From Secure Coding to Secure Software

Table of Contents

From Secure Coding tO SECUre SOFtWAIEciiviiiiiiiiiiiie e saae e s 4
WY SOFEtWArE SECUIILY 2 ettt e s e e e s st e e e e s s bae e e e s sabaeeessaraaeesnans 6
Software and security failures are rampPant ... 7
Software and security failures are EXPENSIVEccuviii i 8
(o] g T @ T =T d o 1 PRSPPI 9
Engineering and DEVEIOPMENTcooiiiiiiiiiee et e e s sabae e e e aaes 10
Most Vulnerabilities Are Caused by Programming Errorscoecveeeiriiiveeeiniiieeessiieee e esinee e 11
Secure SOftware DeVEIOPMENTciiiiiiiei ettt e e s e e e e s sbae e e s snabaeeeenans 12
SoUrces Of SOftWAre INSECUNILY «..uvviiiiiiiee ettt s e e e s s bae e e s ssabaeeesnans 13
(oo [T a T @ TU T o] 1. PRSP 15
Coding rules — 2016 EQItiONceiiiiiieeiiiiie ettt sar e e s sbae e e s s abe e e e s sbaa e e s sabaeeeenans 17
(O CTU T - o ol TP T PP OPR PRI 20
OWASP GUIBANCEeeiiiiiiiiie ettt e s ba e s e s et e sbe e e sne e e sane e e saneeeas 22
Buffer oVerflow Nas Many CAUSES........coucciiriiiieieeeecierreeeee et e e e e e e sebrreeeeeeeesseansbraeeeeeeeens 23
Learning from rules and reComMmMENAatioNscooveriieeiieeiiiiiiireee e e eerrrrrreeee e 25
AN Methodology fOr rUlE CreatioNc.vvvveiiiii e e e e e e e e e e e e eeaanes 27

Examine language definitions and standards for undefined, unspecified and implementation-

defiNEd DENAVION ... i e e 28
Examine vulnerable code for PAterNsuvveeeiiiiiiiicieee e e 29
Implement candidate rules and run against sample codecccovvveeeiiiiiiiciiiieeeeeeeeeeeee 30
Experience With SyStematiCc TESTING ...ccoovveiirieiiei e e e e e ebbrreeeeeeeeas 31

Page 1 of 80

Tapping into expert knowledge for developing CERT coding s tandards........cccccccevvvvcnrvveenneenn. 32

NEW RUIE EXGMPIE «.tttvieiiiiieiieititteeeee ettt e e e e eseabbr e e e e e e e seabbeaeeeeeeeeesessstbareeesesssennsrraeneeeeenns 33
UpPdated RUIE EXAMIPIE....cccii ittt e e e et e e e e e e e e sabbbaeeeeeesssennsbeaeeeeeeenas 36
Development and VerifiCatioNot e e e e ere e e e e e s sensbaaeneeeeeees 37
(DY Y N (G (=T 10 1 =] 0 01T g 43N 38
Adopting SECUre COAING PraCtiCeS ..uuuuuuuiiriiiririririiererererereeerereeerererererererererererer............—.—.—.—. 40
RISK ASSESSIMENT ... eiitietieete ettt ettt ettt e s e st esbe e et e e smneeareesneeeneesnneeneennes 41
PriOrities @nNd LEVEISco.eeeieeieeeeee ettt e 43
CONTOIMANCE TOSTING c.uvtiieiiiiiie ettt ettt e e e st e e e st e e e s sbbeeeessabaeeesssabeeeeessaeeessnsseeeesnnns 44
(oo [g T @ T =T d o I PP PP 45
Tools encourage application of SECUre COINGcoviviiiiiiiniiiieiiiee e e 46
Static Testing — Source code analysis tOOIS........coviiiiiiiiiiiiiiie e 47
SCALE MUIEIOO! @VAlUGLION ...eeiiiiiiieiee et 48
POIIING QUESTION 5 ... st e e s s e e s s aba e e e s sabe e e e ssabaaeeesnasaeeessannees 50
SEIECt SCALE ASSESSIMENTS ..ceueiiiiiiieeiteeeitee ettt ei et e st e e st e e st eesab e e s bt e e s bt e e sbeeesbeeesneeesaneeesaneeeas 52
(o] [g T @ T =T d o I PRSP 53
Secure Coding Professional CertifiCatescuiiiiiiiiiiiriiiiecc e 56
SEl Secure Coding in C/CH+ TraiNiNg L....ccveeeceeeeiieceieeeetee et e eereeeetreeeeareeeetaeeeesreeeeaeeesneeesreeens 57
SEl Secure Coding in C/CH+ TraiNiNG 2 ..ccccueeeecieeeeireeeeteeeeteeeereeeereeeetreeeetreeeetaeeeesseeseseeesseeesseeens 58
JAVA SECUIE COOING COUISE oiuiiiiiiiiiiiiee ettt ettt e e st e e et e s st e e e s st aee e s sbbaeeessabaeeeesaseeesenasenes 59
(oo [T a T @ TU =T i o I A PP PR PPR 60
Evolution of software developmENT ... e 61
Development iS NOW @SSEMBIYueiii i e et e e e e e e senbbaaereeeeeees 65
Software supply ¢ hain for assembled SOfTWArE..........coovcvirieiiiice e 66

