1st International Workshop on
Software Architecture Metrics
(SAM2014)

Organizer Introduction

Heiko Koziolek, ABB Corporate Research, DE
Robert L. Nord, Software Engineering Institute, US
Ipek Ozkaya, Software Engineering Institute, US

Paris Avgeriou, University of Groningen, NL

Software Architecture Metrics

Software Architecture:
,Fundamental concepts or properties of a system in its

environment embodied in its elements, relationships, and in the
principles of its design and evolution” [IEEE42010, 2012]

Software Quality Metric:
,A function whose inputs are software data and whose output is a
single numerical value that can be interpreted as the degree to

which software possesses a given attribute that affects its quality”
[IEEE1061, 1998]

Software Architecture Metric:
,A software quality metric concerning software architecture. A

software architecture metric quantifies architecture quality, value
and cost” [Us :-)]

Artifacts providing Input
for Software Architecture Metrics

Architecture artifacts
— Informal architectural documentation

— Architecture models and views
e Component / Connector
e Knowledge / Decision

Intermediate artifacts
— Source code, Byte code
— Prototypes (e.g., measure architecture qualities)

Trace links between architecture and intermediate
artifacts (e.g., requirements, code, test cases)

Example: Module Interaction Stabilility

[) Instability of a Modules m
LaYer 4 }}LQ module) depends on]

| fanout(m)|

015 p—
Layer 3 _M Z(m) | fanin(m)| + |fanout(m)|
2 —T

Layer 2 0.5 0.

0.5 Modules that depend on m]

6
— T~

N2
Layer 1 | 0 iLOA

SD(m) = {m; € fanout(m) | Z(m)
>TZ(m;) & L(m) = L(m;)}

OF

Set of stable dependencies to Iower]

Characterizes software according layers

to the principle of Maximization , 1SD(m))|

of Stand-Alone Extensibility MISHm) = o]
Promotes the use of stable =1 when fanout(m) = 0,

modules in lower layers 1 s
MISI(S) =—> "~ MISI(m;).

1=1

[For all modules

S. Sarkar, G. M. Rama, and A. C. Kak, “API-based and information-theoretic metrics for measuring the quality of software modularization,”
IEEE Trans. Softw. Eng., vol. 33, pp. 14-32, January 2007.

Example: Dependency Profiles

1 = hidden modules
2 = inbound modules

3 = outbound modules

4 = transit modules : z 40 c 80

l O hiddenCode B inboundCode O outboundCode W transitCode ‘

Dependency Profiles
for 95 industrial and open source systems

Bouwers, E.; van Deursen, A.; Visser, J., "Dependency profiles for software architecture evaluations,"
Proc. 27th IEEE International Conference on Software Maintenance (ICSM 2011), pp.540,543, 25-30 Sept. 2011

Potential Uses of Architecture Metrics

Assess achievement of quality attributes
Detect architecture erosion early

Balance quality attribute trade-offs

Make informed decisions on improvements
|dentify trends and react appropriately
Support project planning

Support business cases

Conduct cost-benefit analysis

Support risk management

Select among design alternatives

Related Fields

VIS 1 LE INVIS| BLe

H Software
H Architecture
4 in Practice

4 THIRD EDITION

HUE [WAR II"

AND EVOLUTION

Empirical SW Engineering

Software Metrics Software Maintainance Qualitative Methods

Software Quality & Evolution

Architecture Metrics from Source Code

[Source [Abbr. [Name [Description [Required Input [Tool
Similarity of Purpose

M7 _[Sarkar2007 CDM _|Concept Domination Metric Non-uniformity of the distribution of concepts List of concepts, frequency of occurrences per mod. |Proprietary
M7 _[Sarkar2007 CCM __|Concept Coherency Metic Amount of mutual information between mod./concept |List of concepts, entropy for concepts Proprietary
M7 _[Sarkar2007 APIU__|API Function Usage Index Percentage of API functions used by other modules _ |API definition, # calls to AP| Proprietary
M6 _[Sant'anna2007 |CDAC |Concern Diffusion over Arch. Components |Counts the components realizing an arch. concern Mapping of components to architectural concerns

M11 [Sethi2009 Cs Concern Scope Amount of design decisions influenced by a concern _|Design decisions, concerns

M11 [Sethi2009 CO Concern Overlap Amount of design decisions infl. by multiple concerns |Design decisions, concerns

Encapsulation

M1 [Briand1996 RCI Ratio of Cohesive Interactions Ratio of potential/lknown data declarations interactions |Module dependencies

M1 [Briand1996 IC Import Coupling Extend to which a module depends on externals # imports per module

M1 |Briand1996 EC Export Coupling Interactions between internal/external data decl. Module dependencies

M3 _[Mancoridis1998 |MQ Modularization Quality Diff. of inter- and intra-connectivity of subsystems Module dependency graph, clusters Bunch

M5 [Martin2003 Ca Afferent Couplings # packages depending on classes in a package Class dependencies JDepend
M5 [Martin2003 Ce Efferent Couplings # packages the classes of a package depend on Class dependencies JDepend
M6 [Sant'anna2007 |CLIC [Comp.-level Interlacing Betw. Concerns Counts components sharing concerns Mapping of components to architectural concerns

