== Software Engineering Institute

Carnegie Mellon University

Acquisition & Management Concerns
for Agile Use in Government

This booklet is part of a series based on material originally published in a 2011
report titled Agile Methods: Selected DoD Management and Acquisition Concerns
(CMU/SEI-2011-TN-002).

The material has been slightly updated and modified for stand-alone publication.
Booklet 1: Agile Development and DoD Acquisitions

Booklet 2: Agile Culture in the DoD

Booklet 3: Management and Contracting Practices for Agile Programs

Booklet 4: Agile Acquisition and Milestone Reviews

Booklet 5: Estimating in Agile Acquisition

Booklet 6: Adopting Agile in DoD IT Acquisitions

Estimating in Agile Acquisition

Introduction

Estimation activities occur throughout the DoD acquisition lifecycle. Estimates

are used by all DoD programs in a variety of ways, and they are generated and
processed in a variety of ways. Books have been written, inside and outside the
DoD, on cost estimation for large, complex, software-intensive programs [Stutzke
2005]. We cannot deal with all the many connections between DoD estimation
practices and Agile estimation in this report. We address the issues that we have
most frequently seen and discussed, in interviews and through reviewers. Also, in all
of the generalizations we make below, it should be understood that the needs and
constraints of a particular program could result in estimates being treated in similar
or quite different ways than what we describe in this booklet.

Some general estimation activities that government program offices support on many
(though certainly not all) programs include:*

 Producing a Program Life-Cycle Cost Estimate. Prior to Milestones A and B, the
Acquisition Program Office (the government) must develop a program life cycle cost
estimate (PLCCE). The PLCCE is presented to the program’s Milestone Decision
Authority (MDA) at each milestone. The PLCCE must look forward from the current
program state to the end of the system'’s life, and assess the cost of the product or
system over its entire life.

Program Monitoring. During source selection, the Acquisition Program Office

may want to gain insight into the manner by which the bidding contractors have
prepared their estimates. During contract execution, the Acquisition Program
Office is constantly reviewing the performance of the contractor with respect to the
contractor’s estimate. This is typically done by reviewing the contractor’s earned
value management (EVM) data, although there will be further opportunities to
review the contractor’s estimation process each time an engineering change is
processed.?

Transition to Sustainment. After the system is fielded and in sustainment, there is
generally a two-year cycle of maintenance, technology refresh, and upgrade.® These
system enhancements are estimated and budgeted by the relevant program office,
and by the contractor, who may or may not be the same organization that originally
developed the system.

To understand the varied uses of estimates by the program office staff throughout
the acquisition life cycle, and how these uses may relate to the use of an Agile
development process by a contractor, the reader must understand estimation
practices in general, and Agile estimation practices in particular. The next section

1 The specifics for what is and is not required are defined in the FAR and DFAR for EV programs.

2 How this occurs and the various ways programs can implement this estimation process is covered in
the earned value management system description (EVMSD) and its work instruction.

3 The timing and nature of sustainment activities is, of course, ultimately dependent on the particular
program contracting and technical characteristics. However, we have observed this pattern in many
programs.

SOFTWARE ENGINEERING INSTITUTE 1

of this booklet will begin to provide that insight and we will show how a government
program office (including the program manager, the staff, the contracting officer’s
technical representative (COTR), and the procurement staff) could take actions
with their cost estimating practices that would enable an Agile acquisition of a new
system or sustainment of an existing system in the DoD.

Estimating to Support Request for Proposal (RFP) Preparation

The following discussion assumes that the government program office is acquiring
software products (i.e., buying a system through a cost or incentive contract as
covered by DFAR 234.201). We are not discussing acquiring software development
capacity (i.e., software development expertise of a certain capability over a period of
time), which is an alternate way we have seen government software needs being met.
This model is more common in sustainment and operations and maintenance (O&M)
programs. It generally consists of determining how many resources you can afford
and how much capability those resources will allow you to build. This model is what
some successful Agile programs have used, but it is not available to all programs.

During the RFP preparation phase of a new system acquisition, the government
program office will make the decisions that are pivotal to enabling or disabling an
Agile development contractor to bid and meet the program’s needs. It is during this
phase that the government program office will prepare its PLCCE, which will be based
on the government’s work breakdown structure (WBS). The prohibition during this
timeframe against engaging with the development team when this is a competitive
contract is a significant barrier to establishing the trust that is key to Agile project
success; however, the considerations below could help to mitigate this issue.

If the program office wants to allow a developer using Agile methods to effectively
compete, there are considerations that relate to both the acquisition strategy and

its follow-on activities, as well as considerations related to execution of the Agile
methods within the boundaries of the Program Management Baseline (PMB). From
the acquisition perspective, the government program office must address how typical
Agile methods artifacts fit into the traditionally specified artifacts of an acquisition,
for example:

« The acquisition strategy should describe how the program office would interact
with its contractor in order to provide the subject matter expertise needed on a
continuous basis throughout the iterations of an Agile development.

- To ensure that the Agile acquisition strategy is enacted, the statement of work
(SOW) or program work statement (PWS) must include language that allows the
program office to provide subject matter experts with the ability to participate in the
development of the software. This may be complicated by the hierarchical structure
of contracts in a large system acquisition. The program life cycle cost estimate
and budget must include funding for these subject matter experts throughout the
development of the system. Because the SMEs usually come from government
operational units, agreements must be crafted (e.g., memorandum of agreement
[MOA], memorandum of understanding [MOU]) that make clear the expectations of
participation of different stakeholders.

2 ESTIMATING IN AGILE ACQUISITION

» The government program office must have a notional plan for what to do with the
interim product releases that come from an Agile development process. Specifying
these in the SOW is one way to emphasize the importance of working software
being available in short iterations. There should be an evaluation environment
established along with a feedback mechanism in place that permits the end-user
community to try out these interim releases in a safe, secure environment, while
waiting for required acceptance and certification testing activities to take place.*

Generally speaking, the most visible element of a software product estimate in

DoD programs is the estimate of product size.> Even though modern software
development tools and techniques reduce dependence on handcrafted source code,
size is still frequently expressed in source lines of code (SLOC) or in function points.
In Agile development environments, the development team may use “story points”
as an alternative to either of these. Story points can be problematic in acquisition
settings accustomed to SLOC or function points because they are explicitly a relative
measure of size, not an absolute measure. Therefore, when story points are used
outside of the team that generated them, it is necessary, though not trivial, to make
some translation between story points and, typically, function points. Some of the
programs we interviewed acknowledged they made the translation from story points
to product size to provide cost estimates to those outside the development team.
We saw proprietary tools that address this translation, and the commercial vendors
for estimating tools are starting to address this new market need. In acquisition
settings where trust has already been established between the contractor and the
acquisition program office, this dependence on an absolute, versus relative, measure
may be reduced.

