
Trends and New Directions in Software Architecture

Table of Contents

Carnegie Mellon University Notice ... 4

Trends and New Directions in Software Architecture .. 5

Software Architecture ... 7

Software Architecture Thinking .. 8

Quality Attributes.. 10

Central Role of Architecture ... 11

Our View: Architecture -Centric Engineering ... 12

Advancements Over the Years .. 13

What HAS Changed? ... 14

Technology Trends .. 16

Software Development Trends ... 17

Technical Challenges ... 18

The Intersection and Architecture .. 20

Architecture and Accelerated Capability .. 21

Managing Technical Debt* ... 22

Technical Debt Impact .. 24

Technical Debt Landscape .. 25

Making Hard Choices About Technical Debt .. 26

HARD CHOICES .. 27

Our Current Research ... 28

Architecture Done Incrementally ... 29

Page 1 of 63

Approach ... 30

Effort in Percent over Cycles – 1 ... 31

Effort in Percent over Cycles – 2 ... 32

Effort in Percent over Cycles – 3 ... 33

Effort in Percent over Cycles – 4 ... 34

Effort in Percent over Cycles – 5 ... 35

Effort in Percent over Cycles – 6 ... 36

Results ... 37

Deployment Challenges .. 38

DevOps : State of the Practice .. 39

Architecture and DevOps .. 40

DevOps Tips... 41

Architecture and Scale .. 42

Two Perspectives of Software Architecture in Cloud Computing .. 43

Cloud Computing and Architecting ... 44

Mobile Device Trends ... 46

Architecture Trends: Cyber-Foraging .. 47

Big Data Systems ... 49

Big Data – State of the Practice “ The problem is not solved” ... 50

Big Data Survey ... 52

Architecture and Big Data ... 53

Our Current Research ... 54

Architecture and Software Assurance .. 55

Architectural Models .. 56

Page 2 of 63

High Fault Leakage Drives Major Increase in Rework Cost .. 57

SAE Architecture Analysis & Design Language (AADL) Standard Suite (AS-5506 Series) 58

Architecture-Centric Quality Attribute Analyses .. 59

Conclusion ... 60

This Is the Work of Many .. 62

Approaching Security from an " Architecture First" Perspective ... 63

Page 3 of 63

Carnegie Mellon University Notice

1
Architecting Software in a New Age
SEI Webinar
© 2015 Carnegie Mellon University

Carnegie Mellon University Notice

This video and all related information and materials (“materials”) are owned by Carnegie Mellon
University. These materials are provided on an “as-is” “as available” basis without any warranties and
solely for your personal viewing and use.

You agree that Carnegie Mellon is not liable with respect to any materials received by you as a result of
viewing the video, or using referenced websites, and/or for any consequences or the use by you of
such materials.

By viewing, downloading, and/or using this video and related materials, you agree that you have read
and agree to our terms of use (www.sei.cmu.edu/legal/).

© 2015 Carnegie Mellon University.

**001 Shane McGraw: And hello
from the campus of Carnegie Mellon
University in Pittsburgh,
Pennsylvania. We welcome you to
the Software Engineering Institute's
webinar series. Our presentation
today is Architecting Software in a
New Age. Depending on your
location, we wish you a good
morning, a good afternoon, or a good
evening. My name is Shane McGraw,
your moderator for today, and I'd like
to thank you for attending.

Page 4 of 63

Trends and New Directions in Software Architecture

© 2015 Carnegie Mellon University

Trends and New Directions
in Software Architecture
Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

Linda Northrop
Chief Scientist, Software Solutions Division, SEI Fellow

**002 For any questions you have
pertaining to the presentations today,
we will address all questions at the
end of the second presentation. So
you can log your questions at any
time within the webcast or console,
but we will address all questions at
the end of the second presentation.

We're also going to ask a couple
polling questions throughout the day.
In fact, we're going to launch our
first polling question for you to
answer now, and what we'd like to
know is: How did you hear about
today's event? Let's take a couple
seconds to answer that.

While you're doing that, I'd like to
point out another three tabs that
you're going to see on the console,
and they are the Files tab, the

Page 5 of 63

Twitter tab, and the Survey tab. The
Files tab has a PDF copy of the
presentation slides there now, along
with other software architecture
related conferences and training from
the Software Engineering Institute.
For those of you using Twitter, be
sure to follow @saturn_news, and
use the hashtag #seiswarch. Once
again, it's @saturn_news, and
#seiswarch, as in software
architecture.

Now I'd like to introduce our first
speaker for today, and the first talk is
going to be Trends and New
Directions in Software Architecture by
Linda Northrup, and Linda will speak
from one thirty to two fifteen.

Linda is chief scientist of the
Software Solutions Division at the
SEI, where the technical agenda
compromises architecture-centric
engineering, software development,
and acquisition practices,
measurement, software product lines,
cyber physical systems, advanced
mobile systems, and ultra-large-scale
systems. Linda is coauthor of the
book "Software Product Lines:
Practices and Patterns," and led the
research group on ultra-large-scale
systems, or ULS, that resulted in the
book "Ultra-Large-Scale Systems: The
Software Challenge of the Future."
Now I'd like to turn it over to Linda
Northrup. Linda, all yours.

Linda Northrop: Thanks very
much. I am absolutely delighted to
be giving this webinar--

Page 6 of 63

Software Architecture

4
Architecting Software in a New Age
SEI Webinar
© 2015 Carnegie Mellon University

Software Architecture

 The quality and longevity of a software-reliant
system is largely determined by its architecture.

 Recent US studies identify architectural issues
as a systemic cause of software problems in
government systems (OSD, NASA, NDIA,
National Research Council).

Architecture is of enduring
importance because it is the
right abstraction for
performing ongoing
analyses throughout a
system’s lifetime.

**004 --And what I'm going to be
talking about is software architecture.
Now, for those of you who don't
know much about software
architecture, you will understand
Soft basics about software architecture,
its importance, and why we believe
it's critical to the quality and
longevity of a software system. For
those of you already savvy about
software architecture, I hope that
you will come away with some new
perspectives about trends and
challenges that we face in
architecting today's systems, as well
as some of the practices and current
research. that we'll address.

So, basically, it has long been our
premise that the quality and
longevity of a software reliance
system is largely determined by its

Page 7 of 63

architecture, and many studies have
led us to that conclusion. There are
many things we see in systems, like
communication bottlenecks under
certain loads and difficulty in
integrating and testing and adding
new features, and all of those
actually are rooted in some
architectural decisions that don't
support the needs of the system. In
fact, I will posit that architectural
considerations are absolutely key to the
quality of a software reliance system.

