Software Engineering Institute | Carnegie Mellon University ©2015 Carnegie Mellon University




An Architectural Approach

= Software security is a complex multi-
dimensional problem, touching coding, design,
operation, and policy.

* Most software engineering effort goes into
secure coding.

Rick Kazman

=== Software Engineering Institute | Carnegie Mellon University January 21,2015

© 2015 Carnegie Mellon University



An Architectural Approach - 2

= But secure coding is not enough.
= Why?

1. Security is a “weakest link” phenomenon.
2. Secure coding practices are expensive.

Rick Kazman

=== Software Engineering Institute | Carnegie Mellon University January 21,2015

© 2015 Carnegie Mellon University



An Architectural Approach -3

We advocate an architectural approach to
software security.

Specifically we advocate the use of security
frameworks

* encapsulate best practices in design and coding

Rick Kazman

=== Software Engineering Institute | Carnegie Mellon University January 21,2015

© 2015 Carnegie Mellon University



An Architectural Approach - 4.

What is the evidence for this advocacy?

Until now ... nothing.

Rick Kazman

=== Software Engineering Institute | Carnegie Mellon University January 21,2015

© 2015 Carnegie Mellon University



Three Case Studies

= \WWe now present three case studies.

= \WWe examine the effects of using a security
framework on:

1. system quality, and
2. development efficiency.

Rick Kazman

=== Software Engineering Institute | Carnegie Mellon University January 21,2015

© 2015 Carnegie Mellon University



Architectural Foundations

An architectural approach to software security
relies on three related fundamental design
concepts:

e tactics,
e patterns, and
e frameworks.

These concepts could apply to any quality
attribute but here we focus on secuirity.

Rick Kazman

=== Software Engineering Institute | Carnegie Mellon University ~January 21,2015
—— 2 o ) . .



Tactics

Architectural tactics are
techniques that an
architect can employ to
achieve required quality
attributes in a system.

The tactics used here
are taken from:

Software
Architecure

in Practice
Third Edition

Len Bass - Paul Clements - Rick Kazman

Rick Kazman

== Software Engineering Institute | Carnegie Mellon University ~January 21,2015

© 2015 Carnegie Mellon University



Security Tactics

Tactics provide a useful Securty Tacts
vocabulary for design /\

L Attacks from Attacks
]
and analysis e
. Detect Actors Ace:}::I;)sse Maintain  Restore
Intrusti i i i
. . . Attack nrustion . ﬁuthentlcate Audit Trail System detects,
But realizing them In T Desenie foe ek e, e, -
er?la Authorize CHIDNIE] See or recovers
Verify Message  actors Inform Availability

code involves lots of T o Lo A0S

interpretation. oo

Separate
Entities

Change Default
Settings

Rick Kazman

=== Software Engineering Institute | Carnegie Mellon University January 21,2015

© 2015 Carnegie Mellon University



Security Patterns

There are a number of ==
well-established security

GGGGG

pattern catalogs.
Patterns help to structure

a design, but they are

difficult to correctly
Implement, maintain,

and combine.

=== Software Engineering Institute | Carnegie Mellon University

Rick Kazman
January 21, 2015

© 2015 Carnegie Mellon University




Security Frameworks

A framework is: a reusable. §pspring
software element that provides e é SHIRO
generic functionality addressing -
recurring concerns across a jGuard
broad range of applications.

There are security frameworks L Lift

for many languages and
technology stacks.

Frameworks increase
productivity, but often have
a steep learning curve and
"lock-In".

Rick Kazman

== Software Engineering Institute | Carnegie Mellon University ~January 21,2015

© 2015 Carnegie Mellon University



Case Studies

Given this wealth of design concepts, we were
interested to understand:

* how architects approach security,

* how well these design approaches “perform” in
terms of securing the system and reducing the
cost of creating and maintaining a secure
architecture.