Most parametric cost-estimation models base their outputs on software size, so
errors in the size estimate will propagate into the estimate of effort and schedule.
According to the GAO Best Practices Guide for Estimation, the keys to producing a
defensible software cost estimate are (1) to have a reliable method for estimating
the size of the product and (2) to employ a method for transforming the size estimate
into an estimate of cost and schedule demonstrated to be accurate on similar
projects [GAO 2009].

One popular parametric cost-estimation tool is the constructive cost model
(COCOMO). According to Boehm, “COCOMO is an algorithmic-based parametric
software cost-estimation model for estimating a software project as an ‘effort
equation, which applies a value to tasks based on the scope of the project (ranging
from a small, familiar system to a complex system that is new to the organization).

IS

Note that certification and accreditation (C&A) issues within the DoD acquisition life cycle are cur-
rently being addressed on multiple policy and implementation fronts, all with the goal of reducing the
time, usually spent at the end of a program, to get the software system certified and then accredited
by the appropriate governance body. We are not dealing with the specific requirements of the DIACAP
process in this report.

o

Software size may not be the most reliable predictor of software effort and cost (see Capers Jones,
for example, who cites programmer skill as a better predictor of software outcome than size, among
other attributes).

SOFTWARE ENGINEERING INSTITUTE 3

COCOMO Il is the successor of COCOMO 81, incorporating more contemporary
software development processes such as code reuse, use of off-the-shelf software
components, and updated project databases” [Boehm 1981].

At the heart of the COCOMO Il model are the cost parameters themselves. These
parameters include five scale factors and seventeen effort multipliers. Scale factors
represent areas where economies of scale may apply. Effort multipliers represent the
established cost drivers for software system development. They are used to adjust
the nominal software development effort to reflect the reality of the current product
being developed.

It would be reasonable to assert that an Agile development process would have an
impact on some of these parameters. For example, the COCOMO Il model includes
an effort multiplier for domain knowledge, or applications experience. The cost
estimating multiplier based on the domain knowledge and capability of the software
developer staff is called “application experience” (APEX). The rating for this cost
driver is dependent on the level of applications experience of the project team
developing the software system or subsystem. The ratings are defined in terms of the
project team'’s equivalent level of experience with this type of application.

In an Agile development environment, there would be subject matter experts
(users) participating with the system developers. The participation of users in the
development process should improve the domain knowledge of the development
team. The magnitude of the improvement can be assessed by changing the
assignment of this effort multiplier, and observing the impact on the estimate.

A selected list of COCOMO Il scale factors and effort multipliers is provided in the
Appendix. Factors listed there that we would expect to be impacted by the use of an
Agile development process include

- the development flexibility factor

« the architecture/risk resolution factor

+ the team cohesion factor

« the analyst capability effort multiplier

- the programmer capability effort multiplier
« the application experience effort multiplier

The Appendix also contains information about Agile COCOMO, a 2004 prototype
product that reflects some Agile estimation principles while relating back to concepts
familiar to COCOMO users [CSSE 2011].

4 ESTIMATING IN AGILE ACQUISITION

Among the many software estimation tools generally available (including Price-S,
Software Lifecycle Management-Estimate [SLIM], and others) is the Software
Evaluation and Estimation of Resources (SEER) model. It is one of those that actively
updates its products to accommodate Agile estimation.

SEER for Software (SEER-Software Estimation Model [SEM]) is an
algorithmic project management software application designed specifically
to estimate, plan, and monitor the effort and resources required for any
type of software development and/or maintenance project. SEER, which
comes from the noun referring to one having the ability to foresee the
future, relies on parametric algorithms, knowledge bases, simulation-
based probability, and historical precedents to allow project managers,
engineers, and cost analysts to accurately estimate a project’s cost
schedule, risk and effort before the project is started [SEER-SEM 2011].

For Agile projects, SEER uses three kinds of estimates. These are planning, forecast,
and working. The planning estimate is still used to determine how big the project
will be and is usually based on analogies of previous projects of similar size.

The forecast estimate is accomplished after you have built your backlog. Several
things can be defined at this time, such as incremental delivery, release cycle,

the length of the iteration, exit criteria for a deliverable, and negotiation for scope
change requests. (Baseline change requests accomplish this in the DoD acquisition
cycle.) Finally, working estimates are done for all iterations after the first iteration

is complete. This allows assessment of the team and customer as well as an
understanding of the individual team velocities.

SEER, like COCOMO, uses a variety of parameters for their model, including

 requirements formality

* requirements volatility
 personnel capabilities — analyst and programmers
« familiarity with the process

* process maturity

- staffing complexity

« development system volatility

+ automated tools usage

« testing level

+ quality assurance participation
« infrastructure and tooling costs

Before the build, your estimate considers these parameters in relationship to your
team. We recommend that you revisit your forecast estimate as your team changes.®

6 DeWitt, D. Demystifying Agile Project Cost and Schedule Estimates. Webinar. Galorath
Incorporated, 2010.

SOFTWARE ENGINEERING INSTITUTE 5

Source Selection

In the source selection phase of an acquisition, the program office will have to
evaluate estimates that are prepared by the bidding contractors. In many cases, the
program office will seek to understand the contractor’s process for producing the
estimate. It is very important for the program office to establish a high degree of
confidence in the bidding organization’s estimation process.

The following discussion focuses on a notional Agile estimation process from the
development estimator’s viewpoint. We have synthesized this description from our
various interviews and include some clarification information from the Agile literature
to help readers new to Agile methods relate the Agile approach to knowledge they
already have from using traditional estimation practices. We hope that this approach
will enable government program office personnel new to Agile approaches to gain
insight into why estimates for an Agile project may look different from traditional ones.

Estimating from the Development Estimator’s Viewpoint

We focus this section on the development estimator’s viewpoint, which could either be
for a government organization (such as an Air Logistics Center of the U.S. Air Force),
or a commercial development contractor. In either case, the viewpoint is based on
knowledge of the team that will be producing the software, knowledge of the tools

and development environment that are available, as well as knowledge of the practices
that are intended to be used. We also distinguish between new software development
estimation and sustainment-focused estimation, since the basis of each is different.

