Trends and New Directions in Software Architecture

Table of Contents

Carnegie Mellon University NOTICEovuuiiiiiiiiie ettt s e s s sbae e e s sarae e e e e 4
Trends and New Directions in Software Architecturecoooveiiiiiiiiiiieee e 5
SOTEWAIE AFCRITECTUIE .. ce ittt st s e st e s e e sane e e sans 7
Software Architecture ThINKINGovi i s e s e e s saraee e e e 8
(O TUE | T AN {4 o T =P PP UPUPPPPRRTPPPRN 10
Central Role Of ArChitECTUIEcooiiiiiieeete et st 11
Our View: Architecture -Centric ENGINEEIING ...ccoovviiiiiiiiiieieiiieee sttt srre e s siae e e s ssvaeeeenaes 12
AdvancemMeNnts OVEr the YEarS....c..ui ittt st e e e s 13
What HAS ChanGea?cceiiiiiee ettt s e e e s s ate e e s s sabae e e s sabaeeesnabaeeessnbaeeesnnns 14
L0l L aTod (o =AY =T o T [P PRSP 16
Software DevelopmMENT TrENASuuii ittt e e e sbee e e e s bt e e e ssbeaeessnabaeeesnans 17
TECNNICAI CRAIIBNZES cvevviii it e e e e et e e e e e s e s bbb ereeeeeessenastbrreneseeenns 18
The Intersection and ArchiteCTUIEcooii i 20
Architecture and Accelerated Capabilityccccoeeviieeiiiiii e 21
Managing TeChNICAl DEIDT™uvviieiiiiiieee e e e e e st r e e e e e e s seanbbaaeeeeeeenas 22
TechNiCal DEDT IMPACE coviiiiiiiciiieieee e e e e et e e e e e e e e s abbbeeeeeeeeseesassbereneeeeenns 24
Technical DEbt LANGSCAPE ...ccuvvieeeeiiieieeicitreeeee ettt e e e e e e stbare e e e e e e sesesbbbbereeeeeessenassrereneseeenns 25
Making Hard Choices About TeChNICal DEDTccovvcvvvviiiieiiiiiceee e 26
HARD CHOICESottt ettt sttt et e s i s st e s b e s b e e smneeaneesneeeneesnneenneennes 27
OUr CUITENT RESEAICI ..t e s s neenaneeas 28
Architecture Done INCremMeNntallyoccevvveeeeiiiiieee e e e e e e e e e e seanes 29

Page 1 of 63

FiY o] o] fo Y- [o TSRO TR PPPRTRRRPIRt 30

Effort in PErceNnt OVEI CYCIES — L.uuuviiiiiieiiiiieeiee ettt et e e e e e e sabbbae e e e e e e s seansbaaeeeeeeeeas 31
EffOrt in PEIrCeNT OVEI CYCIES — 2uuveeiiiiiieciitieeeee ettt e et e e e e e e e sabbbaeeeeeeesseansbaaaeeeeeenas 32
EffOrt in PErceNt OVEI CYCIES — 3uuueeiiiiiieiiiieeeee ettt e e e e e e e sabbr e e e e e e e e s seansbeaeneeeeeees 33
EffOrt in PErCeNt OVEI CYCIES — A oeeeeeeieeeeteeeeee ettt e e e e e e e seabbb e e e e e e e s seansbaaeneeeeenas 34
EffOrt in PEIrCENT OVEI CYCIES — 5uuveeieiiiieeiiteeeeee ettt et e e e e e e e seaabr e e e e e e e e s seansbaaeeeeeeeeas 35
EffOrt in PEIrCENT OVEI CYCIES — B.uveeereeieeciiirieeeee ettt e e e trrre e e e e e e e e seabbbaeeeeeeesseansbaaeeeeeeeeas 36
RESUIES ..ttt ettt et h e bt e he e e r e e hn e e bt e ne e e r e e nneeneeenes 37
DepPloymMENT ChallENEESoeeiiiiie et e e e s e e s s sba e e e e ssabaeeessaees 38
DevOPs : STate Of the PracCtiCeciiviiiiiiiiiiiei ettt e s s sbae e e s 39
ArChitECtUIE AN DEVOPS ..ciiiueiiiieiiiitieeeritte e sttt e sttt e e s e e e s s bea e e e ssbae e e s snabeeeessasbaeessnsseeeessnsseeeean 40
DTS2V (0 o LR] o TSSOSO PSSP OO OO PP PO PO PPPUPPPPPPPPPPPPPRt 41
ArchiteCture and SCAlEcc..uiiiiiieeee ettt e 42
Two Perspectives of Software Architecture in Cloud COMPULING ...ccoovvvvieiiriiiieiiiieee e, 43
Cloud Computing and ArchiteCtiNG.....ccuviiiiiiiie e rre e e enaes 44
MODIIE DEVICE TIENMSeeeiiieeeit ettt ettt e e st e s bt e e s bb e e sbeeesabeeesanee s 46
Architecture Trends: Cyber-FOraging.......cccviruiiiiiriiiee ettt e s s saee e e s aeee s 47
Big Data SYSTEMIS ...ttt ettt ettt ettt et et st ettt ettt e tetstetesnnebennnnnnnes 49
Big Data — State of the Practice “ The problem is not solved”cccccviiiiriiiiiiiniiiee e, 50
BiG DAt@ SUIVEY ...ttt ettt ettt sttt sttt sttt b st e se s s te st tsbennnenennnnnnnes 52
Architecture and Big Data........ueiiiiiiiieiiiiiiee ettt s e e s e s s sara e e s s bt e e e e s araeee s 53
OUP CUITENT RESEAICN ...ttt et st s bt e st e e snee e 54
Architecture and SOftWare ASSUIANCEccueiieerieriiieie ettt eeees 55
ArchiteCtural IMOGEISc..eeiiiiieeeee e e e e enees 56

Page 2 of 63

High Fault Leakage Drives Major Increase in ReWOrk COStccccvvveeiiieiiiiciiiieeeeee e, 57

SAE Architecture Analysis & Design Language (AADL) Standard Suite (AS-5506 Series) 58
Architecture-Centric Quality Attribute ANGIYSESuveeeiiiiiiiiiiiiiieeiee e e e 59
(60] 3T (V1Y [o ISP PRSP VRPOPRPROPR 60
This IS the WOTrK Of IMTABNY ...ttt e e e e et e e e e e e s esabareeeeeeeeseeassbereeeeeeenns 62
Approaching Security from an " Architecture First" Perspectivecccovvveeeeiieiiiiciinveeeeeeeeeeennns 63

Page 3 of 63

Carnegie Mellon University Notice

Carnegie Mellon University

This video and all related information and materials (“materials”) are owned by Carnegie Mellon
University. These materials are provided on an “as-is” “as available” basis without any warranties and
solely for your personal viewing and use.

You agree that Carnegie Mellon is not liable with respect to any materials received by you as a result of
viewing the video, or using referenced websites, and/or for any consequences or the use by you of
such materials.

By viewing, downloading, and/or using this video and related materials, you agree that you have read
and agree to our terms of use (www.sei.cmu.edu/legal/).

© 2015 Carnegie Mellon University.

oftware in a New Age

é Software Engineering Institute | Ca rnegie Mellon University

**¥001 Shane McGraw: And hello
from the campus of Carnegie Mellon
University in Pittsburgh,
Pennsylvania. We welcome you to
the Software Engineering Institute's
webinar series. Our presentation
today is Architecting Software in a
New Age. Depending on your
location, we wish you a good
morning, a good afternoon, or a good
evening. My name is Shane McGraw,
your moderator for today, and I'd like
to thank you for attending.