M6 [Sant'anna2007 |LCC |Lack of Concern-based Cohesion Counts the number of concerns by a component Mapping of components to architectural concerns

M7 _[Sarkar2007 Mil Module Interaction Index Percentage of calls routed through APIs Module and API definition Proprietary
M7 _[Sarkar2007 NC Non-AP| Function Closedness Index Percentage of functions classified API or non-API AP definition Proprietary
M7 _[Sarkar2007 DI Implicit Dependency Index Percentage of explicit module dependencies # Implicit module dep. (e.g., global variables, files) [Proprietary
M8 [Sarkar2008 BCFI_[Base class fragility index Extent of base-class fragility in the system Classes, ancestors, inherited methods, depend. Proprietary
M8 [Sarkar2008 IC Inheritance-based intermodule coupling Fraction of classes in other mod. defined by inherit. |Module definition, inheritance dependencies Proprietary
M8 [Sarkar2008 NPIl_ [Not-programming-to-interfaces Index Percentage of calls to to root interfaces Interface definitions, call dependencies Proprietary
M8 [Sarkar2008 AC Association-induced coupling Percentage of class associations to other modules Module definition, associations Proprietary
M8 [Sarkar2008 SAVI _|State Access Violation Index Extend of intermodule access to internal state Module definition, state accesses Proprietary
M10 [Anan2009 IEAS _|Entropy of an architectural slicing Amount of information encoded in a arch. layer Mapping of modules to layers, dependency graph

M10 [Anan2009 ASC __|Architecture Slicing Cohesion Ratio of intra- and intermodule coupling Mapping of modules to layers, dependency graph

M11 [Sethi2009 DV Decision Volatility Stability of a decision decision ag. ext. influences Design decisions, env. impact, impact scope

Compilability, Extendibility, Testability

M2 |Lakos1996 CCD __|Cumulative Component Dependency Sum of component dependencies in a subsystem Component dependency graph for a subsystem SonarJ

M2 [Lakos1996 ACD __|Average Cumulative Comp. Dependency |CCD divided by components in subsystem Component dependency graph for a subsystem SonarJ

M2 [Lakos1996 NCCD [Normalized Cumulative Comp. CCD divided by CCD of a binary dependency tree Component dependency graph for a subsystem SonarJ

M4 [Allen2001 COUM |Coupling of a module Amount of information in intermodule-edges graphs _|Module dependency graph

M4 |Allen2001 ICM __[Intramodule coupling of a module Amount of information in intramodule-edges graph Module dependency graph

M4 [Allen2001 COHM |Cohesion of a module Amount of information in intramodule coupling Module dependency graph

M5 [Martin2003 A Abstractness Ratio of abstract classes to total classes in package |Class definitions in a package JDepend
M5 [Martin2003 | Instability Ratio of efferent to total coupling [I=Ce/(Ce+Ca)] Class dependencies JDepend
M5 |Martin2003 DMS [Distance from the Main Sequence Perpendicular dist. of a package from the line A + |1 = 1|Abstractness and Instability JDepend
M7 _[Sarkar2007 MISI _ [Module Interaction Stability Index Percentage of module depending on stable layers Mapping of modules to layers, fan-in, fan-out Proprietary
M7 _[Sarkar2007 NTDM [Normalized Testability Dependency Metric _|Percentage of module independent testing Test dependencies between modules Proprietary
M8 [Sarkar2008 PPI Plugin Polution Index Amount of superfluous code in a plugin module Extension API, abstract methods in plugins Proprietary
M11 |Sethi2009 [¢]] Change impact Amount of design decisions changed during evolution |Design decisions, evolution scenario

M11 [Sethi2009 L Independence Level System perc. changeable under stable design rules |Independent module set in augmented constr. netw.

Acyclic Dependencies

M5 [Martin2003 PDC |Package Dependency Cycles Cyclic dependencies between packages Package dependency graph JDepend
M7 _|Sarkar2007 Cyclic |Cyclic Dependencies Index Extent of cyclic dependencies between modules Module dependency graph Proprietary
M7 _[Sarkar2007 LOI Layer Organization Index Cyclic dependencies between layers Mapping of modules to layers, dependency graph Proprietary
M9 [Sangwan2008 |XS Excessive Structural Complexity Cyclic dependencies violation times amount of dep. |Module dependency graph Structure101
Size

M7 |Sarkar2007 |MSBI |Modu|e Size Boundness Index |Deviation of module sizes from a threshold |Lines of code per module, optimal module size |SourceMonitor
M7 |Sarkar2007 |MSUI |Modu|e Size Uniformity Index |Distribution of module sizes |Lines of code per module |SourceM0nitor

Heiko Koziolek. Sustainability evaluation of software architectures: A systematic review.
In Proc. 7th Int. ACM/SIGSOFT Conf. on the Quality of Software Architectures (QoSA'11). ACM, June 2011.