In the case of new software development (some new feature being implemented in
software for the first time or a significant upgrade to existing software being treated
as its own project), some initial work will need to be estimated for creating an overall
architecture that will be the basis for the rest of the project. That architecture will
determine some of the requirements prioritization, though not all of it. Overall system
design is outside the normal scope of software development estimation, so some
ideas of architecture and its implications may be established prior to estimation. In
any case, working the initial aspects of the architecture and platform infrastructure
is usually estimated separately from the actual requirements implementation, and in
Scrum, the most commonly used Agile project management method, this is usually
called “Sprint 0” [Ozkaya 2011].

Often, especially in the DoD programs we interviewed, the early iterations and stories
are more about building the infrastructure needed to ensure a stable architecture
than about delivering end-user functionality. If using the RUP as a framework for an
Agile project, this kind of work is done during the Inception and Elaboration phases.
In cases where this was necessary, some of the programs we talked to mixed
infrastructure building with end-user functionality, so that end users received working
software at least every other release. Others coupled architectural infrastructure
elements to end-user functionality so they could deliver on just a piece of the
architecture. In either case, the emphasis was on ensuring that end users saw
progress quickly and frequently. Once a general pattern of releases was generated,
a more detailed estimation of future releases and sprints occurred.

6 ESTIMATING IN AGILE ACQUISITION

After user stories are generally prioritized, they become a product backlog. From the
product backlog, releases are constructed that deliver evolving capability to the end
users. Each release has a nominal set of user stories (based on team velocity, vital
factors, and initially estimated story points). Up to this point, the estimation has
been coarse-grained, since it is known that user priorities will change over the course
of a project, especially one that is longer than one year.

From the product backlog reflected in the first release, the user stories for the next
iteration within that release are selected (a process sometimes called “grooming”
the backlog) and the team working on each story does more fine-grained estimates of
the appropriate story points for that release. Based on the team velocity, an estimate
of feasibility is made as to whether the proposed set of user stories can be built
within the iteration timeframe.

In most Agile methods, the end users and other project stakeholders are present

in the iteration-planning meeting where these issues are discussed, so that re-
prioritization can occur if necessary. These meetings also enable an essential
element of Agile methods: the development team and the end users decide on the
character and timing of user/developer working sessions. This kind of joint decision
making is one of the things that the programs we interviewed emphasized as being
essential to their progress.

This rhythm of each iteration being estimated at a fine-grained level while releases
and the overall project are estimated much more coarsely actually reflects the
common practice in DoD cost accounting discussed earlier: rolling wave planning
[Department of Defense 2011]. More detail on this part of the process is found

in the section of this booklet titled Contract Execution and Monitoring. One

important aspect of rolling wave planning related to estimation is that the period of
performance covered by the rolling wave must align with the iterations in the life cycle
so that planning does not occur, for example, for only half of an iteration.

In the case of sustainment or enhanced legacy software, if the architecture is
stable, then prioritizing the known requirements is a first step in estimating. In Agile
methods, these are gathered as user stories—descriptions of discrete functionality
known to be needed by a particular user segment that is part of the project’s
audience, and other stories that address infrastructure and quality attributes that
are pervasive to the product (e.g., security or usability). Although user stories are
generally constructed to be discrete and separable (one of the things that permits
reasonable prioritization), they can often be bundled into a related feature set to
be delivered, called an epic. It is not unusual for a release to be defined by the
completion of one or more epics. Where the user stories come from (government
operators or contractor subject matter experts), is highly dependent on the
contracting vehicle and agreements that are in place for the effort.

SOFTWARE ENGINEERING INSTITUTE 7

Evaluating Estimates from the Acquirer’s (Source Selection

Team) Viewpoint

In this section, we change focus from what an Agile estimation experience looks like
from the development estimator’s viewpoint to what it looks like from the estimate
evaluator’s viewpoint, usually the source selection team or other members of the
government program office.

The biggest difference between evaluating an estimate for an Agile project and a
traditional project is that the Agile project admits up front that not all requirements
can be known early in the project and so the overall estimate will be amended as
more knowledge is gained. Where a contract vehicle has been constructed that
allows these amendments to occur without having to process baseline change
requests, (such as a time and materials contract type) the overall process has been
easier for both acquisition personnel and the development contractor.

Estimates for near-term activities—usually through a single release—can be made
more accurately than the typical traditional project because the period for estimation
is usually less than four months. The four months is the equivalent of eight two-week
iterations, an approach consistently used for several years on one of the programs
we interviewed. The team’s capabilities, in terms of how quickly they can typically
address a story point’s worth of work, are well understood after the first couple

of iterations. This accuracy is dependent on knowledge of the team’s progress
characteristics.

In discussing government evaluation of development contractor estimates in Agile
projects, we gleaned that the questions in the following list were considered useful
by a variety of our interviewees. Not all programs used all questions; this list is a
union, not an intersection, of the questions. Which questions apply in a particular
acquisition situation also depends on the acquisition strategy decided upon and the
contract vehicle used. Not all of these questions can be used for all contract types.
Some of them (e.g., the first one) assume that the developer already understands
and has worked in Agile projects, while others do not make that assumption. The
questions different programs ask about an Agile project’s initial development
estimates include:

« If the project involves new software development, did the development team leave
separate time for constructing the product’s architecture and infrastructure needed
(e.g., the continuous integration and test environment) to operate the project?

Do the initial user stories adequately reflect the known end-user project priorities,
tempered by any programmatic constraints that have been shared with the
estimator? (Clearly they will not reflect those that are unknown at the time of
estimation.)

» Has the team performing the work used Agile methods before as a team? If so, do
they have evidence of their velocity on similar projects? (If they have not worked on
similar Agile projects before, calculating velocity from their individual performances
would be inappropriate and misleading.)

8 ESTIMATING IN AGILE ACQUISITION

« If this team has not worked together before, how did they derive their velocity?

- If this team has not used Agile methods before, have they left some slack to
account for a learning curve?

» Does the estimate include frequent opportunities for user feedback (e.g., pre-
release demonstrations of working software at the end of each iteration)?

» Does the estimate include time for side-by-side working sessions with end users
during iterations?

 Does the estimate characterize the “vital factors,” such as distributed team, new
project domain, complex operational processing, and other factors, and how they
affect the estimate? [Bhalareo 2009]

These factors are somewhat different from the COCOMO |l factors that estimate
evaluators may be familiar with, but they bear some relationship and may be able to
be resolved (though we have not run into this in interviews with Agile DoD programs
so far).

Also important for evaluators to remember is that you will be receiving new estimates
for each release or iteration depending on the project norms and contract vehicle.
This gives you the opportunity and an obligation, as an acquirer, to reevaluate
requirements priorities (via the product backlog) based on user feedback for the
most recent releases. Depending on the project, releases for informal early adopter
use, usually in sandbox environments, may happen as often as every two months.