Page 2 of 80

Substantial open source contained in SUPPIY ChaINcoocviieeiiiiiiii e, 67

Open source s upply chain has @ loNg Pathuvveeiiiiiiii e 68
Corruption in the tool chain already eXiStS.......cuveviiiiiiiiiiiiieeeee e e e 69
OPEN SOUICE IS NOT SECUIE ...eieeeeiiiiieee et e e eeeeteeee e e e e e e ettt e e e eeeeeeettsanaaaeeeeeesessnnnnaeeeaessessnnnnnaeeeeeenes 70
Reducing software supply chain risk faCtOrScoovieiiiiieiiei e 71
Supplier security COMmMItMENT EVIAENCEcccuvviviiiiei et e s e b 72
Evaluate a product’s threat 1 @SISTANCEuvvvviiiii i e 73
Establishing good product distribution PractiCes........ccevviiiiiiiiiiiieeeeieeeeeirreee e 74
Maintain operational attack I @SIStANCEciiviiiiiiiiiiie e 75
WNEIE 0 STAMT ..ottt ettt esh bt e e bt e s b e e sb bt e s bt e e sbeeesaneeesaneeeas 76
L@ UT=1] oo I PSP PP PPT P PPPPI 77

Page 3 of 80

From Secure Coding to Secure Software

From Secure Coding to

Secure Software

Robert Schiela
Mark Sherman

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

_E Software Engineering Institute | Carnegie Mellon University

**¥004 Presenter: And hello from
the campus of Carnegie Mellon
University in Pittsburgh,
Pennsylvania. We welcome you to
the Software Engineering Institute's
webinar series. Our presentation
today is From Secure Coding to Secure
Software. Depending on your
location, we wish you a good
morning, a good afternoon, or good
evening.

My name is Shane McGraw, your
moderator for the presentation, and
I'd like to thank you for attending.
We want to make today as interactive
as possible, so we will address
questions throughout the
presentation, and again at the end of
the presentation. You can submit
those questions to our event staff at

Page 4 of 80

any time by using the Ask a Question

tab or the Chat tab on your control panel.

We will also ask a few polling
questions throughout the
presentation and they will appear as
a popup window on your screen.
The first question I'd like to ask, and
it will appear now, is: How did you
hear of today's event?

Another three tabs I'd like to point
out are the Download Materials,
Twitter, and Survey tabs. The
Download Materials tab has a PDF
copy of the presentation slides there
now, along with other secure coding
related work and resources from the
SEIL. For those of you using Twitter,
be sure to follow @cert_division and
use the hashtag #seiwebinar. The
survey we ask that you fill out upon
the completion of today's webinar, as

your feedback is always greatly appreciated.

Now I'd like to introduce our
presenters for today. Bob Schiela is
the technical manager leading the
secure coding team in the
Cybersecurity Foundations
Directorate of the CERT division. Dr.
Mark Sherman is the technical
director for the Cybersecurity
Foundations group, and before
coming to CERT, Dr. Sherman was at
IBM and various startups. Welcome
Bob and Mark. All yours.

Presenter: Thank you very much,
Shane. It's a pleasure to be here and
hello to everyone out in the web.
We're here today to talk about secure
software, and in particular--

Page 5 of 80

Why Software Security?

Why Software Security?

Developed nations’ economies and defense depend, in large part, on the

reliable execution of software

Software is ubiquitous, affecting all aspects of our personal and

professional lives.