Page 4 of 63

Trends and New Directions in Software Architecture

Trends and New Directions
in Software Architecture

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

Linda Northrop
Chief Scientist, Software Solutions Division, SEI Fellow

Software Engineering Institute | ¢ arnegie Mellon University

**002 For any questions you have
pertaining to the presentations today,
we will address all questions at the
end of the second presentation. So
you can log your questions at any
time within the webcast or console,
but we will address all questions at
the end of the second presentation.

We're also going to ask a couple
polling questions throughout the day.
In fact, we're going to launch our
first polling question for you to
answer now, and what we'd like to
know is: How did you hear about
today's event? Let's take a couple
seconds to answer that.

While you're doing that, I'd like to
point out another three tabs that
you're going to see on the console,
and they are the Files tab, the

© 2015 Carnegie Mellon University

Page 5 of 63

Twitter tab, and the Survey tab. The
Files tab has a PDF copy of the
presentation slides there now, along
with other software architecture
related conferences and training from
the Software Engineering Institute.
For those of you using Twitter, be
sure to follow @saturn_news, and
use the hashtag #seiswarch. Once
again, it's @saturn_news, and
#seiswarch, as in software
architecture.

Now I'd like to introduce our first
speaker for today, and the first talk is
going to be Trends and New
Directions in Software Architecture by
Linda Northrup, and Linda will speak
from one thirty to two fifteen.

Linda is chief scientist of the
Software Solutions Division at the
SEI, where the technical agenda
compromises architecture-centric
engineering, software development,
and acquisition practices,
measurement, software product lines,
cyber physical systems, advanced
mobile systems, and ultra-large-scale
systems. Linda is coauthor of the
book "Software Product Lines:
Practices and Patterns," and led the
research group on ultra-large-scale
systems, or ULS, that resulted in the
book "Ultra-Large-Scale Systems: The
Software Challenge of the Future.”
Now I'd like to turn it over to Linda
Northrup. Linda, all yours.

Linda Northrop: Thanks very
much. [am absolutely delighted to
be giving this webinar--

Page 6 of 63

Software Architecture

Software Architecture

The quality and longevity of a software-reliant Architecture is of enduring

system is largely determined by its architecture. RIUEERENEEVECRISERGLE
right abstraction for

]]] _) performing ongoing
Recent US studies identify architectural issues REQENERGICT QIR

as a systemic cause of software problems in system’s lifetime.
government systems (OSD, NASA, NDIA,
National Research Council).

% Software Engineering Institute | ¢ ie Mellon University

**¥004 --And what I'm going to be
talking about is software architecture.
Now, for those of you who don't
know much about software
architecture, you will understand

Soft basics about software architecture,
its importance, and why we believe
it's critical to the quality and
longevity of a software system. For
those of you already savvy about
software architecture, I hope that

you will come away with some new
perspectives about trends and
challenges that we face in
architecting today's systems, as well
as some of the practices and current
research. that we'll address.

So, basically, it has long been our
premise that the quality and
longevity of a software reliance
system is largely determined by its

Page 7 of 63

architecture, and many studies have
led us to that conclusion. There are
many things we see in systems, like
communication bottlenecks under
certain loads and difficulty in
integrating and testing and adding
new features, and all of those
actually are rooted in some
architectural decisions that don't
support the needs of the system. In
fact, [will posit that architectural
considerations are absolutely key to the
quality of a software reliance system.

Software Architecture Thinking

Software Architecture Thinking

SOFTWARI

ARCHITECTURE
IPYRSTICTIVES Ond AN EMIRGING DRSCITUN

Software ystems
Architecture

o (G WA T
Second 14 Il

_—

oy N L - —
MICK ROZANSKI - EOIN WOODS m

High-level system design providing system-level
structural abstractions and quality attributes, which help
in managing complexity

Makes engineering tradeoffs explicit

; Software Engineering Institute Carnegie Mellon University

**005 Now, software architecture is
not a new concept. In fact, people
have been talking about software
architecture since the '80s. The
whole idea was introduced because
systems were becoming much more
complex and the behavior we were

Page 8 of 63

expecting of those systems was much

more demanding, and so we needed

to reason about the system at a higher level
of abstraction. So over the years of

people thinking and talking about

software architecture, it's always

been about structure, it's always

been about abstraction and quality
attributes.

On our website, you would find about
150 definitions of software
architecture. The definition we use is
that the software architecture is the set
of structures needed to reason about
the system, which comprise

software elements, the relations
among them, and the properties of
both. But basically one might take
Martin Fowler's expression. He says,
"Architecture is basically the hard
stuff." It allows us to make
engineering tradeoffs. In fact, many
have said that the focus on software
architecture brought engineering

to software systems development
ngineering tradeoffs explicit.

Well, what do we trade off?

Page 9 of 63

Quality Attributes

Quality Attributes

Quiality attributes
properties of work products or goods by which stakeholders judge their quality
stem from business and mission goals.
need to be characterized in a system-specific way

Quiality attributes include
Performance
Availability
Interoperability
Madifiability
Usability
Security
Etc.

Architecting S
SEI V

Software Engineering Institute . Carnegie Mellon University

**#006 We actually are trading off

the functionality-- of course we need
the functionality-- but what else?
What we call quality attributes.
Those are all those properties that
the system needs to have in order

to be assumed to be of high quality,
like performance and interoperability
and modifiability and the like, and the
problem is you can't have all of

these, and so you need to make
tradeoffs. Itis the architecture that
actually allows us an abstraction to
make these tradeoffs. And oh, by

the way, these quality attributes need
to be characterized for particular
systems; they are not just arbitrary
"handles" that we select; they're
derived particularly from the business
goals, the mission goals of a system.
So if a business goal is to increase
market share, for example, then

Page 10 of 63

you're going to need a system that's
scalable and that certainly has
demands on the architectural
decisions you make.

Central Role of Architecture

Central Role of Architecture

IMPLEMENT AND EVOLVE

BUSINESS AND
MISSION GOALS ARCHITECTURE SYSTEM

SATISFY

)

/

Software Engineering Institute | Ca roegie Mellon University

**007 So if we think about a

system, we have some business and
mission goals and we'd like to
implement it - to develop our software
to get the system that satisfies us.

But we really have no evidence, no
guarantee about how that's going to
occur, whether it's going to occur,

and what tradeoffs we've made. So

in fact the architecture is that
mechanism, that reasoning abstraction.

Now you might say, "Well, you know,
[use frameworks, I use open source.
[pick my technology stack. 1 don't
really have an architecture.” Well,

Page 11 of 63

you have an architecture, you just
might not know the one you have,
and you might not be using it to the
advantage that you could in order to
analyze the system and make
appropriate tradeoffs.

Our View: Architecture -Centric Engineering

Our View: Architecture-Centric Engineering

:. 4 » s
{ Documenting H : ; Software Model-Based

i Software ¢ Product Lines Engineering

i “Architectures i

th AADL

- Explicitly focus on quality attributes

- Directly link to business and mission goals

- Explicitly involve system stakeholders

- Be grounded in state-of-the-art quality attribute models and reasoning frameworks

% Software Engineering Institute | Ca rnegie Mellon University

**008 We've been espousing our
views on software architecture over
the years. Our books all have this in
common. They focus on quality
attributes, they link to business and
mission goals, they have this rooting
in interaction with stakeholders --
whether those are supply chain
partners, testers, customers,
developers, or managers -- and most
importantly, they're rooted in quality
attribute models -- formal techniques,
real-time scheduling techniques,

Page 12 of 63

reliability mechanisms, usability
frameworks, and the like.