Software Architecture Thinking

5
Architecting Software in a New Age
SEI Webinar
© 2015 Carnegie Mellon University

Software Architecture Thinking

 High-level system design providing system-level
structural abstractions and quality attributes, which help
in managing complexity

 Makes engineering tradeoffs explicit

**005 Now, software architecture is
not a new concept. In fact, people
have been talking about software
architecture since the '80s. The
whole idea was introduced because
systems were becoming much more
complex and the behavior we were

Page 8 of 63

expecting of those systems was much
more demanding, and so we needed
to reason about the system at a higher level
of abstraction. So over the years of
people thinking and talking about
software architecture, it's always
been about structure, it's always
been about abstraction and quality
attributes.

On our website, you would find about
150 definitions of software
architecture. The definition we use is
that the software architecture is the set
of structures needed to reason about
the system, which comprise
software elements, the relations
among them, and the properties of
both. But basically one might take
Martin Fowler's expression. He says,
"Architecture is basically the hard
stuff." It allows us to make
engineering tradeoffs. In fact, many
have said that the focus on software
architecture brought engineering
to software systems development
ngineering tradeoffs explicit.

Well, what do we trade off?

Page 9 of 63

Quality Attributes

6
Architecting Software in a New Age
SEI Webinar
© 2015 Carnegie Mellon University

Quality Attributes

Quality attributes
 properties of work products or goods by which stakeholders judge their quality
 stem from business and mission goals.
 need to be characterized in a system-specific way

Quality attributes include
 Performance
 Availability
 Interoperability
 Modifiability
 Usability
 Security
 Etc.

**006 We actually are trading off
the functionality-- of course we need
the functionality-- but what else?
What we call quality attributes.
Those are all those properties that
the system needs to have in order
to be assumed to be of high quality,
like performance and interoperability
and modifiability and the like, and the
problem is you can't have all of
these, and so you need to make
tradeoffs. It is the architecture that
actually allows us an abstraction to
make these tradeoffs. And oh, by
the way, these quality attributes need
to be characterized for particular
systems; they are not just arbitrary
"handles" that we select; they're
derived particularly from the business
goals, the mission goals of a system.
So if a business goal is to increase
market share, for example, then

Page 10 of 63

you're going to need a system that's
scalable and that certainly has
demands on the architectural
decisions you make.

Central Role of Architecture

7
Architecting Software in a New Age
SEI Webinar
© 2015 Carnegie Mellon University

Central Role of Architecture

IMPLEMENT AND EVOLVE

SATISFY

DESIGN IMPLEMENT

SATISFY CONFORM

ARCHITECTURE SYSTEMBUSINESS AND
MISSION GOALS

**007 So if we think about a
system, we have some business and
mission goals and we'd like to
implement it - to develop our software
to get the system that satisfies us.
But we really have no evidence, no
guarantee about how that's going to
occur, whether it's going to occur,
and what tradeoffs we've made. So
in fact the architecture is that
mechanism, that reasoning abstraction.

Now you might say, "Well, you know,
I use frameworks, I use open source.
I pick my technology stack. I don't
really have an architecture." Well,

Page 11 of 63

you have an architecture, you just
might not know the one you have,
and you might not be using it to the
advantage that you could in order to
analyze the system and make
appropriate tradeoffs.

Our View: Architecture -Centric Engineering

8
Architecting Software in a New Age
SEI Webinar
© 2015 Carnegie Mellon University

Our View: Architecture-Centric Engineering

• Explicitly focus on quality attributes
• Directly link to business and mission goals
• Explicitly involve system stakeholders
• Be grounded in state-of-the-art quality attribute models and reasoning frameworks

**008 We've been espousing our
views on software architecture over
the years. Our books all have this in
common. They focus on quality
attributes, they link to business and
mission goals, they have this rooting
in interaction with stakeholders --
whether those are supply chain
partners, testers, customers,
developers, or managers -- and most
importantly, they're rooted in quality
attribute models -- formal techniques,
real-time scheduling techniques,

Page 12 of 63

reliability mechanisms, usability
frameworks, and the like.

Advancements Over the Years

9
Architecting Software in a New Age
SEI Webinar
© 2015 Carnegie Mellon University

Advancements Over the Years

 Architectural patterns
 Component-based approaches
 Company specific product lines
 Model-based approaches
 Frameworks and platforms
 Standard interfaces

**009 Over the years a lot has
happened in software architecture:
architectural patterns and styles that
allow us a vocabulary for design and
analysis; component-based
approaches that take a
containment or a container strategy
with interfaces that make
assumptions about quality attributes;
company-specific product lines with
architectures that allow us to
manage the variation and at the same
time capitalize on commonality; and
model-based approaches where
architectural models are used to
generate code; most recently
frameworks and platforms that form
the basis of ecosystems where the

Page 13 of 63

communication protocols are of
paramount importance. And all of this
has evolved into standard interfaces
that are used in architectures for
families of systems that need to
interoperate.

What HAS Changed?

10
Architecting Software in a New Age
SEI Webinar
© 2015 Carnegie Mellon University

What HAS Changed?

 Increased connectivity
 Scale and complexity

− decentralization and distribution
− “big data”
− increased operational tempo
− inter-reliant ecosystems
− vulnerability
− collective action

 Disruptive and emerging technologies

https://www.flickr.com/photos/simononly/

https://www.flickr.com/photos/cog

**010 But a lot has changed.
Beginning with the web in 1997, one can say
that everything has changed. Everything
has changed in terms of connectivity.
We are an infinitely connected world
where there are not only internet
connections but huge webs of
wireless connectivity and
autonomous devices, and all of this
has grown to actually planetary scale
and complexity that flies in the face
of old hierarchical ways of controlling
systems and developing systems.
We are awash in data. There is an accelerated

Page 14 of 63

tempo: there's an appetite for speed
that we see not only in the
marketplace. We see it in system
Development. We see it in
government. And there are all kinds
of ecosystems that rely on one
another, so one cannot operate in a
stovepipe.

Also, if you listened to the U.S. State
of the Union message last night, you
heard a tremendous focus on cyber
defense. Everyone is concerned
about vulnerability because we are
connected and because we are so
exposed and because software is so
Prolific. and There is also this whole
notion of collective action, where
humans, through social media and
wireless technology, join forces with
computational elements and
autonomous elements to form a
society that is very new. Against this
landscape there's a whole blush of
disruptive and emerging
technologies.

Page 15 of 63

Technology Trends

11
Architecting Software in a New Age
SEI Webinar
© 2015 Carnegie Mellon University

Technology Trends

**011 They're seductive, they're
prolific, from Google Glass to social
media to cloud computing to 3D
printing.

Page 16 of 63

Software Development Trends

12
Architecting Software in a New Age
SEI Webinar
© 2015 Carnegie Mellon University

Software Development Trends

 Application frameworks
 Open source
 Cloud strategies
 NoSQL
 Machine Learning
 MDD
 Incremental approaches
 Dashboards
 Distributed development environments
 DevOps

**012 And a whole wash of
software development trends-- I'm
sure many of you are engaged in the
open source strategies, NoSQL,
machine learning, and all of the rest
that I have listed -- and so one might
focus on any of these, and we could
spend an afternoon talking about any
of these, any are worthy of discussion in the
Their relationship with software
architecture-- but I'm going to
ratchet it up to a higher level-a more
strategic view.