Note that from an acquisition life cycle viewpoint, the releases we are talking about
here are generally development releases, so the user community intended to receive
them must be carefully selected. Our interviewees usually had subject matter experts
on the development team who were knowledgeable about certification requirements
for their software and who participated in identifying the appropriate user audience
for different classes of release. Certification requirements are a type of constraint
that can prevent early release of software, even on a development basis. The effect
of these interim releases on estimation varies. Depending on the constraints of the
contract, interim releases may be accomplished easily and often, or they may be
almost as much work as a fully deployed release to fielding.

Contract Execution and Monitoring

When working with any development contractor, it is important to understand how
the work is being planned and executed, so that the program office can understand
how to interpret the progress data provided by the contractor. When working with an
Agile contractor, it is especially important for the acquirer to understand the methods
and techniques employed by their contractor, as it is likely that the techniques used
by the contractor will be new to the program office. This understanding provides the
foundation for any discussions between the acquirer and the contractor. In addition,
this understanding does not replace specific constraints or directions levied by the
FAR/DFAR, but it allows the acquirers to understand the implications of their contract
vehicle in the Agile environment. This section of the report provides insight into the
techniques often used to plan Agile projects, mostly from the development team

SOFTWARE ENGINEERING INSTITUTE 9

viewpoint, and into the techniques used to monitor and control Agile projects, mostly
from the acquirer’s viewpoint.

Story Point Estimation

In Agile projects, user stories and technical stories are typically estimated in story
points. Story points are commonly used in several Agile methods for estimation at
both the release and iteration levels. They do not use lines of code as their base
unit of measure. Tasks, on the other hand, are generally estimated in hours and are
used only for detailed iteration-level planning. Tasks are the activities that developers
determine will be necessary to successfully complete the story. If you are evaluating
developer estimates, being able to understand the source of the developer estimates
can improve your ability to interpret them.

The following is a common definition of story points:

Story points are a unit of measure for expressing the overall size of

a user story, feature, or other piece of work.... The number of story
points associated with a story represents the overall size of the story.
There is no set formula for defining the size of a story. Rather a story-
point estimate is an amalgamation of the amount of effort involved in
developing the feature, the complexity of developing it, the risk
inherent in it and so on. [Cohn 2006]

One of our reviewers commented, “This [concept] is really important as it can thwart
meaningful comparison and tracking of trends. It certainly can undermine the ability
to do cross-team comparisons.”

It is important to note that story point estimates are both relative and local. They
are relative in that estimates are typically derived by comparing the size of one story
to another or by assigning a point value to one or more reference stories, which are
then used to calibrate the sizes of newly created stories. Story point estimates are
local in that different teams may arrive at different sizing conventions. A story that

is assigned five points in team A may, for example, be assigned three points in team
B. One implication of this is that, for most DoD programs, at some point estimates
must be converted from relative to absolute estimates, especially for programs using
EVM (earned value management).

Story point estimation is typically conducted as a team-based activity and is guided
by defined techniques. Two popular team-based estimation techniques are Planning
Poker and the Team Estimation Game [Larman 2004]. In Planning Poker, stories
may be assigned point values of 1, 2, 3, 5, 8, 13, 20, 40 or 100 (an adaptation of a
Fibonacci series). Other Agile estimation techniques use similar scales. The spacing
between the point values is designed to reflect both the principle that “we are best
at estimating things that fall within one order of magnitude” and “greater uncertainty
is associated with estimates for larger units of work” [Cohn 2006]. Stories planned
for incorporation within an upcoming iteration will typically be assigned point values
at the lower range of the estimation scale while stories coming later will be assigned
point values at the higher ranges, especially if they reflect a lack of knowledge

10 ESTIMATING IN AGILE ACQUISITION

until some of the earlier stories are executed. In addition to using story points to
estimate effort, at least one Agile author (Larman) recommends that stakeholders
independently estimate story point value at the same time developers are estimating
effort, allowing for an explicit prioritization of effort for value [Larman 2004].

While story points are the most widely advocated metric for story and feature size
estimation, some within the Agile community also advocate for the use of “ideal
days” for this purpose. Similar to story points, ideal days are intended to be used as
a sizing estimation metric, expressed as the number of days a story or feature would
take to develop, assuming

The story being estimated is the only thing you’'ll work on.
Everything you need will be on hand when you start.
There will be no interruptions [Cohn 2006].

It is important to note that when estimating in ideal days, as with story points, the
estimate is intended to include the aggregated work required from all team members
for all tasks required to successfully complete development (e.g., elaborate story
details, write unit tests, design, code, build, execute acceptance tests, write required
user documentation). In addition, as with story points, estimates in ideal days are a
local metric. Once again, a story that is assigned five ideal days in team A may, for
example, be assigned three ideal days in team B.

Velocity

As discussed above, both story points and ideal days are relative, local sizing
metrics, rather than objective projections of effort and duration. Therefore, story
points cannot be used directly for absolute estimation purposes. Rather, within Agile
practices, story points provide input to the calculation of other measures like team
“velocity,” which is in turn used to derive estimates for releases and iterations. As
stated by Mike Cohn, “...a key tenet of agile estimating and planning, is that we
estimate size and derive duration”” [Cohn 2006]. However, unlike traditional projects,
Agile projects estimate relative size, rather than absolute size. Current expressions
of estimates within DoD programs use absolute estimates of size and duration,
requiring translation from Agile estimation approaches, as we have mentioned
previously.

“Velocity is a measure of a team’s rate of progress. It is calculated by summing the
number of story points assigned to each user story that the team completed during the
iteration. If the team completes three stories, each estimated at five story points, their
velocity is fifteen. If the team completes two five-point stories, their velocity is ten.” 8

7 It is worth noting that deriving effort from size is a common way of estimating software projects in
traditional methods as well.

& DeWitt, D. Demystifying Agile Project Cost and Schedule Estimates. Webinar. Galorath
Incorporated, 2010.

SOFTWARE ENGINEERING INSTITUTE 11

Mike Cohn describes three potential options for estimating the velocity of a given team.
Use historical values.
Run an iteration.
Make a forecast [Cohn 2006].

Each of these activities takes place within a particular context and is based on
specific assumptions, such as team skill and history with the domain. Velocity
is sufficiently tied to the specific team’s characteristics that cross-team velocity
comparison can be misleading.