Advancements Over the Years

Advancements Over the Years

Architectural patterns
Component-based approaches
Company specific product lines
Model-based approaches
Frameworks and platforms
Standard interfaces

=== Software Engineering Institute | Ca roegie Mellon University

**009 Over the years a lot has
happened in software architecture:
architectural patterns and styles that
allow us a vocabulary for design and
analysis; component-based
approaches that take a

containment or a container strategy
with interfaces that make
assumptions about quality attributes;
company-specific product lines with
architectures that allow us to
manage the variation and at the same
time capitalize on commonality; and
model-based approaches where
architectural models are used to
generate code; most recently
frameworks and platforms that form
the basis of ecosystems where the

Page 13 of 63

communication protocols are of
paramount importance. And all of this
has evolved into standard interfaces
that are used in architectures for
families of systems that need to
interoperate.

What HAS Changed?

What HAS Changed?

Increased connectivity

Scale and complexity
decentralization and distribution
“big data”
increased operational tempo
inter-reliant ecosystems
vulnerability
collective action

Disruptive and emerging technologies

== Software Engineering Institute | Carnegie Mellon University

**¥010 But a lot has changed.

Beginning with the web in 1997, one can say
that everything has changed. Everything
has changed in terms of connectivity.

We are an infinitely connected world

where there are not only internet
connections but huge webs of

wireless connectivity and

autonomous devices, and all of this

has grown to actually planetary scale

and complexity that flies in the face

of old hierarchical ways of controlling
systems and developing systems.

We are awash in data. There is an accelerated

Page 14 of 63

tempo: there's an appetite for speed
that we see not only in the
marketplace. We see it in system
Development. We see it in
government. And there are all kinds
of ecosystems that rely on one
another, so one cannot operate in a
stovepipe.

Also, if you listened to the U.S. State
of the Union message last night, you
heard a tremendous focus on cyber
defense. Everyone is concerned
about vulnerability because we are
connected and because we are so
exposed and because software is so
Prolific. and There is also this whole
notion of collective action, where
humans, through social media and
wireless technology, join forces with
computational elements and
autonomous elements to form a
society that is very new. Against this
landscape there's a whole blush of
disruptive and emerging
technologies.

Page 15 of 63

Technology Trends

Technology Trends

**011 They're seductive, they're
prolific, from Google Glass to social
media to cloud computing to 3D
printing.

Page 16 of 63

Software Development Trends

Software Development Trends

Application frameworks

Open source G|tHub ISAE

AND OTHER LAWS
OF CYBERSPACE

. mongo DB vwrentetessis

AGILE

WORKING SOFTWARE

Cloud strategies

NoSQL

Machine Learning

MDD

Incremental approaches

Dashboards

Distributed development environments
DevOps

== Software Engineering Institute | Ca rnegie Mellon University

**¥012 And a whole wash of

software development trends-- I'm
sure many of you are engaged in the
open source strategies, NoSQL,
machine learning, and all of the rest
that I have listed -- and so one might
focus on any of these, and we could
spend an afternoon talking about any
of these, any are worthy of discussion in the
Their relationship with software
architecture-- but I'm going to
ratchet it up to a higher level-a more
strategic view.

Page 17 of 63

Technical Challenges

Technical Challenges

ACCELERATING
CAPABILITY

Software Engineering Institute .

**013 --Because I believe that the
technical challenges can be boiled
down to four.

We think about accelerating
capability. Everybody is talking about
velocity, continuous integration,
continuous deployment of many
systems where we're getting
thousands of releases in very short
time periods, but also accelerated
development and deployment of
what I'd call deliberate systems,
planned systems, ones that aren't
released multiple hundred times a
day; and then also the need to quickly
incorporate innovations.

So, new innovations "happen" quickly. We
don't want to wait a ten-year period
to get those innovations into our
code.

Page 18 of 63

Likewise, we have a need for
software assurance. I've talked
about thinking about systems free of
vulnerabilities, but software
assurance means more than that. It
actually means that the system is
going to behave the way we intend it
to behave, to do what it's supposed
to do, and things that it's not
supposed to do don't happen. It
should cost what we expect it to cost
and it should be able to go live when
we time it to go live. Assurance is
about all of those things.

And then there's scale, scale in all

types of manifestations, whether it's
lines of code, number of processors,
number of users. We have

applications now that are very
commonplace, and have 500 million

to billions of users. This is very, very
Different scale - in data, in computational
elements, in the sheer number of people involved in the
system. This is a very different level

of scale than previous systems have
encountered.

And then we are challenged about evidence,
evidence that what you're doing is

going to work for delivering accelerated
capability, software assurance, and address
scale. Greg Wilson from Mozilla, in a

2012 blog, wrote that, "Evidence is

not the plural of anecdote." So we

need much more than a story that

says, "It happened here." We need
scientific evidence, we need proofs,

we need simulations, we need

situations where we have statistically
sound samples that say certain

techniques will work to achieve your
objectives.

Page 19 of 63

The Intersection and Architecture

The Intersection and Architecture

At the intersections
there are difficult
tradeoffs to be made
in structure, process,
time, and cost.

Architecture is the
ACCELERATING enabler for tradeoff

CAPABILITY analyses.

Software Engineering Institute [« Mellon University

**014 Now here's the rub: Each one
of these is a challenge, but the
intersection-- systems that are fast,
at scale, and are assured-- that's the
real challenge. And you can't have it
all, so there are tradeoffs in these
intersections-- tradeoffs in the
structure of the systems, the process,
the time, and the cost. And, as |
mentioned, architecture is that
mechanism for making tradeoff
analyses, and so | would argue that
architecture as the enabler for
tradeoff analyses, very important in
our brave new world. where we have
these challenges.

Page 20 of 63

Architecture and Accelerated Capability

Architecture and Accelerated Capability

How much architecture design is enough?
Can architecture design be done incrementally?

There is a difference between
being agile and doing agile.

Agility is enabled by architecture —
not stifled by it.

Managing technical debt is key.

ACCELERATING

CAPABILITY

——i: Software Engineering Institute | Ca rnegie Mellon University

**¥015 So what I'm going to do for

the remainder of this overview is take
alook at each one of these challenges
and the relationship of architecture
to that particular challenge.

So when we think about accelerating
capability-- everybody does want
high velocity, everybody wants to be
agile-- agile with respect to balancing
structure and flexibility, agile with
respect to being able to cause

change and respond to change. We
want to be agile in our software
practice, we want to be agile in our
businesses, because we live in a
dynamic world. Many people

have sort of cast architecture as a big
document-a big document-driven
approach-- and they think about believe,
"Well, if we focus on the architecture,
there is no way we can be agile."

Page 21 of 63

Jim Highsmith, who is viewed to be
one of the founding agilistas, if you
will, gave a wonderful keynote at a
conference called SATURN in 2010, in
which he took on this topic of
architecture and agile, and he said
there's a difference between being
agile and doing agile, and he said
agility is enabled by architecture, not
stifled by it. But in the process of
being agile, in the process of taking
an incremental approach to
architecture, we have to be careful
not to accrue what I'll refer to, and
many people refer to, as technical
debt.

Managing Technical Debt*

Managing Technical Debt*

A design or construction approach that's expedient in the short term but that
creates a technical context that increases complexity and cost in the long term.

Some examples include:
continuing to build on a foundation of poor quality legacy code
prototype that turns into production code

increasing use of "bad patches,” which increases number of related systems
that must be changed in parallel

* Term first used by Cunningham, W. 1992. The WyCash Portfolio Management System. OOPSLA '92 Experience Report. http://c2.com/doc/oopsla92.html.