Page 17 of 63

Technical Challenges

13
Architecting Software in a New Age
SEI Webinar
© 2015 Carnegie Mellon University

Technical Challenges

**013 --Because I believe that the
technical challenges can be boiled
down to four.

We think about accelerating
capability. Everybody is talking about
velocity, continuous integration,
continuous deployment of many
systems where we're getting
thousands of releases in very short
time periods, but also accelerated
development and deployment of
what I'd call deliberate systems,
planned systems, ones that aren't
released multiple hundred times a
day; and then also the need to quickly
incorporate innovations.
So, new innovations "happen" quickly. We
don't want to wait a ten-year period
to get those innovations into our
code.

Page 18 of 63

Likewise, we have a need for
software assurance. I've talked
about thinking about systems free of
vulnerabilities, but software
assurance means more than that. It
actually means that the system is
going to behave the way we intend it
to behave, to do what it's supposed
to do, and things that it's not
supposed to do don't happen. It
should cost what we expect it to cost
and it should be able to go live when
we time it to go live. Assurance is
about all of those things.

And then there's scale, scale in all
types of manifestations, whether it's
lines of code, number of processors,
number of users. We have
applications now that are very
commonplace, and have 500 million
to billions of users. This is very, very
Different scale - in data, in computational
elements, in the sheer number of people involved in the
system. This is a very different level
of scale than previous systems have
encountered.

And then we are challenged about evidence,
evidence that what you're doing is
going to work for delivering accelerated
capability, software assurance, and address
scale. Greg Wilson from Mozilla, in a
2012 blog, wrote that, "Evidence is
not the plural of anecdote." So we
need much more than a story that
says, "It happened here." We need
scientific evidence, we need proofs,
we need simulations, we need
situations where we have statistically
sound samples that say certain
techniques will work to achieve your
objectives.

Page 19 of 63

The Intersection and Architecture

14
Architecting Software in a New Age
SEI Webinar
© 2015 Carnegie Mellon University

The Intersection and Architecture

At the intersections
there are difficult
tradeoffs to be made
in structure, process,
time, and cost.

Architecture is the
enabler for tradeoff
analyses.

**014 Now here's the rub: Each one
of these is a challenge, but the
intersection-- systems that are fast,
at scale, and are assured-- that's the
real challenge. And you can't have it
all, so there are tradeoffs in these
intersections-- tradeoffs in the
structure of the systems, the process,
the time, and the cost. And, as I
mentioned, architecture is that
mechanism for making tradeoff
analyses, and so I would argue that
architecture as the enabler for
tradeoff analyses, very important in
our brave new world. where we have
these challenges.

Page 20 of 63

Architecture and Accelerated Capability

15
Architecting Software in a New Age
SEI Webinar
© 2015 Carnegie Mellon University

Architecture and Accelerated Capability

How much architecture design is enough?

Can architecture design be done incrementally?

There is a difference between
being agile and doing agile.

Agility is enabled by architecture –
not stifled by it.

Managing technical debt is key.

**015 So what I'm going to do for
the remainder of this overview is take
a look at each one of these challenges
and the relationship of architecture
to that particular challenge.

So when we think about accelerating
capability-- everybody does want
high velocity, everybody wants to be
agile-- agile with respect to balancing
structure and flexibility, agile with
respect to being able to cause
change and respond to change. We
want to be agile in our software
practice, we want to be agile in our
businesses, because we live in a
dynamic world. Many people
have sort of cast architecture as a big
document-a big document-driven
approach-- and they think about believe ,
"Well, if we focus on the architecture,
there is no way we can be agile."

Page 21 of 63

Jim Highsmith, who is viewed to be
one of the founding agilistas, if you
will, gave a wonderful keynote at a
conference called SATURN in 2010, in
which he took on this topic of
architecture and agile, and he said
there's a difference between being
agile and doing agile, and he said
agility is enabled by architecture, not
stifled by it. But in the process of
being agile, in the process of taking
an incremental approach to
architecture, we have to be careful
not to accrue what I'll refer to, and
many people refer to, as technical
debt.

Managing Technical Debt*

16
Architecting Software in a New Age
SEI Webinar
© 2015 Carnegie Mellon University

Managing Technical Debt*

A design or construction approach that's expedient in the short term but that
creates a technical context that increases complexity and cost in the long term.
Some examples include:
 continuing to build on a foundation of poor quality legacy code
 prototype that turns into production code
 increasing use of "bad patches,“ which increases number of related systems

that must be changed in parallel

* Term first used by Cunningham, W. 1992. The WyCash Portfolio Management System. OOPSLA '92 Experience Report. http://c2.com/doc/oopsla92.html.

**016 Often when we are
fielding a system, we make some
decisions, whether they are
architectural or code

Page 22 of 63

decisions, to take shortcuts, because
we need to release. We can't afford
the cost of delay. And those
decisions result in increased
complexity in the system, more
difficulty in changing the system later
on, and possibly some quality issues.

Ward Cunningham in 1992
gave this situation a name. He used
the metaphor "technical debt" because
he was trying to justify the need to
refactor a system to some
nontechnical product management
stakeholders. And so one can think
about debt decisions, and we all make these
decisions. One's mother is ill, and
you need to go see your mom, but
you don't have the money for the
plane ticket. So you charge the
money for the plane ticket. Now, as
a mom, I would argue you need to
make that trip. Charge it. But it
goes on your credit card. Now, if at
the end of the month, you don't
manage that charge, and instead you accrue
other charges because you need to
make other decisions and pay for
other sorts of trips or luxury items.
Eventually you get to the point where
your credit card is maxed out, and it
isn't easy for you to respond to
emergencies; it's not easy for you to
purchase that plane ticket. You have
to somehow manage your debt, and
so it is with software.

Page 23 of 63

Technical Debt Impact

17
Architecting Software in a New Age
SEI Webinar
© 2015 Carnegie Mellon University

Technical Debt Impact

From:

Jim Highsmith

2010

**017 In fact, if the technical debt
increases, your ability to change the
system decreases, and actually the
customer responsiveness, that is, your
ability to respond to customers,
decreases, and this is problematic.

Page 24 of 63

Technical Debt Landscape

18
Architecting Software in a New Age
SEI Webinar
© 2015 Carnegie Mellon University

Technical Debt Landscape

“invisible results of past decisions about software that negatively affect its
future…deferred investment opportunities or poorly managed risks”

Kruchten, P. Nord, R.L., Ozkaya, I. 2012. Technical Debt: From Metaphor to Theory and Practice, IEEE Software, 29(6), Nov/Dec 2012.

