goertzel, Karen Mercedes et al. Security in the Software Life Cycle, Version 1.2
(Draft). (2006).

[Hope 2005] Hope, Paco; Lavenhar, Steven; & Peterson, Gunnar. “Architectural Risk Analysis.”
Build Security In. (2005).

[Killcrece
2002]

Killcrece, Georgia; Kossakowski, Klaus-Peter; Ruefle, Robin; & Zajicek, Mark. CSIRT
Services. (2002).

[Killcrece
2005]

Killcrece, Georgia. “Incident Management.” Build Security In. (2005).

[Lipson 2006] Lipson, Howard. “Evolutionary Design of Secure Systems – The First Step Is Recog-
nizing the Need for Change.” Build Security In. (2006).

[McGraw
2005]

McGraw, Gary & van Wyk, Kenneth. “Bridging the Gap between Software Develop-
ment and Information Security”. IEEE Security and Privacy 3, 5 September/October
2005): 75-79.

[Mead 2006a] Mead, Nancy R. “Requirements Elicitation Introduction.” Build Security In. (2006).

[Mead 2006b] Mead, Nancy R. “Security Requirements Engineering.” Build Security In. (2006).

[Steven 2006] Steven, John; and van Wyk, Kenneth R. "Essential Factors for Successful Software
Security Awareness Training," IEEE Security & Privacy 4, 5 (September/October
2006): 80-83.

[van Wyk
2006]

van Wyk, Kenneth. “Adapting Penetration Testing for Software Development Purpos-
es.” Build Security In.

[West Brown
2003]

West Brown, Moira J..; Stikvoort, Don; Kossakowski, Klaus Peter.; Killcrece, Georgia;
Ruefle, Robin; & Zajicek, Mark. Handbook for Computer Security Incident Response
Teams (CSIRTs) (CMU/SEI-2003-HB-002, ADA413778). Pittsburgh, PA: Software
Engineering Institute, Carnegie Mellon University, 2003.

17 | THE ROLE OF COMPUTER SECURITY INCIDENT RESPONSE TEAMS IN THE
SOFTWARE DEVELOPMENT LIFE CYCLE

https://buildsecurityin.us-cert.gov/redirect?url=daisy%3A73-BSI
https://buildsecurityin.us-cert.gov/redirect?url=daisy%3A585-BSI
https://buildsecurityin.us-cert.gov/redirect?url=daisy%3A588-BSI
http://www.cert.org/books/secureswe/SecuritySL.pdf
http://www.cert.org/books/secureswe/SecuritySL.pdf
https://buildsecurityin.us-cert.gov/redirect?url=daisy%3A87-BSI
https://buildsecurityin.us-cert.gov/redirect?url=daisy%3A10-BSI
http://www.cert.org/csirts/services.html
http://www.cert.org/csirts/services.html
https://buildsecurityin.us-cert.gov/redirect?url=daisy%3A223-BSI
https://buildsecurityin.us-cert.gov/redirect?url=daisy%3A467-BSI
https://buildsecurityin.us-cert.gov/redirect?url=daisy%3A467-BSI
http://www.computer.org/portal/site/security/menuitem.6f7b2414551cb84651286b108bcd45f3/index.jsp?&pName=security_level1_article&TheCat=1001&path=security/v3n5&file=bsi.xml&;jsessionid=FdzTMJyQVJLLHYv3yQ5qNDvNzZQpZmM9CCPdmTmJ78MB0nsL0t2h!-2077275343
http://www.computer.org/portal/site/security/menuitem.6f7b2414551cb84651286b108bcd45f3/index.jsp?&pName=security_level1_article&TheCat=1001&path=security/v3n5&file=bsi.xml&;jsessionid=FdzTMJyQVJLLHYv3yQ5qNDvNzZQpZmM9CCPdmTmJ78MB0nsL0t2h!-2077275343
https://buildsecurityin.us-cert.gov/redirect?url=daisy%3A533-BSI
https://buildsecurityin.us-cert.gov/redirect?url=daisy%3A243-BSI
http://www.computer.org/portal/site/security/menuitem.6f7b2414551cb84651286b108bcd45f3/index.jsp?&pName=security_level1_article&TheCat=1001&path=security/2006/v4n5&file=bsi.xml&
http://www.computer.org/portal/site/security/menuitem.6f7b2414551cb84651286b108bcd45f3/index.jsp?&pName=security_level1_article&TheCat=1001&path=security/2006/v4n5&file=bsi.xml&
https://buildsecurityin.us-cert.gov/redirect?url=daisy%3A655-BSI
https://buildsecurityin.us-cert.gov/redirect?url=daisy%3A655-BSI
https://buildsecurityin.us-cert.gov/redirect?url=http%3A%2F%2Fwww.sei.cmu.edu%2Fpublications%2Fdocuments%2F03.reports%2F03hb002.html
https://buildsecurityin.us-cert.gov/redirect?url=http%3A%2F%2Fwww.sei.cmu.edu%2Fpublications%2Fdocuments%2F03.reports%2F03hb002.html

Copyright 2005-2012 Carnegie Mellon University

This material is based upon work funded and supported by Department of Homeland
Security under Contract No. FA8721-05-C-0003 with Carnegie Mellon University
for the operation of the Software Engineering Institute, a federally funded research
and development center sponsored by the United States Department of Defense.

Any opinions, findings and conclusions or recommendations expressed in this mate-
rial are those of the author(s) and do not necessarily reflect the views of Department
of Homeland Security or the United States Department of Defense.

References herein to any specific commercial product, process, or service by trade
name, trade mark, manufacturer, or otherwise, does not necessarily constitute or im-
ply its endorsement, recommendation, or favoring by Carnegie Mellon University or
its Software Engineering Institute.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND
SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN
“AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO
WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO
ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF
FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR
RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON
UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH
RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT
INFRINGEMENT.

This material has been approved for public release and unlimited distribution except
as restricted below.

Internal use:* Permission to reproduce this material and to prepare derivative works
from this material for internal use is granted, provided the copyright and “No War-
ranty” statements are included with all reproductions and derivative works.

External use:* This material may be reproduced in its entirety, without modification,
and freely distributed in written or electronic form without requesting formal permis-
sion. Permission is required for any other external and/or commercial use. Requests
for permission should be directed to the Software Engineering Institute at permis-
sion@sei.cmu.edu.

* These restrictions do not apply to U.S. government entities.

Carnegie Mellon® and CERT® are registered marks of Carnegie Mellon University.

DM-0001120

18 | THE ROLE OF COMPUTER SECURITY INCIDENT RESPONSE TEAMS IN THE
SOFTWARE DEVELOPMENT LIFE CYCLE

	The Role of Computer Security Incident Response Teams in the Software Development Life Cycle
	Introduction
	CSIRTs and the Software Development Life Cycle
	Software Assurance
	Security Requirements Engineering
	Attack Patterns
	Threat Modeling
	Architectural Risk Analysis
	Touchpoints in the SDLC
	Abuse Cases
	Business Risk Analysis
	Software Testing
	Code Reviews
	Penetration Testing
	Deployment and Operations
	Improving Development Practice
	Evolutionary Systems Design

	Summary
	Bibliography