Running an iteration is a common approach to learning about a team'’s velocity in the
commercial space. Depending on how the contract is constructed, this may or may
not be an option within a DoD contract.

Agile Release Planning

The Iron Triangle of cost, time, and scope is fundamental to traditional release
planning. An Agile perspective on this triumvirate is expressed by Dan Rawsthorne in
the following equation:

Time x Capacity = Scope

where

Time = # of iterations * iteration length

Capacity = average velocity per iteration®

Scope = total # of story points that can be completed in the release

Using the above equation, a team with an iteration length of two weeks and an
average velocity of 30 could complete 300 story points in approximately 10 iterations
or 20 weeks. While seemingly straightforward, this equation must be understood
within the context of the Agile approach to project scoping [Rawsthorne 2010].

Whether developing within a traditional or an Agile methods environment, the first step
in planning any release is to establish the high-level goals and purpose of the release.
That purpose may include delivering capabilities to a particular group of stakeholders,
increasing customer satisfaction, or gaining market share. Once the goals and mis-
sion are established, the focus then turns to scoping the release contents.

On a traditional project, establishing scope for a release begins with the creation

of a detailed requirements specification. Within an Agile project, establishing scope
for a release begins by examining the product backlog. The product backlog is the
name commonly used for the repository of stories associated with a given product or

©

Note that there is an implicit assumption that capacity does not vary. And while it is true that it varies
less if the team is stable in terms of membership and type of tasks performed, capacity is quite likely
to change when the domain, programming environment, or other significant environmental factors
change, even if team composition does not.

12 ESTIMATING IN AGILE ACQUISITION

project. If the project is a completely new start, a new product backlog will have to be
defined by delineating the user and technical stories relevant to that project. Elements
within the product backlog may also include features, capabilities, and defects, as well
as stories. It is a recommended (although not universally adopted) practice to attach
story point estimates to all items within the product backlog [Cohn 2008].

For an Agile project, scope is often expressed in stories. The major activities involved
in scoping and planning an Agile project include:

selecting features and stories from the product backlog for incorporation into the
release (some features will already be expressed as stories, depending on their
prior history)

decomposing features into stories that reflect each feature’s intended business
value (in doing this, it may become clear that some stories must take precedence
over others; stories that are not suitable for the current release get returned to the
product backlog)

decomposing larger stories into smaller stories that can be completed within a
single iteration (again, after this step, some stories may be returned to the product
backlog)

assigning a story point value to each “iteration-sized” story (although story point
values may have already been assigned within the product backlog these estimates
will typically be re-examined and validated during release planning)

* prioritizing stories and assigning them to specific iterations

Whether all of these activities are done upfront at the start of the release or whether
some are conducted on a per-iteration basis will depend upon the team, the project,
and the associated program expectations and constraints. “Some teams in some
environments prefer to create a release plan that shows what they expect to develop
during each iteration. Other teams prefer simply to determine what they think will

be developed during the overall release, leaving the specifics of each iteration for
later. This is something for the team to discuss and decide during release planning”
[Schenker 2007].

It is important to note that even after stories have been broken down and
estimated, they generally are not specified to the degree that would be found in a
traditional requirements document. This does not necessarily imply increased risk,
because successful Agile teams rely on ongoing dialog with users, user proxies,
and subject matter experts throughout the course of the release to gain insights
needed to satisfy the users, usually better insight than could be gained from typical
requirements-specification documents. If the user interaction that makes this dialog
possible is missing, the benefits associated with user stories as an anchor for the
requirements will be lost.

SOFTWARE ENGINEERING INSTITUTE 13

Prioritization of stories across iterations is another important aspect of release
planning. Cohn identifies the following four factors as critical considerations during
prioritization [Cohn 2006]:

* value of the story
« cost of developing the story
« knowledge generation, including

— knowledge about requirements, the domain, and user needs

— knowledge about the underlying product technology, architecture, and design
* risk, including

— technology risk

— business risk

— schedule risk

— cost risk

— functionality risk

While a certain amount of prioritization will take place during initial release planning,
on Agile development projects, prioritization is ongoing and stories are often
reprioritized at the end of each iteration. Successful adoption and execution of this
dynamic approach to prioritization once again requires a close relationship and
ongoing dialog with program stakeholders.

The role of the product owner (usually played by the acquisition program manager)

in release planning cannot be underestimated. Product owners resolve the concerns
of multiple stakeholders with conflicting priorities. They maintain the integrity of

the product and ensure that it actually delivers the promised value to end users.

In release planning, they often know the most about the programmatic constraints
that must be met prior to release to the end user, and they are the people who will
have to seek waivers or other relief if needed from processes that disable a project’s
intended Agile practices from working.

14 ESTIMATING IN AGILE ACQUISITION

Agile Release Tracking
As discussed previously, Agile release planning relies upon the following three factors:

1. the team’s estimate of their projected average velocity for the release

2. the set of stories selected for inclusion in the release (i.e., the stakeholders’
estimate of the desired release contents)

3. the sum of the story point values for the stakeholder-selected stories

Referring back to the previous example, if the team estimates its velocity at 30 story
points per two-week iteration and estimates the sum of the sizes of the stakeholder-
selected stories at 300 points, then the release should take 10 iterations or

20 weeks.

Agile release tracking focuses on these same three factors and examines how
closely the initial estimates are tracking to actual results. Agile release tracking,
therefore, asks the following three questions [Rawsthorne 2010]:

1. Is the team’s velocity tracking to its initial estimates (i.e., how many story
points have been completed to date and how does this compare to the plan)?

2. Have the stakeholders added stories or removed stories from the release? If
so, have these changes increased or decreased the sum of the story points for
the release?

3. Has the team changed its point value estimates for any stories?

One of the most commonly used charts for tracking progress on Agile releases is the
release burndown chart. On the release burndown chart, the x-axis is expressed in
iterations, while the y-axis is expressed in story points remaining to be completed.
Under ideal conditions, a release burndown chart for our sample project, with 300
story points and a velocity of 30, would appear as follows:

Perfect Burndown Chart
350

w
o
o

250
200
150
100

Story Points Remaining

a1
o

1 2 3 4 5 6 7 8 9 10
Iterations

Figure 1: Perfect Burndown Chart

SOFTWARE ENGINEERING INSTITUTE 15

In reality of course, no project will ever execute in precise conformance to initial
estimates. Therefore, it is more likely that by iteration 5, the release burndown chart
for the project will look something like this:

Perfect vs. Actual Burndown Chart
350

2 300
250
200

150
100

Story Points Remainin

(&)
o

1 2 3 4 5 6 7 8 9 10
Iterations

Figure 2: Perfect vs. Actual Burndown Chart

This chart for our sample project clearly shows that by the end of iteration 5, we
have more stories remaining to complete than we had originally planned. However,
the chart itself does not give an indication of why this is the case. Any of the three
factors discussed above could be behind the discrepancy:

1. The team’s velocity could be less than initially anticipated.
2. The project stakeholder may have added stories to the release.