**018 So you don't actually see
technical debt, you only see evidence
of it, and the evidence of it becomes
visible when you're trying to add new
functionality or new features, or
when some defects or low quality
becomes apparent. And again, this debt
can be architecturally rooted, it can
be code rooted. But the whole idea is
you need to have a prudent plan to
understand the risk you're taking on,
to avoid accumulating excessive
technical risk, and to actually manage
the technical risk. We all need to
take some at some time, we all need
to accrue some technical debt,
because you can't afford the cost of
delay, but being prudent about it is
what's important.

Page 25 of 63

Making Hard Choices About Technical Debt

19
Architecting Software in a New Age
SEI Webinar
© 2015 Carnegie Mellon University

Making Hard Choices About Technical Debt

In the quest to become market leader, players race to release a
quality product to the marketplace.

The Hard Choices game is a simulation of the software development
cycle meant to communicate the concepts of uncertainty, risk,
options, and technical debt.

Hard Choices Strategy Game to Communicate Value of Architecture Thinking
game downloadable from http://www.sei.cmu.edu/architecture/tools/hardchoices/.

**019 So people in the agile space
like games, and we at the SEI made
a little game in which you can simulate
the software development lifecycle
and you can understand the concepts
of uncertainty, risk, options,
and technical debt by playing this
game. You can download it from our
website--

Page 26 of 63

HARD CHOICES

20
Architecting Software in a New Age
SEI Webinar
© 2015 Carnegie Mellon University

HARD CHOICES

**020 --And you can use it in a
classroom or in a work setting.

Page 27 of 63

Our Current Research

21
Architecting Software in a New Age
SEI Webinar
© 2015 Carnegie Mellon University

Our Current Research

What code and design indicators that correlate well with project measures
allow us to manage technical debt?

1. time technical debt is incurred
2. time technical debt is recognized
3. time to plan and re-architect
4. time until debt is actually paid-off
5. continuous monitoring

4321

ti
tj

Analyzers
(e.g. SonarQube,

CAST, Lattix)

Source Code
(C,Java,Cobol..)

Eclipse IDE

TD Dashboard

Design Artifacts (arch
models,

requirements)

Dataset

Client

Plugin

Project Artifacts
(defects, effort)

detection

visualizationdataset

5

**021 Toward a more serious end, we
are doing research. We're building a
workbench. We're using architectural
abstractions, field studies, some
conceptual correlation modeling to
build a workbench that would allow
organizations to see the technical
debt they have and to manage the
technical debt over time. There is
a very large community organized
around technical debt right now--
people who are building toolsets,
people who are building dashboards--
and it is a concept that is very
important for anyone who takes an
incremental approach to system
development and needs to
understand ramifications of
architectural and code decisions that
they make in order to avoid the cost
of delay.

Page 28 of 63

Architecture Done Incrementally

22
Architecting Software in a New Age
SEI Webinar
© 2015 Carnegie Mellon University

Architecture Done Incrementally

 Bolsa Mexicana de Valores (BMV) operates the Mexican
Financial Markets on behalf of the Mexican government.

 Bursatec is the technology arm of the BMV.
 BMV desired a new stock trading engine to

drive the market.
 BMV performed a build vs. buy analysis and

determined that Bursatec would replace their
three existing trading engines with one
in-house developed system.

Bursatec committed to deliver a trading engine in
8-10 quarters.
 High performing
 Reliable and of high quality
 Scalable

**022 Let me give you a little
bit of an example. You might say,
"Well, can you do incremental
development with a focus on
architecture? Can you do
architect incrementally?" Let me
tell you a very quick story, and this
story is about the Mexican Stock
Exchange.

The Mexican Stock Exchange
approached the SEI. MSE -- actually,
Bursatec, which is the technology
arm of the Mexican Stock Exchange--
was tasked with building a new
trading engine, because the decision
was made not to buy an off-the-shelf
trading engine but to replace the
three that they had, and Bursatec
committed to deliver this trading
engine in a little more than two
years. They asserted that it would

Page 29 of 63

be high-performing. They wanted it
to be a higher-performing-- in other
words, faster-- than the previous
engines they had, but they also
wanted it to be faster than their
competitors, faster than NASDAQ, the
London Stock Exchange. Such a
system has to be highly reliable, as
you would understand, and of high
quality, and it's got to be scalable
because there are peaks and ebbs in
stock trading and the system has got
to be able to withstand high loads
and trading volume.

Approach

23
Architecting Software in a New Age
SEI Webinar
© 2015 Carnegie Mellon University

Approach

IMPLEMENT AND EVOLVE

SATISFY

DESIGN IMPLEMENT

SATISFY CONFORM

ARCHITECTURE SYSTEM
BUSINESS AND
MISSION GOALS

TSPTSP

Quality Attribute Workshop
Business Thread Workshop

Attribute-Driven
Design

Architecture Tradeoff
Analysis Method (ATAM)

Views&Beyond

TSP Launch

TSP Weekly Meetings
and Checkpoint

TSP Weekly Meetings
and Checkpoint

ARID and TSP Relaunch

TSP Postmortem

Team Software Process (TSP) and Architecture-Centric Engineering

**023 The SEI's role was
coach. We coached the Bursatec
team and we worked with the
principles that we espouse, namely
our architecture-centric engineering
approaches, which you can read

Page 30 of 63

about, and also the Team Software
Process. This is a familiar
diagram that I showed you earlier
about the role of architecture, and
we wickered this with the various SEI
architectural techniques. We used
TSP as the scaffolding for team
management, project management,
and measurement.

Effort in Percent over Cycles – 1

24
Architecting Software in a New Age
SEI Webinar
© 2015 Carnegie Mellon University

Effort in Percent over Cycles – 1

Reqts: Requirements
HLD/Arch: High level Design / Architecture
DLD: Detailed Design (UML)
Code: Coding (no detailed design)
Test: Testing

**024 I want to show you,
very quickly, some effort charts, so
that you see that architecture was
actually spread across the six cycles
of development that were used. In
the beginning we did architectural
design and we did some detailed
Design with UML, and we did some prototyping.
We needed to understand what was
possible, and so the prototyping was
important. We did very little

Page 31 of 63

requirements solicitation because we
started out basically replacing
the engine systems -- stock-trading
engine systems -- that actually existed.

Effort in Percent over Cycles – 2

25
Architecting Software in a New Age
SEI Webinar
© 2015 Carnegie Mellon University

Effort in Percent over Cycles – 2

Reqts: Requirements
HLD/Arch: High level Design / Architecture
DLD: Detailed Design (UML)
Code: Coding (no detailed design)
Test: Testing

**025 In the second cycle there was
much more of an architecture
emphasis, much more requirements.
We did a lot of coding in UML
diagrams, and we implemented a
skeleton of the system so that we
could test out the communication
between the various components in
the architectural design.

