

Safety and Behavior Specification using the Architecture Analysis and Design Language, page 1
www.sei.cmu.edu/podcasts

Safety and Behavior Specification using the Architecture Analysis

and Design Language
featuring Julien Delange interviewed by Suzanne Miller

--

Suzanne Miller: Welcome to the SEI Podcast Series, a production of the Carnegie Mellon

University Software Engineering Institute. The SEI is a federally funded research and

development center sponsored by the U.S. Department of Defense and operated by Carnegie

Mellon University. A transcript of today’s podcast is posted on the SEI website at

sei.cmu.edu/podcasts.

My name is Suzanne Miller. I am a principal researcher here at the SEI. Today, I am very

pleased to introduce you to Julien Delange, who is a researcher here at the SEI since November

of 2012. Julien’s work focuses on the Architecture Analysis and Design Language, also called

AADL. Before joining the SEI, he worked as a software engineer at the European Space Agency

where he led and contributed to several research projects related to software and system

architectures. He also has a Ph.D. from Telecom ParisTech in France and developed the real-

time operating system called POK for building safe and secure systems, something that’s very

important for both space and many other areas of our work.

In today’s podcast, we’re going to be talking about two new developments with the Architecture

Analysis and Design Language: the behavior annex and the error model annex. Welcome, Julien.

Julien Delange: Thanks for having me, Suzanne.

Suzanne: Absolutely. Julien, let’s start off by having you give us a little background on

Architecture Analysis and Design Language. I know we’ve interviewed you and Peter Feiler

before for this work, but please explain a little bit about it for those who are not familiar with

AADL, as it is commonly known.

Julien: Well, AADL is a language, and we started [work on this] many years ago. The first

version was out in 2003.We made a new version in 2008. The main goal of AADL is to capture

software and system concerns. So, for example, the different interfaces between the system, the

data; also, the different type of components, if this is a device, a software command like a task, a

process.

http://www.sei.cmu.edu/podcasts
http://www.sei.cmu.edu/podcasts/
http://www.sei.cmu.edu/about/people/profile.cfm?id=miller_15184
http://www.sei.cmu.edu/about/people/profile.cfm?id=delange_16391
http://www.aadl.info/aadl/currentsite/
http://www.aadl.info/aadl/currentsite/
http://pok.tuxfamily.org/
https://wiki.sei.cmu.edu/aadl/images/9/9f/BA_plug-in_2011_04_11.pdf
http://www.aadl.info/aadl/currentsite/currentusers/errormodannex.html
http://www.sei.cmu.edu/podcasts/index.cfm?getRecord=727E84DB-CDB0-5DE1-7AC24DADF26A5200&wtPodcast=TheLatestDevelopmentsinAADL
http://www.sei.cmu.edu/podcasts/index.cfm?getRecord=727E84DB-CDB0-5DE1-7AC24DADF26A5200&wtPodcast=TheLatestDevelopmentsinAADL
http://www.sei.cmu.edu/architecture/research/model-based-engineering/aadl.cfm

SEI Podcast Series

Safety and Behavior Specification using the Architecture Analysis and Design Language, page 2
www.sei.cmu.edu/podcasts

The non-functional properties, for example, if we have a periodic task, a sporadic task, the

timing aspect, how fast a device will send the data, and so on.

Suzanne: The thing that I know about AADL that I think makes it very important to many of our

listeners is that, unlike other languages that work at system level, you could have multiple levels

of abstraction of the components that you are putting into a model that is based on AADL. So, if

I only know a little bit about timing, I can put in what I know, and if I know a lot about particular

internal interfaces, I can put that detail in there, too. Having those different levels of abstraction

available and allowing you to increase the data as you go to improve the model, that’s a unique

aspect of AADL that I think our listeners would be very interested in.

Julien: That’s correct. That is [what] we call the incremental modeling aspect, meaning that you

start with a really high-level description, and then—when you go through the development

process—you refine the component description. You enrich the specification and add more detail

and properties. In that aspect, AADL is a unique language. Also, we use the unique capability of

AADL in different projects. For example, we have a project that’s called SAVI.

Suzanne: What does SAVI stand for?