Architecting Software in a New Age
SEI

=-f= Software Engineering Institute | Ca roegie Mellon University

**¥016 Often when we are
fielding a system, we make some
decisions, whether they are
architectural or code

Page 22 of 63

decisions, to take shortcuts, because
we need to release. We can't afford
the cost of delay. And those
decisions result in increased
complexity in the system, more
difficulty in changing the system later
on, and possibly some quality issues.

Ward Cunningham in 1992

gave this situation a name. He used
the metaphor "technical debt" because
he was trying to justify the need to
refactor a system to some
nontechnical product management
stakeholders. And so one can think
about debt decisions, and we all make these
decisions. One's mother is ill, and

you need to go see your mom, but

you don't have the money for the
plane ticket. So you charge the

money for the plane ticket. Now, as
amom, [would argue you need to
make that trip. Charge it. Butit

goes on your credit card. Now, if at
the end of the month, you don't
manage that charge, and instead you accrue
other charges because you need to
make other decisions and pay for
other sorts of trips or luxury items.
Eventually you get to the point where
your credit card is maxed out, and it
isn't easy for you to respond to
emergencies; it's not easy for you to
purchase that plane ticket. You have
to somehow manage your debt, and

so it is with software.

Page 23 of 63

Technical Debt Impact

Technical Debt Impact

Customer
Responsiveness

g Actual
ctua

e CoC

(0]

()]

c

o

=

@]

E Product Technical Debt

§ Release I
: - .
: — =~ Optimal CoC From:
- N Jim Highsmith
12345678 2010

Years

Software in a New Age

é Software Engineering Institute | Ca rnegie Mellon University

**017 In fact, if the technical debt
increases, your ability to change the
system decreases, and actually the
customer responsiveness, that is, your
ability to respond to customers,
decreases, and this is problematic.

Page 24 of 63

Technical Debt Landscape

Technical Debt Landscape

“ Mostly invisible Visible

architecture code
New features E Architectural debt Low internal quality Defects
2
Additional functionality g Structural debt Code complexity Code smells Low external quality

=

£ Test debt Coding style violations

= Documentation debt

Evolution issues: evolvahility Quality issues: maintainability

FIGURE 1. The technical debt landscape. On the left, evolution or its challenges; on the right, quality issues, both internal and external.

“invisible results of past decisions about software that negatively affect its
future...deferred investment opportunities or poorly managed risks”

Kruchten, P. Nord, R.L., Ozkaya, I. 2012. Technical Debt: From Metaphor to Theory and Practice, IEEE Software, 29(6), Nov/Dec 2012.

— | Architecting Software in a

== Software Engineering Institute | e Mellon University SEI Webinar

**¥018 So you don't actually see
technical debt, you only see evidence
of it, and the evidence of it becomes
visible when you're trying to add new
functionality or new features, or
when some defects or low quality
becomes apparent. And again, this debt
can be architecturally rooted, it can
be code rooted. But the whole ideais
you need to have a prudent plan to
understand the risk you're taking on,
to avoid accumulating excessive
technical risk, and to actually manage
the technical risk. We all need to
take some at some time, we all need
to accrue some technical debt,
because you can't afford the cost of
delay, but being prudent about it is
what's important.

Page 25 of 63

Making Hard Choices About Technical Debt

Making Hard Choices About Technical Debt

In the quest to become market leader, players race to release a
quality product to the marketplace.

AN

o=

The Hard Choices game is a simulation of the software development
cycle meant to communicate the concepts of uncertainty, risk,
options, and technical debt.

game downloadable from http://www.sei.cmu.edu/architecture/tools/hardchoices/.

ﬁ Hard Choices Strategy Game to Communicate Value of Architecture Thinking

=—:= Software Engineering Institute | Ca rnegie Mellon University

**¥019 So people in the agile space

like games, and we at the SEI made

a little game in which you can simulate
the software development lifecycle
and you can understand the concepts
of uncertainty, risk, options,

and technical debt by playing this
game. You can download it from our
website--

Page 26 of 63

HARD CHOICES

S sottwars Enginaseing bveuts | Carmegierln ' ‘ '

START

Do you take the time to
gather more tools or do
you take a shortcut?

NE
!l

Architecting Software in a New Age
SEI Webinar

**#020 --And you can use it in a
classroom or in a work setting.

Page 27 of 63

Our Current Research

Our Current Research

What code and design indicators that correlate well with project measures
allow us to manage technical debt?

et~ =iy 1. time technical debt is incurred
2. time technical debt is recognized
e, o 3. time to plan and re-architect
4. time until debt is actually paid-off
e vigalizat an 5. continuous monitoring

oftware in a New Age

=—i= Software Engineering Institute | Ca rnegie Mellon University

**¥021 Toward a more serious end, we
are doing research. We're building a
workbench. We're using architectural
abstractions, field studies, some
conceptual correlation modeling to
build a workbench that would allow
organizations to see the technical
debt they have and to manage the
technical debt over time. There is

a very large community organized
around technical debt right now--
people who are building toolsets,
people who are building dashboards--
and it is a concept that is very
important for anyone who takes an
incremental approach to system
development and needs to
understand ramifications of
architectural and code decisions that
they make in order to avoid the cost
of delay.

Page 28 of 63

Architecture Done Incrementally

Architecture Done Incrementally

Bolsa Mexicana de Valores (BMV) operates the Mexican
Financial Markets on behalf of the Mexican government.

Bursatec is the technology arm of the BMV.

BMV desired a new stock trading engine to
drive the market.

BMV performed a build vs. buy analysis and
determined that Bursatec would replace their
three existing trading engines with one
in-house developed system.

Bursatec committed to deliver a trading engine in
8-10 quarters.

High performing
Reliable and of high quality
Scalable

Car Mellon University

**#022 Let me give you a little

bit of an example. You might say,
"Well, can you do incremental
development with a focus on
architecture? Can you do
architect incrementally?" Let me
tell you a very quick story, and this
story is about the Mexican Stock
Exchange.

The Mexican Stock Exchange
approached the SEI. MSE -- actually,
Bursatec, which is the technology
arm of the Mexican Stock Exchange--
was tasked with building a new
trading engine, because the decision
was made not to buy an off-the-shelf
trading engine but to replace the
three that they had, and Bursatec
committed to deliver this trading
engine in a little more than two
years. They asserted that it would

Page 29 of 63

be high-performing. They wanted it
to be a higher-performing-- in other
words, faster-- than the previous
engines they had, but they also
wanted it to be faster than their
competitors, faster than NASDAQ, the
London Stock Exchange. Such a
system has to be highly reliable, as
you would understand, and of high
quality, and it's got to be scalable
because there are peaks and ebbs in
stock trading and the system has got
to be able to withstand high loads
and trading volume.

Approach

Approach

PLEMENT AND EVOLVE

ARID and TSP Relaunch
TSP Weekly Meetings
and Checkpoint

TSP ‘ ARCHITECTURE SYSTEM

TSP Weekly Meetings
and Checkpoint
SATISFY

Team Software Process (TSP) and Architecture-Centric Engineering

Software Engineering Institute | Carnegie Mellon University

**¥023 The SEI's role was

coach. We coached the Bursatec
team and we worked with the
principles that we espouse, namely
our architecture-centric engineering
approaches, which you can read

Page 30 of 63

about, and also the Team Software
Process. This is a familiar

diagram that [showed you earlier
about the role of architecture, and
we wickered this with the various SEI
architectural techniques. We used
TSP as the scaffolding for team
management, project management,
and measurement.