Page 32 of 63

Effort in Percent over Cycles – 3

26
Architecting Software in a New Age
SEI Webinar
© 2015 Carnegie Mellon University

Effort in Percent over Cycles – 3

Reqts: Requirements
HLD/Arch: High level Design / Architecture
DLD: Detailed Design (UML)
Code: Coding (no detailed design)
Test: Testing

**026 In the third cycle, we actually
stubbed out the system and did a
fair amount of performance testing
going end-to-end to see what the
throughput would be.

Page 33 of 63

Effort in Percent over Cycles – 4

27
Architecting Software in a New Age
SEI Webinar
© 2015 Carnegie Mellon University

Effort in Percent over Cycles – 4

• The fourth cycle of three weeks was
used to rethink garbage collection
handling and cleaning up.

• No effort data was collected during
that cycle.

https://www.flickr.com/photos/arthur-caranta/

**027 In the fourth cycle, we didn't
actually keep effort metrics, but we
used this to rethink garbage
collection and collect cleaned up some
things that needed to be done.

Page 34 of 63

Effort in Percent over Cycles – 5

28
Architecting Software in a New Age
SEI Webinar
© 2015 Carnegie Mellon University

Effort in Percent over Cycles – 5

Reqts: Requirements
HLD/Arch: High level Design / Architecture
DLD: Detailed Design (UML)
Code: Coding (no detailed design)
Test: Testing

**028 In the fifth cycle, we actually had a
day-trading system-- full functionality
for day trading. We developed the
testing framework, test cases, and
we begin to admit the new
requirements for the things that were
to enhance this stock-trading engine.

Page 35 of 63

Effort in Percent over Cycles – 6

29
Architecting Software in a New Age
SEI Webinar
© 2015 Carnegie Mellon University

Effort in Percent over Cycles – 6

Reqts: Requirements
HLD/Arch: High level Design / Architecture
DLD: Detailed Design (UML)
Code: Coding (no detailed design)
Test: Testing

**029 And finally, in cycle six, we
delivered the complete system, which
was not only the day-trading but the
maintenance at night, the startup,
the actual maintenance and logging
that was done. There was still some
architecture, still some requirements.
If you add up all the effort overall,
only 15 percent was spent on testing,
which is very unusual for this type of
system. development.

Page 36 of 63

Results

30
Architecting Software in a New Age
SEI Webinar
© 2015 Carnegie Mellon University

Results

Results Target Actual

Latency 1ms 0.1ms

Throughput
(transactions per second) 1,000 200,000

Schedule (months) 18 17

Quality (defects/KLOC found
during validation testing) 0.25 0.1

**030 Now, let me give you the
punchline. Was Bursatec able to
deliver on what they promised? Yes,
actually they were able to deliver
ahead of time, with hiring no
increased staff, and I would add that
many of the people we coached were
not seasoned architects by any
stretch of the imagination. What's
really impressive is that the
performance was 300 times faster
than the actual performance of their
earlier stock-trading engine, faster
than NASDAQ and faster than the
London Stock Exchange.

What I have here before you are
numbers that are publicly available,
but I know that the situation is
actually even better than what's
publicly available.

Page 37 of 63

And the quality-- 0.1 bugs per KLOC,
which is very unusual. In this type of
system we would see 0.5 to 1. Since
this system has been launched, there
has only been one software problem,
and it was easily remedied.

So in fact, the architecture was
developed incrementally, the quality
of the system was delivered as
expected-- in fact exceeded
expectations-- it was delivered on
time, at cost, and we did it
incrementally and used the
architecture to perform the analysis
that was necessary in order to deliver
on the quality attribute agenda.

Deployment Challenges

31
Architecting Software in a New Age
SEI Webinar
© 2015 Carnegie Mellon University

Deployment Challenges

The DevOps movement continues what Agile started.

**031 Now let me switch topics a little bit.
Most people are able to handle
incremental development, and a lot

Page 38 of 63

of people are incorporating
architecture techniques in their
incremental development. If you
haven't, I hope I've given you some
insights into how to do that. But let
me switch to DevOps, because the
focus now is on deployment. Even
though people can handle
incremental development, there are
problems with deployment, and the
mantra these days is velocity,
continuous integration, continuous
deployment-- and so we need to
understand how to pick up where our agile
development left off.

DevOps : State of the Practice

32
Architecting Software in a New Age
SEI Webinar
© 2015 Carnegie Mellon University

DevOps: State of the Practice

Focus is on

 culture and teaming

 process and practices
− value stream mapping
− continuous delivery practices
− Lean thinking

 tooling, automation, and measurement
− tooling to automate repetitive tasks
− static analysis
− automation for monitoring architectural health
− performance dashboards

**032 The state of the practice in
DevOps is focusing largely on culture
and teaming. There are a lot of
processes that are used to monitor,
status checks, tooling, dashboards--

Page 39 of 63

a tremendous amount of tooling to
understand the architectural health,
to understand the runtime
performance, the operational
performance of the system, and all of
this is working quite well, and there
are a number of organizations who
have really gotten on the DevOps
bandwagon and are doing well with
it.

Architecture and DevOps

33
Architecting Software in a New Age
SEI Webinar
© 2015 Carnegie Mellon University

Architecture and DevOps

Design decisions that involve deployment-related
limitations can blindside teams.

**033 And yet you can still be
blindsided. You can be blindsided by
frameworks that you've chosen or
tech stacks that you've chosen for
your system that don't allow you the
deployability that you need for your
continuous integration and
continuous deployment, and many of
those decisions are not a matter of
refactoring, but would require that you

Page 40 of 63

would actually have to replace
hardware or would require substantial
and topological changes in the
software. So one of the things you
need to focus on, if you are
interested in a successful DevOps
strategy, is to think about it early on-

DevOps Tips

34
Architecting Software in a New Age
SEI Webinar
© 2015 Carnegie Mellon University

DevOps Tips

 Don’t let designing for deployability be an afterthought.
 Use measurable deployability quality attributes.
 Consider architectural tactics that promote modifiability, testability,

and operational resilience.
 Use architectural abstractions to reason about deployability

implications of design options and tradeoffs.
 Establish monitoring mechanisms.

**034 --To think about deployability
at the architecture stage, to
understand that in order to have a
system that will meet your
deployability expectations, you are
going to have to think about what
your deployability scenarios are and
pick architectural tactics and make
architectural decisions that will
actually support testability, and
deployability. You need to think
about wiring into your system
monitoring mechanisms so that

Page 41 of 63

during runtime you can actually
monitor the health of the system.

These are architectural decisions,
these are architectural strategies.
It's too late to think about these once
you have already developed the
system and move into the operation
phase. So you have to blend the
development and operation, and
architecture has got to be part of the
conversation.