Julien: SAVI is a System Architecture Virtual Integration. The goal of SAVI is to make use of

different modeling languages to design avionics architecture. At the SEI, we are taking part of

SAVI and we are applying AADL techniques to design and develop avionics architecture. So far,

we have used AADL to design avionics architecture and analyze different aspects and what you

call quality attributes, like performance, latency, safety, and so on.

Suzanne: So, with these most recent additions to AADL, the behavior annex and the error model

annex, you are extending the capabilities for incremental modeling and for interacting with other

kinds of modeling languages, so that you can get a better picture of what’s going on with the

system you are trying to model, yes?

Julien: That’s correct. So far we have many different annexes in the language, and you can

define your own annex. At the SEI last year, we developed the error model annex. We also

designed new tools to analyze the system from a safety perspective. So, for example, when you

start to develop your architecture, you can define the error propagation: what kind of error you

have in your system. For example, a device can send invalid data; a bad value can send a value

too late or too early. In fact, you want to capture this kind of issue to see the error impact across

the architecture.

Suzanne: These kinds of things were difficult to model in other languages in the context of the

larger system. So, one of the things that is really important about AADL is that it is helping to

bridge the gap between the software engineering architecture and the system’s architecture.

http://www.sei.cmu.edu/podcasts
http://savi.avsi.aero/
http://savi.avsi.aero/

SEI Podcast Series

Safety and Behavior Specification using the Architecture Analysis and Design Language, page 3
www.sei.cmu.edu/podcasts

Julien: That’s correct. Also, something that is very unique is, we have all these specifications in

the same language, the same model. We don’t have different models. So, we can capture the

different inconsistencies in this single model. So, yes, we have different annexes. In the last year,

we developed the error model annex at SEI. The goal of this annex is to define the safety

concerns of your system.

You can start with these high-level components and say what kind of different faults you have.

Having all the different aspects of your system in a single location also brings you the ability to

check inconsistencies between different aspects of your system. For example, if you have a late

value, this is an error, but this error can be triggered by a bad behavior specification. In other

words, if you take too much time to compute a data, it can result in a late value. So, you have this

error propagation, and you can see the impact. This is really important, because, in fact, most of

the issues of your system are in the specification, when you design the system in the architecture.

So, almost 70 to 80 percent of the faults or errors of the system are found in the design. But, the

thing is, you will test your system, and you will find exactly where the error happens in the

testing.

Suzanne: Which is much later in the lifecycle.

Julien: Exactly.

Suzanne: So, what this is doing is it’s allowing us to bring that error detection much earlier in

system design and allow you to make design choices that prevent certain kinds of errors that you

really couldn’t do before.

Julien: Exactly. I will try to describe one problem in a project. For example, in the project

Ariane 5, (this is a European project), they have a rocket, and they launched the rocket. They

reuse the software from Ariane 4. In fact, the problem is that when they reused the software, they

didn’t expect to have a change in the value in the interface. Because of that, the software failed

and the rocket exploded. So, because of that, you have to check when you integrate the system,

you have to check that your system can work. Most of the time it happens that you discover such

errors during the integration testing campaign.

Suzanne: Right. That’s very expensive as well, as if you have a catastrophic failure. It really

puts the whole schedule and the project in jeopardy if that happens. So, if you can model those

behaviors—what you said about this all being in a single model, I don’t know. If you are not in

system design, you may not really understand that what typically happens is there are multiple

models that deal with different specialties related to the system. The integration of those models

into something that can be used to do end-to-end simulation is almost a whole project in and of

itself. So, this move towards being able to not only model the basic behavior, the intended

http://www.sei.cmu.edu/podcasts
http://www.di.unito.it/~damiani/ariane5rep.html
http://www.di.unito.it/~damiani/ariane5rep.html
http://www.di.unito.it/~damiani/ariane5rep.html

SEI Podcast Series

Safety and Behavior Specification using the Architecture Analysis and Design Language, page 4
www.sei.cmu.edu/podcasts

behavior, but also to model potential errors, is really, in my mind, a huge breakthrough in system

modeling.

Julien: This is something we are working on right now. For different models, for different

domains of engineering—meaning that, for example, many people will use Simulink because

Simulink is really convenient.

Suzanne: Yes, Simulink is everywhere.

Julien: Yes, exactly. You also want to make sure that your architectural model is consistent with

your Simulink model. What we are working on right now is to check that your AADL model,

your architecture model, is compliant with the Simulink model you can develop early on.