Effort in Percent over Cycles - 1

Effort in Percent over Cycles — 1

Cycle 1 — 14 Weeks

Reqts

Test {) v \ HLD/Arch

Reqts: Requirements
HLD/Arch: High level Design / Architecture
DLD: Detailed Design (UML)
Code: Coding (no detailed design)

\/ Test: Testing
Code

ng Software in a New Age

=== Software Engineering Institute | (a roegie Mellon University

**024 1 want to show you,

very quickly, some effort charts, so
that you see that architecture was
actually spread across the six cycles
of development that were used. In
the beginning we did architectural
design and we did some detailed
Design with UML, and we did some prototyping.
We needed to understand what was
possible, and so the prototyping was
important. We did very little

Page 31 of 63

requirements solicitation because we
started out basically replacing

the engine systems -- stock-trading
engine systems -- that actually existed.

Effort in Percent over Cycles - 2

Effort in Percent over Cycles — 2

Cycle 2 — 10 Weeks

HLD/Arch

=== Software Engineering Institute | Ca roegie Mellon University

Reqts: Requirements

HLD/Arch: High level Design / Architecture
DLD: Detailed Design (UML)

Code: Coding (no detailed design)

Test: Testing

Architecting Software in a New Age

**025 In the second cycle there was
much more of an architecture
emphasis, much more requirements.
We did a lot of coding in UML
diagrams, and we implemented a
skeleton of the system so that we
could test out the communication
between the various components in
the architectural design.

Page 32 of 63

Effort in Percent over Cycles - 3

Effort in Percent over Cycles — 3

Cycle 3 — 18 Weeks

Reqts

Test & ™ HLD/Arch

A Reqts: Requirements
a\Yi HLD/Arch: High level Design / Architecture
3 , / DLD: Detailed Design (UML)
st - &.__ Code: Coding (no detailed design)
N Test: Testing

"DLD

Architecting Software in a New Age

é Software Engineering Institute | Ca rnegie Mellon University e r

**¥026 In the third cycle, we actually
stubbed out the system and did a
fair amount of performance testing
going end-to-end to see what the
throughput would be.

Page 33 of 63

Effort in Percent over Cycles - 4

Effort in Percent over Cycles — 4

The fourth cycle of three weeks was
used to rethink garbage collection
handling and cleaning up.

No effort data was collected during
that cycle.

Software Engineering Institute

**027 In the fourth cycle, we didn't
actually keep effort metrics, but we
used this to rethink garbage
collection and collect cleaned up some
things that needed to be done.

Page 34 of 63

Effort in Percent over Cycles - 5

Effort in Percent over Cycles — 5

Cycle 5 - 25 Weeks

Reqts
Test ¢ p Py P P ' . k \ . . HLD/Arch

' Reqts: Requirements
HLD/Arch: High level Design / Architecture
DLD: Detailed Design (UML)
Code: Coding (no detailed design)

|/ Y Test: Testing
Code "DLD

Architecting Software in a New Age

é Software Engineering Institute | Ca rnegie Mellon University

**028 In the fifth cycle, we actually had a
day-trading system-- full functionality
for day trading. We developed the
testing framework, test cases, and

we begin to admit the new
requirements for the things that were

to enhance this stock-trading engine.

Page 35 of 63

Effort in Percent over Cycles - 6

Effort in Percent over Cycles — 6

= HLD/Arch

Reqts: Requirements

HLD/Arch: High level Design / Architecture
DLD: Detailed Design (UML)

Code: Coding (no detailed design)

Test: Testing

Architecting Software in a New Age

== Software Engineering Institute | Ca rnegie Mellon University

**#029 And finally, in cycle six, we
delivered the complete system, which
was not only the day-trading but the
maintenance at night, the startup,

the actual maintenance and logging
that was done. There was still some
architecture, still some requirements.
If you add up all the effort overall,
only 15 percent was spent on testing,
which is very unusual for this type of
system. development.

Page 36 of 63

Results

Results
Latency 1ms 0.1ms
Throughput 1,000 200,000
(transactions per second)
Schedule (months) 18 17
Quality (defects/KLOC found 0.95 0.1

during validation testing)

=== Software Engineering Institute | Ca rnegie Mellon University

**¥030 Now, let me give you the
punchline. Was Bursatec able to
deliver on what they promised? Yes,
actually they were able to deliver
ahead of time, with hiring no
increased staff, and I would add that
many of the people we coached were
not seasoned architects by any
stretch of the imagination. What's
really impressive is that the
performance was 300 times faster
than the actual performance of their
earlier stock-trading engine, faster
than NASDAQ and faster than the
London Stock Exchange.

What I have here before you are
numbers that are publicly available,
but [know that the situation is
actually even better than what's
publicly available.

Page 37 of 63

And the quality-- 0.1 bugs per KLOC,
which is very unusual. In this type of
system we would see 0.5 to 1. Since
this system has been launched, there
has only been one software problem,
and it was easily remedied.

So in fact, the architecture was
developed incrementally, the quality
of the system was delivered as
expected-- in fact exceeded
expectations-- it was delivered on
time, at cost, and we did it
incrementally and used the
architecture to perform the analysis
that was necessary in order to deliver
on the quality attribute agenda.

Deployment Challenges

Deployment Challenges

The DevOps movement continues what Agile started.

INITIATE PHASE i+2 RETIRE
PROJECT PROJECT

RELEASE

- ACCELERATING
PLANNING INTEGRATION CAPABILITY

. . Sprint.
S . N Planning
. . S .
. N .
. . .
. Analysis |+ § ! Analysis |+
+| Postuser | pEEDBACK | & Design |+ | 5| P05t user | FEEDBACK | & Design | * || Postuser | TarcET
o dema mig [SPRINT 1 o L[deme mig| spRINT 2 rf|oememia| spmnT
. ' N
. m B
A .

SPRINT
LEVEL

Features Complete Tried to Deploy
Mot Released errors cause rollback

Software Engineering Institute | ie Mellon University

**031 Now let me switch topics a little bit.
Most people are able to handle
incremental development, and a lot

Page 38 of 63

of people are incorporating
architecture techniques in their
incremental development. If you
haven't, [hope I've given you some
insights into how to do that. Butlet
me switch to DevOps, because the
focus now is on deployment. Even
though people can handle
incremental development, there are
problems with deployment, and the
mantra these days is velocity,
continuous integration, continuous
deployment-- and so we need to
understand how to pick up where our agile
development left off.

DevOps : State of the Practice

DevOps: State of the Practice

Focus is on
culture and teaming

process and practices
value stream mapping
continuous delivery practices
Lean thinking

tooling, automation, and measurement
tooling to automate repetitive tasks
static analysis
automation for monitoring architectural health
performance dashboards

— 1) are in a New Age
=== Software Engineering Institute | Carnegie Mellon University

**032 The state of the practice in
DevOps is focusing largely on culture
and teaming. There are a lot of
processes that are used to monitor,
status checks, tooling, dashboards--

Page 39 of 63

a tremendous amount of tooling to
understand the architectural health,
to understand the runtime
performance, the operational
performance of the system, and all of
this is working quite well, and there
are a number of organizations who
have really gotten on the DevOps
bandwagon and are doing well with
it.