Software vulnerabilities are
equally ubiquitous, jeopardizing:
* personal identities
« intellectual property
e consumer trust
* business services, operations, and continuity
« critical infrastructures & government

== Software Engineering Institute | Carnegie Mellon University

**005 --Developing secure software
through secure coding practices.

So I want to start off with why is that
important. Well, today, more than
ever, software has become a part of
our lives, integrated into the systems
we use every day. More than ever,
we're depending on those systems to
work. We have cell phones that are
embedded in our cars and other
devices that we rely on every day,
and they're more connected than
ever to other systems. Also a lot of
these systems are connected in ways
that they were never originally
designed to be connected, so it's
created other avenues for attack.

A great example of all of these
conditions-- it was just announced a
couple of researchers at DEFCON,

Page 6 of 80

they created a proof of concept
ransomware on a thermostat. So loT
devices are definitely vectors for
attack and we're starting to rely on
them more and more.

So there's a lot of different, important
ways that it's affecting our lives
through our personal information,
intellectual property of organizations
being lost, consumer trust, and just
general continuity of services. Our
economies today, more than ever,
and also our nation's defenses are
relying on software.

Software and security failures are rampant

Software and security failures are rampant

=

Toyota Is Recalling Millions of Prius Hybrids
to Fix a Software Bug

Daily Report: Software Error Shakes Bitcoin Exchange

By THE NEW YORE TIMES

-]
0 Daily
v Report

" g Source: New York Times, Feb 11, 2014
iPhone software security flaws exposed

By Tr8 Exaeran 300 HaN"an Kahier 5an Fancen

eBay Suffers Massive Security
Breach, All Users Must Change
Their Passwords

eBay publicly admit[ed] hackers had stolen the names, email

and postal addresses, phone numbers and dates of birth of its
233 million users.

Sources: Forbes (online), May 21, 2014;
The Telegraph, May 22, 2104

Source: Financial Times Limited, Feb 25, 2014

From Secure Coding to Secure Software
= L August 17, 2016
== Software Engineering Institute | Carnegie Mellon University ©2016 Camegie Vellon University 6

[Distribution Statement A] This material has b d for public release and

**006 So, as we also know, these
vulnerabilities are affecting us and
we're hearing about them constantly.
It seems like every day, or at least
every week, there's a new

Page 7 of 80

announcement of somebody or some
system being affected by a hacker or
an attack. We learn a lot more about
the specific coding issues in open-
source software, but there are
definitely issues with security of

software whether it's open source or proprietary.

Software and security failures are expensive

Software and security failures are expensive

L L T S

For T;:lrset, the Breach Numbers Grow

Target Earnings Slide 469 After Data Breach|
ey Sp— v | 17

@= ARTICLE FREE PASS

$12 for 12 Weeks | SusscRuenon

Source: Wall Street Journal, Feb 26, 2014

Average cost in a breach:
$158 per record ($221 in US)

Source: New York Times, Jan 10, 2014

== Software Engineering Institute | Carnegie Mellon University

**007 Additionally, the cost of
securing the software or, in
particular, dealing with the aftermath
of a failure, has increased in price
because of the amount of data that's
being collected and the importance of
that data. Arecentreportin 2016, a
couple months ago, the 2016 Cost of
Data Breach report estimates that the
cost is 158 dollars per record across
the globe, and in particular, the data
of U.S. is about 221 dollars per
record that's lost.

Source: Ponemon Institute, “2016 Cost of Data Breach
Study: Global Analysis”, June 2016

From Secure Coding to Secure Software

August 17, 2016
©2016 Camegie Mellon University

[Distribution Statement A] This material has b

d for public release and

Page 8 of 80

Polling Question 2

Polling Question 2

What programming language are you most concerned about using securely?

« Ada
Assembly
« C

o C++

« C#

« Java

Java-Script
Objective-C
Perl

* PHP

Python

PL/SQL or SQL
¢ Ruby

* Swift

Visual Basic

« Other

Little to none developed in-house

== Software Engineering Institute | Carnegie Mellon University

**008 So we're going to talk a little
more in detail about secure coding,
which means we're going to be
talking about software development,
and in particular, developing
particular languages. Before we get
started in the details, I'm interested
in finding out about what languages
you're most interested in out there
with regard to what you're trying to
secure.