Also, most of the time, when you want to make a rapid prototyping of your system, you make a

Simulink model. You test and everything; it works. But after that, you want to move on and start

the architectural model. So, what we are doing right now is—we describe that process in a blog

post recently— you take your Simulink model and you can start an AADL skeleton model by

importing the Simulink model. Then you can refine it and explain what is the execution platform,

what are the different processors and buses and all this kind of thing, and, later on, add the

timing specification of your system. Then you can start to make a latency analysis. Then you

start to add also some error specification, and you can see the full propagation and so on. It is

really an incremental process. You can start early on by having a high-level description, import

that into an AADL model, start to make some analyses and so on. With the model, you can really

find errors from the specification. Before all implementation efforts, you can discover a lot, a lot

of issues.

We are also working on a new project that will help us to define the architecture issues from the

early architecture. In other words, when you import a Simulink model, you have an AADL

model, and it will highlight some architecture issues. For example, if you have nested state

machines, in that case, you might need to share some global variables. For example, global

variable can be a major issue when you start to validate your system because this is really

difficult to track.

Suzanne: Where is it? Where is it in the system at any point in time, yes?

Julien: Who modifies the data, and so on. So, you want to avoid this kind of thing.

Suzanne: That’s a security issue as much as anything else.

Julien: Exactly.

Suzanne: So, there are lots of implications from some of these architectural decisions.

http://www.sei.cmu.edu/podcasts
http://en.wikipedia.org/wiki/Simulink
http://blog.sei.cmu.edu/post.cfm/specifying-behavior-aadl-097
http://blog.sei.cmu.edu/post.cfm/specifying-behavior-aadl-097
http://en.wikipedia.org/wiki/Bus_%28computing%29

SEI Podcast Series

Safety and Behavior Specification using the Architecture Analysis and Design Language, page 5
www.sei.cmu.edu/podcasts

Julien: Exactly. So you can, in fact, detect this kind of architecture problem and then propose

some alternative design. The thing is, it’s really important when you modify your system and

update your system because early on, 20 years ago, global variable was a common paradigm for

performance because you know, it was really convenient. But right now, it’s a problem because

performance is no longer such a big issue.

Suzanne: Right. Our hardware has really accelerated, so we’re not looking for the software to

give us all the performance advantages that we did 20 years ago.

Julien: But, we are really careful because the size of software [has grown] so much that it’s so

difficult to check who accessed the data or not. So, using some practice like encapsulation,

controlling who is accessing the data, and so on, it’s really better to do that. So, when you change

the software and update the software, you can adapt the architecture and use some common

practices to encapsulate the data and so on. So, there is a different architecture pattern. You can

detect good and bad architecture patterns, and you can try to…

Suzanne: The nice synergy here is that the SEI has been working with architectural patterns and

architectural issues for many, many years. So, there’s a lot of expertise inside the SEI that can

help with identifying some of the issues that need to be incorporated into this kind of analysis.

That’s really very synergistic.

Julien: Yes, and we have a lot of people interested in this approach, especially in the safety-

critical domain. If you think about all the military systems, all the aerospace systems, they have

to be updated periodically. Also, when they make a new version of the system updating the

software, they have to maintain it for 20, 30, 40 years.

Suzanne: Yes, and we know of some that are that old, yes, and still flying.

Julien: Yes. We have a lot of interest from the avionics community. Right now, many people

from the avionics community were interested in AADL because they have a certification

process…

Suzanne: Air worthiness certification, yes.

Julien: Exactly. But right now, the automotive domain starts to really have interest in this

technology, but also the FDA: we have a lot of interest from other domains as well.

Suzanne: Yes, and our listeners may not realize that AADL is a language of the Society of

Automotive Engineers. So, it is actually an international standard, and it is governed by a

committee that the SEI’s very active on. So, it is very appropriate that the automotive domain

starts paying attention to it, I think.

http://www.sei.cmu.edu/podcasts
http://www.sae.org/
http://www.sae.org/

SEI Podcast Series

Safety and Behavior Specification using the Architecture Analysis and Design Language, page 6
www.sei.cmu.edu/podcasts

Speaking of the ADDL committee, you just recently returned from the meeting with the AADL

committee. Is this new project what it has been decided that the committee is going to be

working on? Or, are there other things you want to tell us about what’s going on with the

standards aspect of the language?