Architecture and Scale

35
Architecting Software in a New Age
SEI Webinar
© 2015 Carnegie Mellon University

Architecture and Scale

 Cloud strategies
 Cloud strategies for mobility
 Big data

“Scale Changes Everything”

**035 Now let's move to the second
challenge, which is scale. I've given
lots of invited talks about scale, and
in fact one of the titles that I've used
over and over is "Scale Changes
Everything," which is not a
hyperbole, because in reality it does.
When you have systems of the scale

Page 42 of 63

that we're talking about-- this sort of
planetary scale involving humans and
autonomous entities and
computational devices-- we see that
the situation requires distribution--
distribution of development,
distribution of data, distribution of
evolution. We see heterogeneous
software and hardware. We see
unprecedented connections,
unprecedented use of systems.
There are commonly documented
challenges, and I could talk about scale
for a long time, and have. But I'm going
to focus on three issues related to scale,
and in particular related to architecture
and scale: cloud strategies, cloud strategies
for mobility, and big data.

Two Perspectives of Software Architecture in Cloud Computing

36
Architecting Software in a New Age
SEI Webinar
© 2015 Carnegie Mellon University

Two Perspectives of Software Architecture in Cloud Computing

=
Two potentially different sets
of business goals and quality
attributes

**036 So when we think about
cloud computing-- and almost

Page 43 of 63

everyone is using cloud computing
because we have these warehouses
of computational capability that we
can tap into through web services--
we have to understand that the cloud
provider and the cloud user have
potentially very different business
goals, and because the quality
attributes are driven from the
business goals, potentially different
quality attributes.

Cloud Computing and Architecting

37
Architecting Software in a New Age
SEI Webinar
© 2015 Carnegie Mellon University

Cloud Computing and Architecting

 SLAs cannot prevent failures.
 In cloud environments,

− cloud consumers have to design and architect systems to account for lack
of full control over important quality attributes.

− cloud providers have to design and architect infrastructures and systems
that provide the most efficient way to manage resources and keep
promises made in SLAs.

**037 One might argue that,
"Okay, but we have service-level
agreements so that all is copacetic
between the cloud provider and the
cloud consumer." However, the
service-level agreements are a
minimum, and they can't prevent
failures. So what we have to do as a
cloud consumer is architect our

Page 44 of 63

systems knowing that we don't have
full control over many of the
important quality attributes.

Specifically, cloud providers are going
to optimize on reliability-- they want
to provide consistent computational
power to the cloud user. They want
to provide a level of acceptable
performance, which is usually
articulated in the SLA. At the same
time, their tradeoffs have to do with
energy efficiency. They're paying for
electricity and cooling of these
massive server farms, and this is a
nontrivial issue that factors directly
into their business goals.

So you're the cloud
consumer, and you like the reliability
you're getting and the performance,
but now you say, "But I'm really
concerned about security. I want to
make sure that nobody hacks into
what I have on the cloud." Whoa.
That's a tradeoff. And you need to
think, when you're architecting your
system, how you're going to
compensate for what the cloud
provider is not going to provide to
you - what is not necessarily
articulated in the SLA. You need
to be smart about cloud computing.

Ian Gorton, who is one of our
colleagues, has said that, "Cloud
computing allows us to fail cheaper
and faster than we were able to
before." So, very important to think carefully
about architecture when you're using
cloud strategies.

Page 45 of 63

Mobile Device Trends

38
Architecting Software in a New Age
SEI Webinar
© 2015 Carnegie Mellon University

Mobile Device Trends

**038 The world has also moved to
mobile devices. There is a huge mobile
device trend, and we're now using
our smartphones and our
tablets as ways to connect with the
internet, as ways to connect with
social media, as ways to control our
appliances and devices. We have
come to expect a level of
performance, because we're used to
laptops. So we think our tablets and
our mobile phones are going to have
the same sort of capability as our
laptops. But the reality is: they are
limited in size, they are limited in
battery power, and there is some
variance in the latency between your
mobile device and the cloud from which you are
gathering your enterprise data.
And if you're using this mobile
device for something that is critically
important, like triaging some sort of

Page 46 of 63

health situation in an emergency
event, you want a little more
reliability than what you can typically
get with mobile devices today.

Architecture Trends: Cyber-Foraging

39
Architecting Software in a New Age
SEI Webinar
© 2015 Carnegie Mellon University

Architecture Trends: Cyber-Foraging

 Edge Computing
 Using external resource-rich

surrogates to augment the capabilities
of resource-limited devices
− code/computation offload
− data staging

 Industry is starting to build on this
concept to improve mobile user
experience and decrease network
traffic.

 Our research: cloudlet-based cyber-
foraging
− brings the cloud closer to the user

Nokia Siemens Networks
Liquid Applications

Cisco Systems
Fog Computing

**039 So, what are some of the
architecture trends? Well,
architecture trends today are in what many
people are calling cyber-foraging.
One term is edge computing, where
we push the computation, the data,
the analysis to the very edge of the
network, to the people who are using
these mobile devices. This sort of
computing we find is necessary for
early responders, for soldiers in war
situations, where they have a mobile
device, a handheld or a tablet. And they
need to do some analysis, they
need computational power, and they
need data staging, and they need a way

Page 47 of 63

to get data from the cloud.
So we appeal to some surrogates,
maybe some nearly laptops, that will
allow us to augment the capabilities
of the mobile device so we can
offload some of the computation,
or do some of the data staging
there so the data coming from the
cloud can in transit be hosted in this
surrogate -- say, in the laptop -- and then
move to the mobile device.

Industry is starting to build on this
concept to improve mobile user
experience and decrease network
traffic. Our experience and our
research is in cloudlets. Cloudlets are
Discoverable, virtual machine-based forward-
deployed servers. They're located a
single hop away from the mobile
device. What we've been able to
do is allow the mobile device to
operate in disconnected mode. Where,
for example in a war situation when the
mobile device totally disconnects
from the network and from the
enterprise, but the cloudlet is able to
be provisioned so that it provides the
continuity that's needed in these
situations that are high stress and
high criticality.

Page 48 of 63

Big Data Systems

40
Architecting Software in a New Age
SEI Webinar
© 2015 Carnegie Mellon University

Big Data Systems

 Two very distinct but related
technological thrusts
− Data analytics
− Infrastructure

 Analytics is typically a massive data
reduction exercise – “data to
decisions.”

 Computation infrastructure necessary
to ensure the analytics are
− fast
− scalable
− secure
− easy to use

**040 One other topic related to scale is
big data. I would be really remiss if I
didn't talk about big data because
everybody's talking about big data.
But when we talk about big data
there are tradeoffs, from the network
on down. And again-- you guessed
it-- architecture is a very good
abstraction for us to reason about
those tradeoffs.

Now, a little bit about big data.
There are really two distinct but
related technology thrusts. There is
the data analytics, how you want to
analyze the data. The data is usually
Heterogeneous -- it comes from lots of
different sources, and is big volume
but low information content -- and
what we want to be able to do is
analyze so that it's high information
content and low volume. So people

Page 49 of 63

use a combination of machine
learning and static analysis.
There are many algorithms that
people are employing for data
analytics.