3. The point estimates for certain stories may have increased as the team gained
further knowledge of the technology and the domain.

The chart therefore provides an early indicator of potential future issues, but only
discussions with the development team will reveal the reason for the discrepancy
and what actions, if any, need to be undertaken. Other visualizations can increase
the insight into reasons behind a particular burn down phenomenon, which are
discussed in detail in Cohn’s Agile Estimation and Planning [Cohn 2006].

As with any other progress tracking method, using user stories to generate velocity
measures can lead to some anomalous results. For example, if the user stories are
more than an order of magnitude sizing difference during an iteration, velocity could
appear lower than is warranted. This sizing difference could also result in one story
taking an inordinately long time to complete, possibly even resulting in a velocity of O.
A development team should develop its own norms in terms of the relationship of the
number of stories to the number of team members to iteration duration.

16 ESTIMATING IN AGILE ACQUISITION

Verification and Validation

The amount of total effort estimated for verification and validation (V&V) activities
may not be that different in amount when comparing Agile and traditional projects.
However, the timing of verification and validation activities is expected to be different
and that should be reflected in the way the CDRLs are handled for the contract.
Most V&V estimates for traditional projects show a bimodal distribution of effort—
high at the beginning when test plans and environments are being determined, low
in the middle during design and implementation, high at the end during execution
of verification and validation activities. However, most Agile methods involve some
type of continuous integration and testing, and some methods, like test-driven
development, actually demand that test cases be written before designs are
implemented in code. Thus, the profile of V&V activities may well look more like a
steady level of effort than a bi-modal distribution of effort.

Some of the projects we interviewed included a separate iteration for acceptance
testing, including, if appropriate, some of the information assurance (IA) testing
that is required for certification. (Note that although information assurance is a
specialty engineering discipline that is involved throughout the project, there is a
certain amount of testing for IA that usually occurs as part of the overall V&V effort.)
Others considered acceptance, certification, and other operational testing to be
outside of their Agile life cycle and their delivery to those testing environments was
the completion of their Agile project life cycle, other than rework that was required
to address defects found in the acceptance test cycle. The decision about how to
treat V&V is a contract-specific issue and, as can be seen from some of the variants
expressed here, the effects on estimation will be determined by which process and
method selections are made.

SOFTWARE ENGINEERING INSTITUTE 17

Agile EVM (Earned Value Management)

Earned value is one of the primary tools that the Department of Defense uses to
measure contractor performance. For programs valued at more than $20 million, an
earned value management system (EVMS) is required to be used, and for programs
more than $50 million, a validated EVMS must be used. “EVM techniques, however,
assume complete planning of a project to discrete work package levels, then
assigning cost and duration to these packages” [Sulaiman 2006].

It should also be noted that the application of traditional EVM methods within the
DoD acquisition process is currently being reexamined.

EVMS has experienced a number of issues, notably with contractor
implementation and data quality. However, for the Panel’s purposes, the
most significant limitations are that EVMS only measures the performance
of a contractor, not of the organization which is managing the acquisition.
Furthermore, EVMS would generate no negative information about a
contractor performing on cost, on schedule, and meeting all contract
requirements even if (or perhaps especially if) the contract in question
had a wildly inflated price or a schedule or set of contract requirements
that utterly failed to meet warfighter needs. Thus, EVMS, while a valuable
tool, is not sufficient to fulfill the Panel’s recommendations [House Armed
Services Committee 2010].

Accommodating the Agile principles of incremental and adaptive planning, and
embracing change in the pursuit of value, can be challenging, especially when faced
with the significant implementation guidance related to EVM that mentions nothing
about its use in Agile projects. AgileEVM is a new, exploratory practice area within the
Agile development community. Proponents suggest that EVM may be applied usefully
and validly to Agile software development projects. Proponents also believe that
AgileEVM addresses some of the above-mentioned shortcomings of traditional EVMS.
However, for AgileEVM to work, it is important that tasks are small and that iterations
are short. The most comprehensive treatment to date of AgileEVM may be found in
an |IEEE Software 2006 article, entitled “AgileEVM—Earned Value Management in
Scrum Projects” [Sulaiman 2006]. The described method computes AgileEVM for a
single release of software and makes use of story points as the fundamental units of
work and the fundamental units of earned value.

The above-referenced method of calculating AgileEVM requires the development
team/contractor to supply the following data prior to the start of development:

1. performance measurement baseline (PMB)
(expressed as total number of story points planned for the release)

2. schedule baseline
(expressed as total number of sprints planned for the release * length (in time)
for each sprint)

3. budget at completion
(expressed as the total budget planned for the release)

18 ESTIMATING IN AGILE ACQUISITION

During project execution, the following data is collected on a per-iteration basis and
used to generate updated AgileEVM calculations:©

1. story points completed
2. story points added
3. iteration cost

The above-described method covers the generation of all standard EVMS equations.
The assertion that AgileEVM addresses shortcomings within traditional EVMS

is based upon the following: AgileEVM calculations are based upon delivery of
completed, tested units of functionality. No credit is given for delivery of intermediate
work products. Therefore, AgileEVM may be seen as incorporating quality standards
into the metric and may be seen as providing stricter evidence with respect to
delivery of value.

Because the performance measurement baseline (PMB) is expressed as “number

of story points planned” rather than at the level of specific tasks, it allows course
corrections to be made without disruption or re-baselining of the PMB. This
addresses the criticism expressed in the Defense Acquisition Reform Findings and
Recommendations (DARFAR) report regarding the inability of traditional EVMS to
identify issues related to “contract requirements that utterly failed to meet warfighter
needs” [House Armed Services Committee 2010].

Sustainment

Sustainment of existing software-intensive systems—corrective maintenance

and evolution of capability—is a large part of the software activity performed by

or on behalf of the U.S. Department of Defense [Defense Acquisition University
2011c]. Agile methods have been successfully used in sustainment as well as

new developments in commercial industry, and in fact, some of the program

offices that we interviewed either started as sustainment projects or transitioned
into sustainment projects during the course of the project’s life cycle. One of our
reviewers commented, “Agile is perfect for continuous maintenance, [including] many
of the NASA Deep Space systems.” Among other benefits, one reviewer commented
that, for programs they had worked in an Agile fashion for both development

and sustainment, “...there is very little change in process or planning artifacts
when a product transitions from development to sustainment. This can save an
enormous amount of time and money.” There is also, generally, alignment between
a sustainment effort’s periodic releases for patches and the short iterations used in
Agile methods.