Rick Kazman

=== Software Engineering Institute | Carnegie Mellon University ~January 21,2015

© 2015 Carnegie Mellon University



Case Study Subjects

Organization Description Case study Frameworks
name used
CodeOne Creator of a security | "ACME" web CodeOne Security
framework in Korea | application Framework
(“After”)
Quarksoft Software consulting | Internal project ZK
firm in Mexico City | management web | Spring Security
application
OpenEMR Open source project | Electronic health None
records system

Rick Kazman

== Software Engineering Institute | Carnegie Mellon University ~January 21,2015

© 2015 Carnegie Mellon University



Case Study Protocol

1. Interview the architect regarding the approach
to security, the size of the system, and the
effort expended on security.

2. Scan the system to identify its vulnerabilities
using AppScan from IBM.

Goal: explore tradeoff space between costs and
benefits (effectiveness) of different approaches to
security, and determine if there are optimal project
strategies employing the approaches.

Rick Kazman

=== Software Engineering Institute H Carnegie Mellon University ~January 21,2015



Interview Questions

1. What were your primary 4. How did you ensure that
drivers (quality attributes for your programmers conform
the system) and how to the security approaches?
Important is security among (policies, inspections, etc.)
them? 5.  What percentage of project

2. With respect to security, effort do you estimate goes
what are the approaches that into security without the use
you have taken to address of a security framework? If
this quality attribute? using a security framework,

3. How do you reason about what percentage of effort
tradeoffs? does this take?

6. Other comments

Rick Kazman

=== Software Engineering Institute | Carnegie Mellon University January 21,2015

© 2015 Carnegie Mellon University



Example Questions

Tactic Description

Detect Does the system support the detection of intrusions? An example is comparing

Intrusion |network traffic or service request patterns within a system to a set of signatures or
known patterns of malicious behavior stored in a database.

Detect Does the system support the detection of denial of service attacks?

Service An example is the comparison of the pattern or signature of network traffic coming into

Denial a system to historic profiles of known Denial of Service (DoS) attacks.

Verify Does the system support the verification of message integrity? An example is the use

Message |of techniques such as checksums or hash values to verify the integrity of messages,

Integrity  |resource files, deployment files, and configuration files.

Detect Does the system support the detection of message delays?

Message |An example is checking the time that it takes to deliver a message.

Delay

Limit Does the system support limiting exposure? An example is reducing the probability of

Exposure |a successful attack, or restricting the amount of potential damage, e.g. concealing facts
about a system (“security by obscurity”) or dividing and distributing critical resources
(“don’t put all your eggs in one basket”).

Rick Kazman

=== Software Engineering Institute | Carnegie Mellon University January 21,2015

© 2015 Carnegie Mellon University




Example Answers

Tactic

How is it achieved?

Detect Intrusion

- Primarily enforced through the use of hardware firewalls

- Spring Security also guarantees that a session comes from a single place

Detect Service
Denial

- Covered by ZK
- Use of hardware Firewall

Verify Message |- Covered by ZK. All requests are associated with a checksum and IDs. Most of the

Integrity processing is done on the server.

Detect Message |- Covered by ZK. When a session is created in ZK, many short-lived objects are created

Delay and each has a UID. The UID is verified by the framework so it would be hard to
replicate these IDs.

Identify Actors |- Covered by Spring Security

Authenticate - Covered by Spring Security. All URLs are handled by Spring Security, transmission of

Actors content is a responsibility of ZK

Authorize - Covered by Spring Security

Actors

Limit Access - Covered by Spring Security. The system runs over Tomcat, Spring Security overwrites

the JAS standard from J2EE (just roles were defined in the web.xml configuration file of
the web server)

Software Engineering Institute H Carnegie Mellon University

Rick Kazman
January 21, 2015

© 2015 Carnegie Mellon University




Example Answers

Tactic How is it achieved?

Limit - Not covered. Perhaps the fact that the application runs in an intranet?

Exposure

Encrypt Data |- Use of HTTPS

Separate - Database server is physically separated, Identity Manager is also separated (it uses a
Entities Windows Active Directory).