The flipside is the infrastructure. You
need infrastructure to house this big
data, you need infrastructure to
actually perform the analysis and the
computation; and that infrastructure
has got to ensure that the analytics
are fast, they're scalable, they're
secure, and they're easy to use. So
basically you've got a big filtering
problem.

Big Data – State of the Practice “ The problem is not solved”

41
Architecting Software in a New Age
SEI Webinar
© 2015 Carnegie Mellon University

Building scalable, assured big data systems is hard.

Building scalable, assured big data systems is expensive.

Big Data – State of the Practice “The problem is not solved”

**041 The state of the practice
is that the big data problem is not
solved. We know that companies like
Amazon, NASDAQ, Google,

Page 50 of 63

Facebook, and Netflix are way
ahead of most of the rest of us. If
you work for those organizations,
you're in an enviable position. But
these organizations have also been at
it for about a decade, and they have
pumped billions of dollars
against this problem. Most other
organizations have not been able to
enjoy that kind of a lead time and
that kind of a pocketbook.

But even so, these big organizations
have had some problems -- some
problems that many of us have
Experienced -- like the Christmas Eve
2012 Netflix outage; Amazon's
August 19, 2013 45 minutes of
downtime that resulted in five million
dollars loss in revenue; Google's
homepage offline for five minutes on
the 16th of August in 2013; and I
think most of us have already heard
about NASDAQ's issues with Facebook's IPO
in June of 2012.

So, lots of problems. In fact, there
was a study--

Page 51 of 63

Big Data Survey

42
Architecting Software in a New Age
SEI Webinar
© 2015 Carnegie Mellon University

Big Data Survey

http://visual.ly/cios-big-data

**042 --by Infosys that 64 percent
of companies admit to having big
data initiatives but only 55-- actually
55 percent of them have no strategy
for doing so. So we know there are
some big challenges here.

Page 52 of 63

Architecture and Big Data

43
Architecting Software in a New Age
SEI Webinar
© 2015 Carnegie Mellon University

Architecture and Big Data

 System costs must grow more slowly
than system capacity.

 Approaches
− scalable software architectures
− scalable software technologies
− scalable execution platforms

 Scalability reduces as
implementation complexity grows.

 NoSQL models are not created
equal.

 You can’t manage what you don’t
monitor.

**043 When you're thinking about
architecture and big data, the
tradeoff here is between capacity and
cost. We want capacity, but most
organizations can't afford the
capacity that they actually need.
They want tremendous scalability,
but as the systems become more
complex, as the analysis becomes
more complex, there are tradeoffs
with scalability. Most people use
NoSQL data bases, but those are not all
created equal. They
have different data models, different
query models, different consistency.
The other thing is, you need to
be able to monitor during runtime what's
happening with these big data
systems, otherwise you can't manage
them. All of these are really big
challenges.

Page 53 of 63

Our Current Research

44
Architecting Software in a New Age
SEI Webinar
© 2015 Carnegie Mellon University

Our Current Research

 Lightweight Evaluation and Architecture Prototyping for Big Data
(LEAP4BD)

 QuABase: A Knowledge Base for Big Data System Design
− semantics-based knowledge model

o general model of software architecture knowledge
o populated with specific big data architecture knowledge

− dynamic, generated, and queryable content
− knowledge visualization

**044 We are doing some research in this area. I
have some URLs at the end of the
talk to direct you to. One of them is
called LEAP4BD, where we're actually
providing a risk reduction decision
support system that allows people to
input their quality attribute
requirements and a spectrum of the
NoSQL technologies that they're
looking at, and then provides you
some support for what the best
choices are. We're actually building
this into a knowledge base that
continues to grow in knowledge,
using machine learning techniques.
We call this "QuABase."

Page 54 of 63

Architecture and Software Assurance

45
Architecting Software in a New Age
SEI Webinar
© 2015 Carnegie Mellon University

Architecture and Software Assurance

**045 So, everything I've talked
about actually is about software
assurance, because we're using the
architecture to in fact provide
assurance that we're going to get the
right behavior -- to perform the
engineering tradeoffs between the
various qualities that are most
important to us. And this gives us a
level of assurance, provides us
evidence that we can count on the
System. wWe can count on the system
as it's built, as it's deployed, and during
runtime.

Rick, in his next talk, is going to
focus more on security, which is
often interpreted as software
assurance. I admit to a broader
definition. But I wanted to end with
a little bit of a focus on software
assurance--

Page 55 of 63

Architectural Models

46
Architecting Software in a New Age
SEI Webinar
© 2015 Carnegie Mellon University

Architectural Models

 capture architecture in a form amenable to analysis, which
contributes to assurance

 range from informal (e.g., visio diagrams) to formal (e.g., with
precisely defined execution semantics)

 In safety critical systems formality is warranted.

**046 --Because I haven't yet said
much about how architectures are
depicted. What do we use?

Well basically, you need enough
detail in your depiction to do
the analysis that you're trying to
perform, and that depiction can be informal,
from Visio diagrams, to formal using
formal architecture languages that
have precisely defined execution
semantics.

When we're talking about safety-
critical systems -- when we're talking
about systems that are internal to
the engines of our automobiles or in
avionics -- we need more. Informal
models are not sufficient.

Page 56 of 63

High Fault Leakage Drives Major Increase in Rework Cost

47
Architecting Software in a New Age
SEI Webinar
© 2015 Carnegie Mellon University

5x

Software
Architectural

Design

System
Design

Component
Software
Design

Code
Development

Unit
Test

System
Test

Integration
Test

Acceptance
Test

Requirements
Engineering

300-1000x20.5%

1x

20%, 16%

10%, 50.5%

0%, 9% 80x

70%, 3.5% 20x

Sources:
NIST Planning report 02-3, The Economic Impacts of

Inadequate Infrastructure for Software Testing, May 2002.
D. Galin, Software Quality Assurance: From Theory to

Implementation, Pearson/Addison-Wesley (2004)
B.W. Boehm, Software Engineering Economics, Prentice Hall

(1981)

70% Requirements &
system interaction errors

80% late error
discovery at high

repair cost

80% late error
discovery at high

repair cost

80% late error
discovery at high

rework cost

Aircraft industry has
reached limits of

affordability due to
exponential growth in SW

size and complexity.

Total System Cost
Boeing 777 $12B
Boeing 787 $24B

Software as % of total system cost
1997: 45% → 2010: 66% → 2024: 88%

Post-unit test software rework cost :
50% of total system cost and growing

High Fault Leakage Drives Major Increase in Rework Cost

**047 And so we need the formality
because we understand, from lots of
studies-- this is a chart from one of
them-- that in these sorts of systems-
- this is from the avionics industry--
that the cost of air vehicles is
increasing dramatically, and the
amount of software in those air
vehicles is also increasing dramatically.
And what we see is faults that leak
through the system and the tremendous
task of testing and integrating the
system-- almost prohibitive. And so
what we need to think about is how
we can use the architecture early on
and do some formal reasoning so
that we actually can eliminate some
of those faults and preclude them
from leaking through the lifecycle of
the system.