190ne of our reviewers who has used AgileEVM noted, “This is fine as long as the iterations are short.
When an iteration is longer than about three weeks, it will be important to calculate percent complete
of an iteration based on percent of story points planned for the iteration that are complete to this
point in the iteration. This is a type of “information radiator” that can be implemented that basically
shows current percent complete of the iteration.”

SOFTWARE ENGINEERING INSTITUTE 19

In sustainment contexts for IT systems with long life, contracting mechanisms tend
toward service contracts, in which the contracted element is the staffing of a set of
skills anticipated to be needed to sustain the software at a certain capacity. Projects
we interviewed in these kinds of sustainment contexts found estimating and tracking
using Agile methods and measurements to be useful to the customer as well as the
development team. This is because of the strong communication between end users
and the development team that resulted in a deep understanding of the priorities of
the user community being served and a commitment to providing as much value

as possible.

In service contracts of less than $20 million EVM threshold, where Agile methods were
in use, the use of story point estimation and the formulating of iterations based on
product backlog (often consisting of requests and defect reports from the field) were
consistently in use. Much of the content in the Contract Execution and Monitoring
section applies equally well to sustainment situations as to new start situations.

The biggest difference in sustainment is that an architecture for the system has
been defined and implemented. Depending on how well it has been communicated
to the sustainment team, there may be constraints on the team’s ability to evolve
the product to serve end-user needs. This is because the team also needs to
adhere to the architectural constraints that are often in place to meet security or
other non-functional requirements that may not be obvious to a team taking over

an implemented product. In this situation, there may be iterations that are needed
from time to time that are expressly focused on evolving the architecture to address
new infrastructure or quality attribute requirements. From an estimation process
viewpoint, these iterations are likely to be estimated using either non-user technical
stories, or some other estimation method, such as ideal days.

20 ESTIMATING IN AGILE ACQUISITION

Conclusion

The biggest difference between evaluating an estimate for an Agile project and a
traditional project is that the Agile project admits up front that not all requirements
can be known early in the project and so the overall estimate will be amended as
more knowledge is gained. Where a contract vehicle has been constructed that
allows these amendments to occur without having to process baseline change
requests, (such as a time and materials contract type) the overall process has been
easier for both acquisition personnel and the development contractor.

During the RFP preparation phase of a new system acquisition, the government
program office makes decisions that are pivotal to enabling or disabling an Agile
development contractor to bid and meet the program’s needs. During this phase,
the government program office prepares its PLCCE, based on the government’s work
breakdown structure (WBS). While standard government acquisition procedures
provide several barriers to establishing the trust that is key to Agile project success,
it is possible to mitigate this issue and produce an estimate that is consistent with
Agile methods, using the approaches described in this booklet.

Effective estimation begins with an acquisition strategy that describes how the
program office will interact with its contractor in order to provide the subject matter
expertise needed on a continuous basis throughout the iterations of an Agile
development. The statement of work (SOW) or program work statement (PWS) should
include language that allows the program office to provide subject matter experts
with the ability to participate in the development of the software. The program

life cycle cost estimate and budget must include funding for these subject matter
experts throughout the development of the system. And the government program
office must have a notional plan for what to do with the interim product releases that
come from an Agile development process. Specifying these in the SOW is one way to
emphasize the importance of working software being available in short iterations.

SOFTWARE ENGINEERING INSTITUTE 21

References

[Bhalareo 2009]
Bhalareo, S. “Incorporating Vital Factors in Agile Estimation through Algorithmic Method,”
International Journal of Computer Science and Applications 6, 1 (2009) 85-97.

[Boehm 1981]
Boehm, B. Software Engineering Economics, Prentice Hall, 1981.

[Cohn 2006]
Cohn, M. Agile Estimating and Planning. Addison-Wesley, 2006.

[Cohn 2008]

Cohn, M. “When Should We Estimate the Product Backlog.” Mike Cohn’s Blog - Succeeding
with Agile (March 16, 2008). http://blog.mountaingoatsoftware.com/when-should-we-estimate-
the-product-backlog

[CSSE 2011]
Center for Systems and Software Engineering, University of Southern California.
Agile COCOMO II. http://csse.usc.edu/csse/research/AgileCOCOMO/ (2011).

[Defense Acquisition University 2011c]

Defense Acquisition University. Ch. 4.3.6, “Evolutionary Acquisition Programs,” 280-281.
Defense Acquisition Guidebook. http://at.dod.mil/docs/DefenseAcquisitionGuidebook.pdf.
Accessed Sep 12, 2011.

[Department of Defense 2011]

Department of Defense. Section 2.5.2.4.1, “Guidance,” 57. Earned Value Management
Implementation Guide. Department of Defense, 2006. https://acc.dau.mil/CommunityBrowser.
aspx?id=386074&lang=en-US. Accessed July 13, 2011.

[GAO 2009]

Government Accountability Office. GAO Cost Estimating and Assessment Guide: Best Practices
for Developing and Managing Capital Program Costs (GAO-09-3SP). United States Government
Accountability Office, 2009.

[House Armed Services Committee 2010]

House Armed Services Committee. House Armed Services Committee Panel on Defense
Acquisition Reform Findings and Recommendations (DAR Final Report [3-23-2010]).

United States House of Representatives, 2010.

[Larman 2004]

Larman, C. Agile and Iterative Development: A Manager’s Guide. Addison-Wesley, 2004.
[Ozkaya 2011]

Ozkaya, I.; Brown, N.; & Nord, R. Ch. 3, “Communicating the Value of Architecting within Agile
Development,” 11-22. Results of SEI Independent Research and Development Projects

(FY 2010) (CMU/SEI-2011-TR-002). Software Engineering Institute, Carnegie Mellon University,
2011. http://www.sei.cmu.edu/library/abstracts/reports/11tr002.cfm

[Rawsthorne 2010]

Rawsthorne, D. Agile Release Planning and Monitoring. CollabNet, 2010. http://www.open.
collab.net/media/pdfs/SBU_ReleasePlanning.pdf. Accessed July 13, 2011.