Presenter: So the question is
posed, so we can see the results in
about another minute or so.

Presenter: Yeah, so please go
ahead and answer and submit your
answer to that question.

[Distribution Statement A] This material has b

From Secure Coding to Secure Software
August 17, 2016
©2016 Camegie Mellon University

d for public release and

Page 9 of 80

Engineering and Development

Engineering and Development

Sustainment

Engineering and Development

I
& =

Mission
Thead

Threat
Analysis

Abuse
Cawes
 principles

Requirements and Acquisition

== Software Engineering Institute | Carnegie Mellon University

**009 So, as I mentioned, we're
going to talk about secure coding in
particular, and here's a standard
model of the development lifecycle,
and to us we kind of focus on the
security aspects of this development
lifecycle. The Secure Coding group,
and what we're trying to impact,
really starts in the green chevron in
the center and the one to its
immediate right, Coding Rules and
Guidelines and Testing, Validation
and Verification. That's really what
we're trying to focus on improving.

£ Architecture
£ and Design

'S

Coding Testing, Monitoring Brieach
' Rules anad Walidaticn Awareniss
Guidelines and
Verification

Deployment and Operations

rom Secure Coding to Secure Software

Fro
August 17, 2016
©2016 Camegie Mellon University

[Distribution Statement A] This material has b d for public release and

Page 10 of 80

Most Vulnerabilities Are Caused by Programming Errors

Most Vulnerabilities Are Caused by Programming Errors

64% of the vulnerabilities in the NIST National Vulnerability Database due
to programming errors

*51% of those were due to classic errors like buffer overflows, cross-site
scripting, injection flaws

Top vulnerabilities include
* Integer overflow
* Buffer overflow
» Uncontrolled Format String
* Missing authentication
» Missing or incorrect authorization
* Reliance on untrusted inputs (aka tainted inputs)

Sources: Heffley/Meunier: Can Source Code Auditing Software Identify Common Vulnerabilities and Be Used to Evaluate Software Security?; cwe.mitre.org/top25
Jan 6, 2015

10

== Software Engineering Institute | Carnegie Mellon University

[Distribution Statement A] This material has b

**010 Why are we doing that?

We're doing that because a majority
of vulnerabilities, according to a NIST
report, have been found to be related
to programming errors, and in
particular, a strong majority, if not
even more, has been found to be
classic errors that are fairly well
known, like buffer overflows, cross-
site scripting and injection flaws. In
particular, top vulnerabilities include
integer overflow, buffer overflow,
format strings that are not controlled,
and then there's also issues with
regard to authentication and
authorization. And so these are well
known, and yet they keep occurring.

Page 11 of 80

Secure Software Development

Secure Software Development

Secure software development starts with understanding insecure coding

practices, and how these may be exploited.

Insecure designs can lead to “intentional errors”, that is, the code is

correctly implemented but the resulting software contains a vulnerability.

Secure designs require an understanding of functional and non-functional

software requirements.

Secure coding requires an understanding of implementation specifics.

== Software Engineering Institute | Carnegie Mellon University

**011 When you're trying to

develop software that is secure, it
really starts from the beginning, and
so we don't lose sight of that, that
you need to design it securely. If
there are flaws in the design, then it
doesn't matter if you use proper
coding practices, you're likely to have
flaws in the software, and so we
keep that in sight as well, that the
software has to be designed securely.
But then even a strong design can be
undone by poor secure coding
practices, and we'll talk about that in
a few minutes.

11

Page 12 of 80

Sources of Software Insecurity

Sources of Software Insecurity

Absent or minimal consideration of security during all life cycle phases
Complexity, inadequacy, and change

Incorrect or changing assumptions

Not thinking like an attacker

Flawed specifications & designs e
Poor implementation of software interfaces oy |

Unintended, unexpected interactions -
« with other components o
» with the software’s execution environment

Inadequate knowledge of secure coding practices

== Software Engineering Institute | Carnegie Mellon University 12

**012 So, here's a few common
sources of software insecurity, again,
kind of across the lifecycle, looking at
design all the way through. In
particular, just to mention a few of
them, the complexity of the systems
has grown, the inadequacy of a
particular system in the context that
it's placed, and change and managing
that change across the system,
across developers and development
teams, is difficult to manage. During
the design, not thinking like an
attacker, just thinking of use cases of
how a user will use it, as opposed to
thinking about abuse cases and how
attackers might misuse the software
to get it to do something the original
designers didn't intend is another
aspect that can allow you to create
software that's not secure.