Julien: Yes, so there are three things I’m really excited about. First of all, AADL needs a

graphical editor, the tool itself.

Suzanne: It needs better graphical tools. I agree with that.

Julien: So, we have two notations in AADL: a graphical and a textual. So far, we use mostly the

textual notation. Textual is really convenient when you know the language, but for…

Suzanne: For learning the language, it’s very challenging.

Julien: Right now we have a new project for a graphical editor that works really well, and

integrate that into the stable release of the AADL tool, OSATE that we developed at the SEI. We

are really excited about it because it works pretty well. It’s already used by many users. We will

develop new features. It is really good because many new people can learn AADL really easily.

Another project that we are really excited about is to capture different network architectures. For

example, all the networks in the automotive domain like CAN or also all the networks in the

avionics domain. Finally, the last project I’m really excited about is the code generation from

AADL.

Suzanne: Code generation, here we go again. Everybody wants to do code generation.

Julien: No. OK, if you think a little bit about it, so I worked on that topic when I did my thesis

so, so long ago. The really nice aspect of it is that we go from a really high-level description to

go down to the code. If you think about it, this is what we do with C. We abstract the assembly

language in C, and then with Ada, what we did is that we abstract more, for example, the tasking

issue, and then you can make additional checking. For example, if you apply what we call

Ravenscar profile on Ada, for example, you have to use data protection with locking protocols to

provide many safety issues.

Right now, we abstract the software with a model, and we generate the code. We abstract all the

big concerns system. We can make sure, by evaluating the model early on, that we avoid any

security or safety issues. Then, we make the software protection better. In fact, if you think about

it, what we do with programming languages, we abstract the main concerns, and try to validate

them to make sure that you have no problem, no indeterminism and so on. Then, you generate

the code. I think this is a way to go to generate more safe and secure systems.

http://www.sei.cmu.edu/podcasts
http://en.wikipedia.org/wiki/CAN_bus
http://en.wikipedia.org/wiki/C_%28programming_language%29
http://en.wikipedia.org/wiki/Ada_%28programming_language%29

SEI Podcast Series

Safety and Behavior Specification using the Architecture Analysis and Design Language, page 7
www.sei.cmu.edu/podcasts

Suzanne: So, the reason earlier that I said “here we go again” is we’ve seen at the SEI multiple

attempts to do code generation. Some of them in specific domains have worked quite well, but it

also has its own set of difficulties in terms of bloat and other kinds of issues that come up when

you’re trying to be much more deterministic without knowing the whole context. I am going to

be very interested to see how AADL deals with some of those kinds of issues as this project

progresses.

Julien: I think, just for safety-critical systems, it is really doable because the semantics and the

code patterns are really common most of the time.

Suzanne: Well, yes. You’ve got restrictions on them. You’ve got enough constraints. This may

be a domain where you actually have enough constraints that it’s more feasible to do that.

This is very exciting. I think this is some of my favorite work at the SEI. Those of you that have

listened to me before have heard me say that. I really want to thank you, Julien, for joining us

today and catching us up on what’s been going on.

Those of you that have not used AADL before, I do encourage you to go to the wiki site,

http://www.aadl.info/. That’s where you can get information about OSATE, which is the

implementation toolset that the SEI has developed, as well as reading about the standard itself.

Go try it. If you are in safety critical systems, I hope you’re already using it.

Julien: Also, we have the graphical editor right now, so it’s more convenient.

Suzanne: Yes, that’s right. The graphical interface, so you’re finally going to get to go beyond

text.

To read the series of blog posts that Julien referred to that he authored along with Peter Feiler,

please visit blog.sei.cmu.edu, and click on the Architecture Analysis and Design Language tab.

This podcast is available on the SEI website at sei.cmu.edu/podcasts, and on Carnegie Mellon

University’s iTunes U site. As always, if you have any questions, please don’t hesitate to e-mail

us at info@sei.cmu.edu. Thank you for listening.

http://www.sei.cmu.edu/podcasts
http://www.aadl.info/
http://blog.sei.cmu.edu/
http://blog.sei.cmu.edu/archives.cfm/category/architecture-analysis-design-language-aadl
http://www.sei.cmu.edu/podcasts
http://www.cmu.edu/itunesu/
http://www.cmu.edu/itunesu/
mailto:info@sei.cmu.edu