22 ESTIMATING IN AGILE ACQUISITION

[Schenker 2007]

Schenker, F. & Jacobs, R. Project Management by Functional Capability. Presented at the 7th
Annual CMMI Technology Conference and User Group, Denver, CO, November 2007.
www.dtic.mil/ndia/2007cmmi/Thursday/3amSchenker.pdf

[SEER-SEM 2011]

“SEER-SEM.” http://en.wikipedia.org/wiki/SEER-SEM. Accessed July 13, 2011.

[Stutzke 2005]

Stutzke, R. Estimating Software-Intensive Systems: Projects, Products, and Processes.
Addison-Wesley, 2005.

[Sulaiman 2006]

Sulaiman, T; Barton, B.; & Blackburn, T. “AgileEVM—Earned Value Management in Scrum
Projects,” 10-16. AGILE '06 Proceedings of the Conference on AGILE 2006. Minneapolis, MN,
July 2006. IEEE Computer Society, 2006.

SOFTWARE ENGINEERING INSTITUTE

23

Appendix: COCOMO Factors List

One popular parametric cost-estimation tool is the COCOMO model. First
published by Dr. Barry Boehm in his 1981 book, Software Engineering Economics,
COCOMO (Constructive Cost Model) is an algorithmic-based parametric software
cost-estimation model for estimating a software project as an “effort equation,”
which applies a value to tasks based on the scope of the project (ranging from

a small, familiar system to a complex system that is new to the organization).
COCOMO Il is the successor of COCOMO 81, incorporating more contemporary
software development processes, such as code reuse, use of off-the-shelf software
components, and updated project databases [Boehm 1981].

At the heart of the COCOMO Il model are the cost parameters themselves. These
parameters are scale factors (5) and effort multipliers (17). Scale factors represent
areas where economies of scale may apply. Effort multipliers represent the
established cost drivers for software system development. They are used to adjust
the nominal software development effort to reflect the reality of the current product
being developed.

It would be reasonable to assert that an Agile development process would have
an impact on some of these parameters. The following scale factors and effort
multipliers, pulled from COCOMO I, might be impacted by the use of an Agile
development process:

Development Flexibility (FLEX) Scale Factor
Definition: The FLEX scale factor is related to the flexibility in conforming to stated
requirements.

Rationale: The participation of the user in the Agile development process, coupled
with an iterative approach to building, should lower cost and schedule
variance, because appropriate use of the methods assures continual
communication as situations change. This permits appropriate
reprioritization when needed.

Architecture/Risk Resolution (RESL) Scale Factor

Definition: The RESL scale factor is related to early, proactive risk identification
and elimination. The goal is to eliminate software risk by Preliminary
Design Review (PDR). This factor is also related to the need for
software architecture.

Rationale: Although there is opportunity to tackle high-risk items early in the
product lifecycle with an Agile approach, there is no guarantee that
this will actually happen. The lack of clear guidance regarding how to
accomplish a milestone review in an Agile development process, and
the general lack of consensus in the Agile community on the need for
or approach to developing a viable architecture, could increase the
cost estimate.

24 ESTIMATING IN AGILE ACQUISITION

Team Cohesion (TEAM) Scale Factor

Definition:

Rationale:

The TEAM scale factor accounts for sources of project turbulence
and entropy because of difficulties in synchronizing the project’s
stakeholders (e.g., users, customers, developers, maintainers,
and interfacers). These difficulties may arise from differences

in stakeholder objectives and cultures, difficulties in reconciling
objectives, and stakeholders’ lack of experience and familiarity
with operating as a team.

The Agile culture, in addition to the frequent interchanges between
the user and the developers, should provide plenty of opportunity to
improve team cohesion and should lower the cost estimate.

Analyst Capability (ACAP) Effort Multiplier

Definition:

Rationale:

Analysts are personnel who work on requirements, high-level design,
and detailed design. The major attributes that should be considered in
this rating are analysis and design ability, efficiency and thoroughness,
and the ability to communicate and cooperate.

The participation of users in the development process should improve
the knowledge of the analysts that elaborate the requirements and
produce the software design. The impact of the improvement should
lower the cost estimate.

Programmer Capability (PCAP) Effort Multiplier

Definition:

Rationale:

Current trends continue to emphasize the importance of highly capable
analysts. However, the increasing role of complex COTS packages,

and the significant productivity leverage associated with programmers’
ability to deal with these COTS packages, indicates a trend toward
higher importance of programmer capability as well. Evaluation should
be based on the capability of the programmers as a team rather than
as individuals. Major factors that should be considered in the rating
are ability, efficiency, and thoroughness, and the ability to communicate
and cooperate.

The participation of users in the development process should improve
the knowledge of the programmers who write the software code. This is
the factor that most relates to the Agile measure of velocity. The impact
of the improvement should lower the cost estimate.

SOFTWARE ENGINEERING INSTITUTE 25

Application Experience (APEX) Effort Multiplier

Definition:

Rationale:

26

The cost-estimating multiplier based on the domain knowledge and
capability of the software development staff is called APEX. The rating
for this cost driver is dependent on the level of applications experience
of the project team developing the software system or subsystem. The
ratings are defined in terms of the project team’s equivalent level of
experience with this type of application.

The participation of users in the development process should improve
the domain knowledge of the development team. The impact of the
improvement should lower the cost estimate.

ESTIMATING IN AGILE ACQUISITION

SOFTWARE ENGINEERING INSTITUTE

27

28

ESTIMATING IN AGILE ACQUISITION

Copyright 2017 Carnegie Mellon University. All Rights Reserved.

This material is based upon work funded and supported by the Department of Defense under Contract No.
FA8702-15-D-0002 with Carnegie Mellon University for the operation of the Software Engineering Institute, a
federally funded research and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be
construed as an official Government position, policy, or decision, unless designated by other documentation.

References herein to any specific commercial product, process, or service by trade name, trade mark,
manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or
favoring by Carnegie Mellon University or its Software Engineering Institute.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL

IS FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY

KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY

OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE
MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO
FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government use and distribution.

The Government of the United States has a royalty-free government-purpose license to use, duplicate, or
disclose the work, in whole or in part and in any manner, and to have or permit others to do so, pursuant to the
copyright license under the clause at 252.227-7013.

Internal use:* Permission to reproduce this material and to prepare derivative works from this material
for internal use is granted, provided the copyright and “No Warranty” statements are included with all
reproductions and derivative works.

External use:* This material may be reproduced in its entirety, without modification, and freely distributed in

written or electronic form without requesting formal permission. Permission is required for any other external
and/or commercial use. Requests for permission should be directed to the Software Engineering Institute at
permission@sei.cmu.edu.

*These restrictions do not apply to U.S. government entities.

DM17-0009