Page 13 of 80

Let's see another one here. Well, a
major one that we'll talk a little bit
more about with our roles is
unintended and unexpected,
generically, interactions, but also
unintended, unexpected behaviors.
This is, as | was mentioning, systems
that have been designed for a
particular context or environment or
to be used in a particular way, and
then later, after it's been developed,
is put in a different environment. Or,
for unintended, unexpected
behaviors, it is writing the software
using language constructs that were
never intended by the language
itself. And so you start violating rules
of the language, whether you know it
or not, and then the software may do
things, after it's compiled and
installed on a particular platform, that
you didn't intend that leads to
security issues.

And finally, one of the things we'll
talk about later is inadequate
knowledge of secure coding
practices, and we'll discuss a little bit
today about what some of that
knowledge and what secure coding
practices mean and how you can gain
more knowledge on that.

Page 14 of 80

Polling Question 3

Polling Question 3

Does your organization use a coding standard for security?

* Yes
* No
* Maybe?

== Software Engineering Institute | Carnegie Mellon University

**013 So here we have another
question that [would like to ask to
the group. Go ahead.

Presenter: So while that one's
launching, Bob, I can do some of the
results of the last one.

Presenter: Sure, sure.

Presenter: So it looks like we had
24 percent with Java. Itlooks like C-
hashtag or C-pound was--
Presenter: C Sharp.

Presenter: C Sharp is at 20

percent, then C++ 18. Those were

the three main winners.

Presenter: Okay. Great, great,
great. Thanks for that. And actually,

[Distribution Statement A] This material has b

13

Page 15 of 80

before we go to the polling question,
unless you already pushed it, do we
have any questions from the
audience up till now?

Presenter: We actually have one
interesting comment, which we'll
actually talk about. It was a question
about that SQL injection was noticed
quite a while ago and yet we're still
hearing about it, and I'll paraphrase:
Why is that? And we'll actually talk a
little bit about in a moment.

Presenter: Bobby Tables. I love
Bobby Tables. It reminds me of me
because my name's Bobby, so. Yes.
Yeah. That goes to the design issues
and some things that have nothing to
do with the coding, or in one
language that then is interpreted by a
different language.

Presenter: And justto wrap up our
results, 47 percent with yes, they use
a coding standard for security, 23
percent no, 29 percent maybe.

Presenter: Okay, great. Thank
you.

Page 16 of 80

Coding rules - 2016 Edition

Coding rules — 2016 Edition

[hrieeien i woed]
TaE CERT
ORACLE SECURE
CODING STANDARD
FOR JAva

SEI CERT
C Coding Standard

Fues £ Eurreinping fabe, Sotiatee, sra Secise Spateivn

== Software Engineering Institute | Carnegie Mellon University

**014 And so what are the
standards? I've mentioned them
several times here. So at CERT, in
the Software Engineering Institute,
we started codifying best practices
for coding securely in specific
languages about a decade ago, and it
all started with the recognition that a
lot of these issues are common. So
we started looking at what's common
and how can we prevent these
common errors. In particular, which
errors are being caused by misuse of
the language. And so that started
with a general best practices book,
and then as our knowledge matured,
we started writing specific coding
standards for C and for Java
eventually. And so we're going to
take a look talk a little bit more about
what's in those standards, but they're
generally a compilation of how to use

» Collected wisdom of programmers
and tools vendors

* Fed by community wiki started in
Spring 2006

» Over 1,500 registered
contributors

e C Coding Standards
Available as downloadable report

http://cert.org/secure-coding/products-

services/secure-coding-download.cfm

« Java Coding Standards
Available as book

¢ C++, Perl, and “Current Standards”
Available on Secure Coding Wiki

https://www.securecoding.cert.org/

[Distribution Statement A] This material has b

Page 17 of 80

14

the languages and the constructs in

the language securely, avoiding common flaws.

And so recently, we just released-- a
couple months ago we released a
new version of the C coding
standards as a downloadable report.
The link is there so you can download
that freely. The Java coding

standard is available as a book, and
we also have C++ and Perl standards
that are in development but available
on our secure coding wiki, as well as
what I call, or we call, the current
standards. They're kind of the in-
flight, in-development beta version of
the standards that are available on
the wiki, but they have not been--

the changes since the last iteration of
the publication, basically. And so if
you need a snapshot of it, you can
download the PDF, but if you want
the latest and greatest rules, and I'll
even mention a couple things that
have changed in the last couple
months, you can get them from the
wiki. Now, are there any other
questions?