Architecture and DevOps

Architecture and DevOps

Design decisions that involve deployment-related
limitations can blindside teams.

o " g
| ey L L y A
% Y ittt i MR v S A

in a New Age

—-§= Software Engineering Institute Carnegie Mellon University

**033 And yet you can still be
blindsided. You can be blindsided by
frameworks that you've chosen or

tech stacks that you've chosen for

your system that don't allow you the
deployability that you need for your
continuous integration and

continuous deployment, and many of
those decisions are not a matter of
refactoring, but would require that you

Page 40 of 63

would actually have to replace
hardware or would require substantial
and topological changes in the
software. So one of the things you
need to focus on, if you are

interested in a successful DevOps
strategy, is to think about it early on-

DevOps Tips
DevOps Tips

Don’t let designing for deployability be an afterthought.
Use measurable deployability quality attributes.

Consider architectural tactics that promote modifiability, testability,
and operational resilience.

Use architectural abstractions to reason about deployability
implications of design options and tradeoffs.

Establish monitoring mechanisms.

=-:= Software Engineering Institute | Carnegie Mellon University

**034 --To think about deployability
at the architecture stage, to
understand that in order to have a
system that will meet your
deployability expectations, you are
going to have to think about what
your deployability scenarios are and
pick architectural tactics and make
architectural decisions that will
actually support testability, and
deployability. You need to think
about wiring into your system
monitoring mechanisms so that

Page 41 of 63

during runtime you can actually
monitor the health of the system.

These are architectural decisions,
these are architectural strategies.

It's too late to think about these once
you have already developed the
system and move into the operation
phase. So you have to blend the
development and operation, and
architecture has got to be part of the
conversation.

Architecture and Scale

Architecture and Scale

Cloud strategies
Cloud strategies for mobility
Big data

E’ﬁ
i

,‘:;I
R0

HHI][UE[[S

S o ..HS

"“snrrw.g[MAHM‘.EMEHI Ih— lHﬂl SIS
LARGE E

?ST[IIIA EBI IHF[IRMHTl[lN IRESEACH 1~

n_ mmg_

RSEARc=

a-—n-\-e

“Scale Changes Everything

; Software Engineering Institute | Carnegie Mellon University

**035 Now let's move to the second
challenge, which is scale. I've given
lots of invited talks about scale, and
in fact one of the titles that ['ve used
over and over is "Scale Changes
Everything," which is not a
hyperbole, because in reality it does.
When you have systems of the scale

Page 42 of 63

that we're talking about-- this sort of
planetary scale involving humans and
autonomous entities and
computational devices-- we see that
the situation requires distribution--
distribution of development,
distribution of data, distribution of
evolution. We see heterogeneous
software and hardware. We see
unprecedented connections,
unprecedented use of systems.

There are commonly documented
challenges, and I could talk about scale
for a long time, and have. But I'm going
to focus on three issues related to scale,
and in particular related to architecture
and scale: cloud strategies, cloud strategies
for mobility, and big data.

Two Perspectives of Software Architecture in Cloud Computing

Two Perspectives of Software Architecture in Cloud Computing

———Execute Application—pm % . \

Execute Application
CRUD Data
o

f rg
|
b Deploy Application——p
Create Instance P 4
Stop Instance P
f—— (Create Data Store —jw
Create Security Group
Get Monitoring Data ’ 4
- N V4

~ Two potentially different sets
= of business goals and quality
Cloud Consurmer Cloud Provider attrlbuteS

internal or External

(&4

[0

ng Software in a New Age

=-i= Software Engineering Institute | Ca rnegie Mellon University

**¥036 So when we think about
cloud computing-- and almost

Page 43 of 63

everyone is using cloud computing
because we have these warehouses
of computational capability that we
can tap into through web services--
we have to understand that the cloud
provider and the cloud user have
potentially very different business
goals, and because the quality
attributes are driven from the
business goals, potentially different
quality attributes.

Cloud Computing and Architecting
Cloud Computing and Architecting

SLAs cannot prevent failures.

In cloud environments,

cloud consumers have to design and architect systems to account for lack
of full control over important quality attributes.

cloud providers have to design and architect infrastructures and systems
that provide the most efficient way to manage resources and keep
promises made in SLAS.

=-:= Software Engineering Institute | Carnegie Mellon University

**037 One might argue that,

"Okay, but we have service-level
agreements so that all is copacetic
between the cloud provider and the
cloud consumer." However, the
service-level agreements are a
minimum, and they can't prevent
failures. So what we have to do as a
cloud consumer is architect our

Page 44 of 63

systems knowing that we don't have
full control over many of the
important quality attributes.

Specifically, cloud providers are going
to optimize on reliability-- they want
to provide consistent computational
power to the cloud user. They want
to provide a level of acceptable
performance, which is usually
articulated in the SLA. At the same
time, their tradeoffs have to do with
energy efficiency. They're paying for
electricity and cooling of these
massive server farms, and this is a
nontrivial issue that factors directly
into their business goals.

So you're the cloud

consumer, and you like the reliability
you're getting and the performance,
but now you say, "But I'm really
concerned about security. [want to
make sure that nobody hacks into
what I have on the cloud.” Whoa.
That's a tradeoff. And you need to
think, when you're architecting your
system, how you're going to
compensate for what the cloud
provider is not going to provide to
you - what is not necessarily
articulated in the SLA. You need

to be smart about cloud computing.

Ian Gorton, who is one of our
colleagues, has said that, "Cloud
computing allows us to fail cheaper
and faster than we were able to

before." So, very important to think carefully

about architecture when you're using
cloud strategies.

Page 45 of 63

Mobile Device Trends

Mobile Device Trends

s
i 3

- _ o
i I:-'*:] -"x
= ’ = o

fE
1 - . -
-

oftware in a New Age

é Software Engineering Institute | Ca rnegie Mellon University

**038 The world has also moved to
mobile devices. There is a huge mobile
device trend, and we're now using
our smartphones and our

tablets as ways to connect with the
internet, as ways to connect with
social media, as ways to control our
appliances and devices. We have
come to expect a level of
performance, because we're used to
laptops. So we think our tablets and
our mobile phones are going to have
the same sort of capability as our
laptops. But the reality is: they are
limited in size, they are limited in
battery power, and there is some
variance in the latency between your
mobile device and the cloud from which you are
gathering your enterprise data.

And if you're using this mobile
device for something that is critically
important, like triaging some sort of

Page 46 of 63

health situation in an emergency
event, you want a little more
reliability than what you can typically
get with mobile devices today.

Architecture Trends: Cyber-Foraging

Architecture Trends: Cyber-Foraging

Edge Computing
Using external resource-rich

surrogates to augment the capabilities
of resource-limited devices

code/computation offload
data staging

Industry is _starting to bui_ld on this Nokia Semens Networks
concept to improve mobile user Hiauid Applications

experience and decrease network
traffic.

Our research: cloudlet-based cyber- Cisco Systems
foraging Fog Computing

brings the cloud closer to the user

=== Software Engineering Institute | Ca roegie Mellon University

**¥039 So, what are some of the
architecture trends? Well,

architecture trends today are in what many
people are calling cyber-foraging.

One term is edge computing, where

we push the computation, the data,

the analysis to the very edge of the
network, to the people who are using
these mobile devices. This sort of
computing we find is necessary for
early responders, for soldiers in war
situations, where they have a mobile
device, a handheld or a tablet. And they
need to do some analysis, they

need computational power, and they
need data staging, and they need a way

Page 47 of 63

to get data from the cloud.

So we appeal to some surrogates,
maybe some nearly laptops, that will
allow us to augment the capabilities
of the mobile device so we can
offload some of the computation,

or do some of the data staging

there so the data coming from the
cloud can in transit be hosted in this
surrogate -- say, in the laptop -- and then
move to the mobile device.