Change - Not supported

Default

Settings

Revoke access

- This can only be performed manually through the Active Directory.

Lock - Spring Security blocks the user if there are several attempts at accessing resources for
Computer which permissions are not granted.
Inform Actors |- Not supported

Maintain audit
trail

- Several audit trails: Web server (audits web access), Spring Security (audits access to
resources), ZK also creates logs.

Restore

- Not supported

=== Software Engineering Institute

Rick Kazman
January 21, 2015

© 2015 Carnegie Mellon University

Carnegie Mellon University




Metrics Collected

Vulnerability metrics were collected using AppScan
which categorizes vulnerabilities as: High (H),
Medium (M), Low (L), or Informational (l).
Application size was measured using CLOC and
MetricsReloaded. Security effort was estimated by
the interviewees.

Rick Kazman

=== Software Engineering Institute | Carnegie Mellon University
— i ©



Discussion

Our case studies represent three different security
approaches, in terms of their architectural support for
security (degree of adoption of frameworks):

* Full adoption: security framework used throughout
the lifetime of the software, e.g. Quarksoft.

* Partial adoption: security framework is introduced
in the middle of the lifetime, e.g. ACME “After”.

* No adoption: no use of any third-party security
framework, e.g. OpenEMR, ACME “Before”.

Rick Kazman

=== Software Engineering Institute | Carnegie Mellon University



Results

Acme Before Acme After Quarksoft OpenEMR

Approach No adoption Partial adoption | Full adoption (ZK | No adoption
(CodeOne fwk) | + Spring fwks)

Size (KLOC) 7.93 8.55 16.56 255.6
Detected H: 154 H: 0 H: 0 H: 8
Vulnerabilities | M: 50 M: 25 M: 0 M: 9

L: 99 L: 99 L:0 L: 475
# Tactics 6 12 13 9
Employed
# Tactics in 5 5 0 6
Bus Logic
Estimated 20% 10% 3% (30% without | 20%
security effort frameworks)

Rick Kazman

=== Software Engineering Institute | Carnegie Mellon University January 21,2015

© 2015 Carnegie Mellon University



Inferences from the Results

1. The superiority of using security frameworks as
an architectural approach, either through partial
adoption or through full adoption.

2. The effort required for partial adoption is,

however, significant when compared to the full
adoption approach.

Rick Kazman

=== Software Engineering Institute | Carnegie Mellon University
—— i ©



Inferences from the Results - 2

Thus, we recommend the use of security
frameworks from the early phases of the
construction of a system (full adoption).

No big surprise: adopting a framework after the
system has been built will clearly be more costly
than doing so from the start.

Rick Kazman

=== Software Engineering Institute | Carnegie Mellon University
—— i ©



Inferences from the Results - 3.

Partial Adoption is a sub-optimal but common way
of adopting security frameworks.

= Most developers and architects worry about
functionality first and security (and other quality
attributes) later.

Rick Kazman

=== Software Engineering Institute | Carnegie Mellon University
—— i ©



Conclusions

Why is it best to address security via frameworks?

1. while application developers may be experts in their
domains, they are typically not security experts

2. even if developers are experienced in security, they
should not write their own security controls

3. using a framework increases the likelihood that
security controls will be applied consistently

4. delegating security issues to frameworks allows
developers to devote their energy to application logic,
iIncreasing overall productivity

Rick Kazman

=== Software Engineering Institute | Carnegie Mellon University January 21,2015

© 2015 Carnegie Mellon University



Future Work

We are currently pursuing (and actively looking for)
additional case studies

 |nterview with the architect
 AppScan vulnerability analysis

Rick Kazman

=== Software Engineering Institute | Carnegie Mellon University January 21,2015

© 2015 Carnegie Mellon University



Questions?

Feel free to contact me:
 kazman@sei.cmu.edu

Rick Kazman

=== Software Engineering Institute | Carnegie Mellon University January 21,2015

© 2015 Carnegie Mellon University