Architecture Metric Trends at ABB

mm
[VOOPRIROUVIVIIIUIE aoussssug IVRUIIIIN

—+—Module Interaction Stability Index
—+—Cyclic Dependency Index

Index Value (higher is better)

—+—Module Size Uniformity Index

Index Value (higher is better)

Measurement date Measurement date

_ * £ £ — ¢ _
g e 5

. —
@
2 2
@ o
e e D
@O s . =
2 v v . g Q
=] =3 o
< = 5
@ 7]
= g @
o N ™ -
> —— State Access Violation Index > -
-3 —+—API| Function Usage Index =)
2 —+—Module Size Boundedness Index = —+=Well-sized Methods Index
- —4—Layer Organization Index = —+—Lines of Code

Measurement date Measurement date

Heiko Koziolek, Dominik Domis, Thomas Goldschmidt, and Philipp Vorst. Measuring architecture sustainability.
IEEE Software, 30(6):54-62, November 2013.

Dependency Analysis of Release Paths

Initial release architecting cost

Path 1:
value focused;
functionality first.

Path 2: cost focused;
architecture push.

for Path 2

/70_\\

100% - > Path 1 incurs
90% 60 - sts
_ 80%
8 =
8 70% E—» E
v 60% °
7 Path1G N 3 Path 1 Cr
s Path 1 AC =
atl r et i
'.E 40% —» B - o WPath 1 Ci
S @®Path1T =% W Path 2 Cr
£ 3% WPath2 T g
o a o MPath 2 Ci
20% ¥ u
10% 10
0% T T T T T T T 1
0% 20% 40% 60% 80% 100% 120% 140% 160% 0
Cumulative Cost (as %) 3 4
Release
Release 1 | Release 2 | Release 3 Release 4
Path #1 [Cumulative value 36 81 135 197
% of total value 18% 41% 68% 100%
Cost (Ci + Cr) 35 64 101 145
% of total implementation cost 37% 68% 108% 155%
Path #2 |[Cumulative value 36 81 135 197
% of total value 18% 41% 68% 100%
Cost (Ci + Cr) 67 76 85 94
% of total implementation cost 71% 81% 90% 100%

Robert L. Nord, Ipek Ozkaya, Philippe Kruchten, Marco Gonzalez. In Search of a Metric for Managing Architectural Debt.
Joint 10th Working IEEE/IFIP Conference on Software Architecture (WICSA) & 6th European Conference on Software
Architecture (ECSA), August 20-24, 2012, Helsinki, Finland.

Quantifying Architecture Quality
Challenges

e [nsufficient and unproven metrics
for quantifying architecture quality
to guide the re-architecting process.

e Code-level refactoring techniques
do not scale effectively to support
architecture-level evaluation for re-
architecting.

There has been an increasing focus

on tools for the purpose of structural
analysis.

e increasing sophistication,

e support for some structural analysis
in addition to code analysis,

e first steps towards analyzing
financial impact by relating
structure analysis to cost and effort
for rework.

D. Falessi, P. Kruchten, R. Nord, and |. Ozkaya. Technical Debt at the Crossroads of Research and Practice:
Report on the Fifth International Workshop on Managing Technical Debt, ACM SIGSOFT Software Engineering
Notes, Volume 39, Issue 2, March 2014 (to appear).

Open Research Questions

Which software architecture metrics are useful?
— quality, value, costs, uncertainty

— understandability, maintainability, evolvability, concern dispersion,
modularization

How to calculate software architecture metrics?
— directly from architecture or from other artifacts
— what can be measured in models?

— tool support / integration with design and code tools

How to validate software architecture metrics?
— tools and techniques
— empirical evidence

How to use software architecture metrics?

— visualization
— decision support
— project and business planning

Program today

1:30 pm

Welcome Address (Robert Nord, Heiko Koziolek)

[Invited Talk] Eric Harper: Industry Perspectives on Requirements for and Value
of Software Architecture Metrics

[Research paper] Muhammad Atif Javed: Empirical Evaluation of the
Understandability of Architectural Component Diagrams

[Position paper] Stephan Sehestedt: Toward Quantitative Metrics for
Architecture Models

3:00 pm coffee break
3:30 pm

[Invited Talk] Jean-Guy Schneider: On the Challenges in Extracting Metrics

from Java Bytecode

Brainwriting: collecting research questions and ideas from all participants
Summary & Wrap-up

5:15 pm workshop end
7:00 pm dinner

Quick round among all participants

* Please introduce yourself and state your
personal expectations for the workshop!

Thank you!

Authors

Program Committee
Attendees

Sponsors

	1st International Workshop on Software Architecture Metrics (SAM2014)
	Organizer Introduction
	Software Architecture Metrics
	Artifacts providing Input �for Software Architecture Metrics
	Example: Module Interaction Stabilility
	Example: Dependency Profiles
	Potential Uses of Architecture Metrics
	Related Fields
	Architecture Metrics from Source Code
	Architecture Metric Trends at ABB
	 Dependency Analysis of Release Paths
	Quantifying Architecture Quality
	Open Research Questions
	Program today
	Quick round among all participants
	Thank you!