Industry is starting to build on this
concept to improve mobile user
experience and decrease network
traffic. Our experience and our
research is in cloudlets. Cloudlets are
Discoverable, virtual machine-based forward-
deployed servers. They're located a
single hop away from the mobile
device. What we've been able to

do is allow the mobile device to

operate in disconnected mode. Where,
for example in a war situation when the
mobile device totally disconnects

from the network and from the
enterprise, but the cloudlet is able to

be provisioned so that it provides the
continuity that's needed in these
situations that are high stress and

high criticality.

Page 48 of 63

Big Data Systems

Big Data Systems

Two very distinct but related

Database

technological thrusts (oo) ’ m.t.g_"

Sensor

Data analytics 2l
Infrastructure

Analytics is typically a massive data
reduction exercise — “data to
decisions.”

Computation infrastructure necessary ' _
to ensure the analytics are Aionslileliheligaice

fast .'
scalable

secure

easy to use

Database

Architecting Software in a New Age

=== Software Engineering Institute | Carnegic Mellon University SEI Webi

**040 One other topic related to scale is
big data. I would be really remiss if |
didn't talk about big data because
everybody's talking about big data.

But when we talk about big data

there are tradeoffs, from the network
on down. And again-- you guessed

it-- architecture is a very good
abstraction for us to reason about
those tradeoffs.

Now, a little bit about big data.
There are really two distinct but
related technology thrusts. There is
the data analytics, how you want to
analyze the data. The data is usually
Heterogeneous -- it comes from lots of
different sources, and is big volume
but low information content -- and
what we want to be able to do is
analyze so that it's high information
content and low volume. So people

Page 49 of 63

use a combination of machine
learning and static analysis.
There are many algorithms that
people are employing for data
analytics.

The flipside is the infrastructure. You
need infrastructure to house this big
data, you need infrastructure to
actually perform the analysis and the
computation; and that infrastructure
has got to ensure that the analytics
are fast, they're scalable, they're
secure, and they're easy to use. So
basically you've got a big filtering
problem.

Big Data - State of the Practice “ The problem is not solved”
Big Data — State of the Practice “The problem is not solved”

Building scalable, assured big data systems is hard.

IthCare
HealthC amazon
Google NASDAQ

Building scalable, assured big data systems is expensive.

Google amazon

== Software Engineering Institute . Carnegie Mellon University

**041 The state of the practice

is that the big data problem is not
solved. We know that companies like
Amazon, NASDAQ, Google,

Page 50 of 63

Facebook, and Netflix are way
ahead of most of the rest of us. If
you work for those organizations,
you're in an enviable position. But
these organizations have also been at
it for about a decade, and they have
pumped billions of dollars

against this problem. Most other
organizations have not been able to
enjoy that kind of a lead time and
that kind of a pocketbook.

But even so, these big organizations
have had some problems -- some
problems that many of us have
Experienced -- like the Christmas Eve
2012 Netflix outage; Amazon's
August 19, 2013 45 minutes of
downtime that resulted in five million
dollars loss in revenue; Google's
homepage offline for five minutes on
the 16th of Augustin 2013; and I
think most of us have already heard
about NASDAQ's issues with Facebook's IPO
in June of 2012.

So, lots of problems. In fact, there
was a study--

Page 51 of 63

Big Data Survey

Big Data Survey

36 DATA
SULUTIONS

EASE OF
SCOPE TECHNICAL ROADBLOCKS DA /5% MANAGEMENT

ABIITY
T0 SCALE

FINDING TALENT

:é Software Engineering Institute | Car

**042 --by Infosys that 64 percent
of companies admit to having big
data initiatives but only 55-- actually
55 percent of them have no strategy
for doing so. So we know there are
some big challenges here.

Page 52 of 63

Architecture and Big Data

Architecture and Big Data

System costs must grow more slowly A 3cale
than system capacity.
Approaches
scalable software architectures
scalable software technologies
scalable execution platforms

Scalability reduces as
implementation complexity grows.

NoSQL models are not created Cost
equal. e
You can’t manage what you don’t >
monitor. Time

é Software Engineering Institute | Ca rnegie Mellon University

**¥043 When you're thinking about
architecture and big data, the
tradeoff here is between capacity and
cost. We want capacity, but most
organizations can't afford the
capacity that they actually need.
They want tremendous scalability,
but as the systems become more
complex, as the analysis becomes
more complex, there are tradeoffs
with scalability. Most people use
NoSQL data bases, but those are not all
created equal. They

have different data models, different
query models, different consistency.
The other thing is, you need to

be able to monitor during runtime what's
happening with these big data
systems, otherwise you can't manage
them. All of these are really big
challenges.

Page 53 of 63

Our Current Research

Our Current Research

Lightweight Evaluation and Architecture Prototyping for Big Data
(LEAP4BD)

QuABase: A Knowledge Base for Big Data System Design
semantics-based knowledge model
general model of software architecture knowledge
populated with specific big data architecture knowledge
dynamic, generated, and queryable content
knowledge visualization

é Software Engineering Institute | Ca rnegie Mellon University

**¥044 We are doing some research in this area. I
have some URLs at the end of the

talk to direct you to. One of them is
called LEAP4BD, where we're actually
providing a risk reduction decision
support system that allows people to
input their quality attribute
requirements and a spectrum of the
NoSQL technologies that they're
looking at, and then provides you
some support for what the best
choices are. We're actually building
this into a knowledge base that
continues to grow in knowledge,
using machine learning techniques.
We call this "QuABase."

Page 54 of 63

Architecture and Software Assurance

Architecture and Software Assurance

Software Engineering Institute . Carnegie Mellon University

**045 So, everything I've talked

about actually is about software
assurance, because we're using the
architecture to in fact provide
assurance that we're going to get the
right behavior -- to perform the
engineering tradeoffs between the
various qualities that are most
important to us. And this gives us a
level of assurance, provides us
evidence that we can count on the
System. wWe can count on the system
as it's built, as it's deployed, and during
runtime.

Rick, in his next talk, is going to
focus more on security, which is
often interpreted as software
assurance. I admit to a broader
definition. But I wanted to end with
a little bit of a focus on software
assurance--

Page 55 of 63

Architectural Models
Architectural Models

capture architecture in a form amenable to analysis, which
contributes to assurance

range from informal (e.g., visio diagrams) to formal (e.g., with
precisely defined execution semantics)

In safety critical systems formality is warranted.

é Software Engineering Institute | Ca rnegie Mellon University

**046 --Because | haven't yet said
much about how architectures are
depicted. What do we use?

Well basically, you need enough

detail in your depiction to do

the analysis that you're trying to

perform, and that depiction can be informal,
from Visio diagrams, to formal using

formal architecture languages that

have precisely defined execution

semantics.

When we're talking about safety-
critical systems -- when we're talking
about systems that are internal to

the engines of our automobiles or in
avionics -- we need more. Informal
models are not sufficient.