Page 57 of 63

SAE Architecture Analysis & Design Language (AADL) Standard Suite (AS-5506
Series)

48
Architecting Software in a New Age
SEI Webinar
© 2015 Carnegie Mellon University

SAE Architecture Analysis & Design Language
(AADL) Standard Suite (AS-5506 Series)
 Core AADL language standard (V2.1-Sep 2012, V1-Nov 2004)

− Strongly typed language with well-defined semantics
− Textual and graphical notation
− Standardized XMI interchange format

Standardized AADL Extensions
 Error Model language for safety, reliability, security analysis
 ARINC653 extension for partitioned architectures
 Behavior Specification Language for modes and

interaction behavior
 Data Modeling extension for interfacing with data

models (UML, ASN.1, …)

**048 One effort is a language
called the Architecture Analysis and
Design Language, or AADL, which the
SEI has been involved in developing, and this
language provides grist for doing that
sort of formal reasoning.

Page 58 of 63

Architecture-Centric Quality Attribute Analyses

49
Architecting Software in a New Age
SEI Webinar
© 2015 Carnegie Mellon University

Architecture-Centric Quality Attribute Analyses

Data Quality
• Data precision/accuracy

• Temporal correctness

• Confidence

Architecture Model

Single Annotated Architecture Model Addresses
Impact Across Operational Quality Attributes

Auto-generated
analytical models

Safety Reliability
• MTBF

• FMEA

• Hazard Analysis

Security
• Intrusion

• Integrity

• Confidentiality

Resource
Consumption
• Bandwidth

• CPU time

• Power consumption

Real-time Performance
• Execution time/deadline

• Deadlock/starvation

• Latency

**049 In fact, provide a semantic model
that allows us to express quality
attributes in a formal way, and to be
able to reason about all of those
quality attributes using formal
mechanisms, and make the
appropriate tradeoffs. We, with this
technique and this language, have
been able to perform what's being
called virtual integration, so that
before the system is developed we
can actually make tradeoffs using
these architectural models, virtually
integrate the system, and identify
lots of problems that would only be
detected downstream in integration
and test previously.

So these are This is the kind of technique
that can be used to provide the level
of software assurance that you need
in safety-critical systems, and they're

Page 59 of 63

based on formal architectural
modeling.

Conclusion

50
Architecting Software in a New Age
SEI Webinar
© 2015 Carnegie Mellon University

Conclusion

 Software architecture principles
and their importance persist.

 Change brings new challenges.
 Software architecture practices

and research are key to meeting
these challenges.

 Much remains to be done.

**050 So let me conclude by saying
that if you thought that software
architecture was an old idea,
something that started in the '80s
and maybe was best left to the early
2000s, before our brave new world of
social media and cloud computing
and mobile computing and all of the
rest, I hope I've convinced you that
the principles of software architecture
and their importance persist. The
challenges are different, but the need
to be able to do ongoing analysis -- to
do tradeoff analysis -- is still very key.
And the demands on our systems are
much higher than systems of the
past, and in fact the systems
themselves are much more prolific,

Page 60 of 63

and much more important to life as
we know it.

So there's a lot to be done. What I
see in the future are much more fluid
architectures, much more tool
support, adaptive architectures,
architectures with lots of runtime
monitoring built into them so they
are capable of internal monitorability.

And I will stop there. I hope this has
provided you sort of a whirlwind
perspective of not only where we've
been and how important architecture is,
but some of the important challenges
and the relationships of architecture to
those challenges. Thanks very
much.

Shane McGraw: Linda, thank you.
That was a terrific talk, and Linda's
going to stick around, folks, for the
Q&A after Rick's talk, so she'll be
here for any questions that came
through during that part of the
presentation, we'll address in a few
minutes.

Page 61 of 63

This Is the Work of Many

51
Architecting Software in a New Age
SEI Webinar
© 2015 Carnegie Mellon University

This Is the Work of Many

At the SEI
 Felix Bachmann
 Stephany Bellomo
 Peter Feiler
 Ian Gorton
 James Ivers
 Rick Kazman
 John Klein
 Mark Klein
 Grace Lewis
 Ipek Ozkaya
 Rod Nord
 and many more…

**051 Just one quick housekeeping
item to address.

Page 62 of 63

Approaching Security from an " Architecture First" Perspective

© 2015 Carnegie Mellon University

Approaching Security from an
"Architecture First" Perspective
Software Engineering Institute, Carnegie Mellon University

Rick Kazman - University of Hawaii
Jungwoo Ryoo - Penn State University
Humberto Cervantes -
Universidad Autonoma Metropolitana-Itztapalapa

**056 A number of questions came
in about recording and the availability
of the slides. The event is being
archived. The login will be the same
that you used today. It should be
available at some point tomorrow.
An email will go out letting you know
when the archive is up, and it's the
same login process as today.

Page 63 of 63

	Trends and New Directions in Software Architecture
	Table of Contents Page 1
	Table of Contents Page 2
	Table of Contents Page 3

	Carnegie Mellon University Notice
	Trends and New Directions in Software Architecture
	Software Architecture
	Software Architecture Thinking
	Quality Attributes
	Central Role of Architecture
	Our View: Architecture -Centric Engineering
	Advancements Over the Years
	What HAS Changed?
	Technology Trends
	Software Development Trends
	Technical Challenges
	The Intersection and Architecture
	Architecture and Accelerated Capability
	Managing Technical Debt*
	Technical Debt Impact
	Technical Debt Landscape
	Making Hard Choices About Technical Debt
	HARD CHOICES
	Our Current Research
	Architecture Done Incrementally
	Approach
	Effort in Percent over Cycles – 1
	Effort in Percent over Cycles – 2
	Effort in Percent over Cycles – 3
	Effort in Percent over Cycles – 4
	Effort in Percent over Cycles – 5
	Effort in Percent over Cycles – 6
	Results
	Deployment Challenges
	DevOps : State of the Practice
	Architecture and DevOps
	DevOps Tips
	Architecture and Scale
	Two Perspectives of Software Architecture in Cloud Computing
	Cloud Computing and Architecting
	Mobile Device Trends
	Architecture Trends: Cyber-Foraging
	Big Data Systems
	Big Data – State of the Practice “ The problem is not solved”
	Big Data Survey
	Architecture and Big Data
	Our Current Research
	Architecture and Software Assurance
	Architectural Models
	High Fault Leakage Drives Major Increase in Rework Cost
	SAE Architecture Analysis & Design Language (AADL) Standard Suite (AS-5506 Series)
	Architecture-Centric Quality Attribute Analyses
	Conclusion
	This Is the Work of Many
	Approaching Security from an " Architecture First" Perspective