Page 56 of 63

High Fault Leakage Drives Major Increase in Rework Cost

High Fault Leakage Drives Major Increase in Rework Cost

[E— Aircraft industry has

Engineering reached limits of Acceptance
affordability due to 80% late error =
exponential growth in SW discovery at high
size and complexity. rework cost
System System
=i 70%, 3.5% 1x e
oh SR 10%, 50.5% 20x
Software
Architectural Integration
Desigr Test

70% Requirements &
system interaction errors
Total System Cost
Boeing 777 $12B

I c t
Boeing 787 $24B omponen

Software

Dl 20%, 16%

Sources:
NIST Planning report 02-3, The Economic Impacts of
Inadequate Infrastructure for Software Testing, May 2002.
) D. Galin, Software Quality Assurance: From Theory to
[Post-unit test software rework cost :] Implementation, Pearson/Addison-Wesley (2004)

Unit
Software as % of total system cost 5x Test
1997: 45% — 2010: 66% — 2024: 88%

50% of total system cost and growing B.W. Boehm, Software Engineering Economics, Prentice Hall
(1981)

Code
Development

Architecting Software in a New Age
SEI Webinar
negie

——i: Software Engineering Institute | e wie Mellon University

©2015

**047 And so we need the formality
because we understand, from lots of
studies-- this is a chart from one of
them-- that in these sorts of systems-

- this is from the avionics industry--
that the cost of air vehicles is
increasing dramatically, and the
amount of software in those air
vehicles is also increasing dramatically.
And what we see is faults that leak
through the system and the tremendous
task of testing and integrating the
system-- almost prohibitive. And so
what we need to think about is how

we can use the architecture early on
and do some formal reasoning so

that we actually can eliminate some

of those faults and preclude them

from leaking through the lifecycle of
the system.

Page 57 of 63

SAE Architecture Analysis & Design Language (AADL) Standard Suite (AS-5506
Series)

SAE Architecture Analysis & Design Language
(AADL) Standard Suite (AS-5506 Series)

Core AADL language standard (V2.1-Sep 2012, V1-Nov 2004)
Strongly typed language with well-defined semantics
Textual and graphical notation
Standardized XMl interchange format

Standardized AADL Extensions
= Error Model language for safety, reliability, security analysis
= ARINC653 extension for partitioned architectures
= Behavior Specification Language for modes and
interaction behavior
= Data Modeling extension for interfacing with data
models (UML, ASN.1, ...)

=-:= Software Engineering Institute | Carnegie Mellon University

**048 One effort is a language

called the Architecture Analysis and

Design Language, or AADL, which the

SEI has been involved in developing, and this
language provides grist for doing that

sort of formal reasoning.

Page 58 of 63

Architecture-Centric Quality Attribute Analyses

Architecture-Centric Quality Attribute Analyses

Single Annotated Architecture Model Addresses
Impact Across Operational Quality Attributes

Architecture Model

Safety Reliability
« MTBF
« FMEA

Security

¢ Intrusion

* Integrity

¢ Hazard Analysis « Confidentiality

!

Auto-generated
analytical models

Resource

Data Qualit .
g : v Consumption
- Data precision/accuracy Real-time Performance
. . . « Bandwidth
« Temporal correctness » Execution time/deadline
* CPUtime
« Confidence » Deadlock/starvation

« Power consumption
* Latency

oftware in a New Age

é Software Engineering Institute | Ca rnegie Mellon University

**049 In fact, provide a semantic model
that allows us to express quality
attributes in a formal way, and to be
able to reason about all of those
quality attributes using formal
mechanisms, and make the
appropriate tradeoffs. We, with this
technique and this language, have
been able to perform what's being
called virtual integration, so that
before the system is developed we
can actually make tradeoffs using
these architectural models, virtually
integrate the system, and identify
lots of problems that would only be
detected downstream in integration
and test previously.

So these are This is the kind of technique
that can be used to provide the level

of software assurance that you need

in safety-critical systems, and they're

Page 59 of 63

based on formal architectural
modeling.

Conclusion

Conclusion

Software architecture principles
and their importance persist.

Change brings new challenges.

Software architecture practices
and research are key to meeting
ACCELERATING these challenges.

CAPABILITY Much remains to be done.

Software Engineering Institute | Car Mellon University

**¥050 So let me conclude by saying
that if you thought that software
architecture was an old idea,
something that started in the '80s

and maybe was best left to the early
2000s, before our brave new world of
social media and cloud computing
and mobile computing and all of the
rest, | hope ['ve convinced you that
the principles of software architecture
and their importance persist. The
challenges are different, but the need
to be able to do ongoing analysis -- to
do tradeoff analysis -- is still very key.
And the demands on our systems are
much higher than systems of the

past, and in fact the systems
themselves are much more prolific,

Page 60 of 63

and much more important to life as
we know it.

So there's a lot to be done. What I

see in the future are much more fluid
architectures, much more tool
support, adaptive architectures,
architectures with lots of runtime
monitoring built into them so they
are capable of internal monitorability.

And [will stop there. I hope this has
provided you sort of a whirlwind
perspective of not only where we've
been and how important architecture is,
but some of the important challenges
and the relationships of architecture to
those challenges. Thanks very

much.

Shane McGraw: Linda, thank you.
That was a terrific talk, and Linda's
going to stick around, folks, for the
Q&A after Rick's talk, so she'll be
here for any questions that came
through during that part of the
presentation, we'll address in a few
minutes.

Page 61 of 63

This Is the Work of Many

This Is the Work of Many

At the SEI
Felix Bachmann
Stephany Bellomo
Peter Feiler
lan Gorton
James lvers
Rick Kazman
John Klein
Mark Klein
Grace Lewis
Ipek Ozkaya
Rod Nord
and many more...

Software Engineering Institute [¢ e Mellon University

**¥051 Just one quick housekeeping
item to address.

Page 62 of 63

Approaching Security from an " Architecture First" Perspective

Approaching Security from an
"Architecture First" Perspective

Software Engineering Institute, Carnegie Mellon University

Rick Kazman - University of Hawaii

Jungwoo Ryoo - Penn State University
Humberto Cervantes -

Universidad Autonoma Metropolitana-Itztapalapa

Software Engineering Institute | Carnegie Mellon University ©2015 Carnegie Mellon University

**056 A number of questions came

in about recording and the availability
of the slides. The event is being
archived. The login will be the same
that you used today. It should be
available at some point tomorrow.

An email will go out letting you know
when the archive is up, and it's the
same login process as today.

Page 63 of 63

	Trends and New Directions in Software Architecture
	Table of Contents Page 1
	Table of Contents Page 2
	Table of Contents Page 3

	Carnegie Mellon University Notice
	Trends and New Directions in Software Architecture
	Software Architecture
	Software Architecture Thinking
	Quality Attributes
	Central Role of Architecture
	Our View: Architecture -Centric Engineering
	Advancements Over the Years
	What HAS Changed?
	Technology Trends
	Software Development Trends
	Technical Challenges
	The Intersection and Architecture
	Architecture and Accelerated Capability
	Managing Technical Debt*
	Technical Debt Impact
	Technical Debt Landscape
	Making Hard Choices About Technical Debt
	HARD CHOICES
	Our Current Research
	Architecture Done Incrementally
	Approach
	Effort in Percent over Cycles – 1
	Effort in Percent over Cycles – 2
	Effort in Percent over Cycles – 3
	Effort in Percent over Cycles – 4
	Effort in Percent over Cycles – 5
	Effort in Percent over Cycles – 6
	Results
	Deployment Challenges
	DevOps : State of the Practice
	Architecture and DevOps
	DevOps Tips
	Architecture and Scale
	Two Perspectives of Software Architecture in Cloud Computing
	Cloud Computing and Architecting
	Mobile Device Trends
	Architecture Trends: Cyber-Foraging
	Big Data Systems
	Big Data – State of the Practice “ The problem is not solved”
	Big Data Survey
	Architecture and Big Data
	Our Current Research
	Architecture and Software Assurance
	Architectural Models
	High Fault Leakage Drives Major Increase in Rework Cost
	SAE Architecture Analysis & Design Language (AADL) Standard Suite (AS-5506 Series)
	Architecture-Centric Quality Attribute Analyses
	Conclusion
	This Is the Work of Many
	Approaching Security from an " Architecture First" Perspective