Presenter: We do. Just one from
Ed asking, "Any work on secure
Python programming?”

Presenter: Sure. So we have
considered working on a couple--
developing languages on a couple
other-- sorry-- standards on a couple
other languages, Python being one.
Another common one, as you
mentioned, the second option was C
Sharp. We don't have one for that.
And several customers recently have
been asking us about Ada, which is

Page 18 of 80

kind of a surprise, but it's come up.
We're still kind of deciding what
we're going to develop. We might
start developing, as I said, kind of a
beta version on the wiki soon, but
that kind of depends and is often
driven by customer demand--
customer often meaning some sort of
funding source. So it just depends

on the demand.

And actually, with that, [was
wondering, Mark, if you could tell the
audience a little more about the rules
and how we develop them.

Presenter: Sure, I'd be happy to,

and we'll see some of the history and
motivation as to why things don't
seem to go away, and some of the
discussion that has been going on in
the chat address some of the issues,
which is the reason why other
languages that you might use to
prevent them aren't widely adopted,
is because they make tradeoffs in
time and space that programmers
may want to use, but that also makes
it a challenge in adopting the rules.

So let's consider one particular example.

Page 19 of 80

CWE Guidance

CWE Guidance

CI/SS
C./RAE

Common Weakness Enumeration
e Dl (e sy of S Wiachanits T

=l

CWE-120: Buffer Copy without Checking Size of Input ['Classic Buffer
overflow')

detined code coverage within [med
a Inputs, since the altisck sursce

Acccrdien by SOAR, Une Ellowing dibection bechnigues imay by vseful;

From Secure Coding to Secure Software
o ogs
== Software Engineering Institute | Carnegie Mellon University 22615 Canege elon Unversy 15

[Distribution Statement A] This material has b d for public release and

**015 SQL injection was the one
mentioned in the chat room, saying,
"We know about this. How come it's
still going on?" And SQL injection
actually is an example of a more
broad class of problems, which I call
the eval problems-- basically taking in
a string of some sort and then
performing an evaluation on it-- eval
if you're a LISP guy; there's exec if you're
a SQL guy; there's a variety of
different verbs for that, but the idea

is you're taking a piece of code, you
trust it, you basically say, "Go

execute this code," and it's bad code
and you get something like SQL
injection.

And part of the challenge in dealing
with that is being able to give good
advice to the developer on what they
should do about it, and rather than

Page 20 of 80

take SQL injection, or cross-site
scripting, which are a little more
complicated examples, ['m just going
to walk you through a little bit of a
more simple example, buffer
overflow. Buffer overflow, in case
you've been living under a rock, is an
example where you're either reading
from a space that you shouldn't be or
writing to space that you shouldn't
be-- a mismatch in two buffers
usually-- the size of two buffers.

And so there's a lot of talk, a lot of
guidance about what to do here, and
just to show you sort of the two most
common sources of guidance that
people look to, CWE that MITRE
sponsors-- or MITRE hosts, I should
say-- | think DHS actually sponsors it-
- Common Weakness Enumeration.
This is a particular page, and the one
[picked is their guidance for classic
buffer overflow, and I don't know if
you can read it on the fly here, but
you'll certainly be able to study it
later, it says, "What should you do
about buffer overflow?" It says,
"Well, read your code very carefully."
It says, "Have someone else read
your code very carefully." It says,
"Run a tool to see whether it can find
the problem or not." That's not very
specific advice that you can give to
the programmer on what to do. The
programmer, when they write code,
doesn't intentionally write bad code.

Page 21 of 80

OWASP Guidance

OWASP Guidance

Page Disc

Buffer Overflows

Hame
Azout WASP . .
Ackr - General Prevention Technigues

A number of general 1achnigques to prevent butfer overfiows indlude

+ CoOe auding (aulomaled o manual)
+ DeveIOper raNing — Bounds checking, use of unsate FUNCHONS, and group standards
» Non-executable siacks - many operating systems have at least some support for this

« Compiier 1008 - StackSnield, StackGuard. and Libsafe, among oihers

« Safe iunclions — use sirmcal mslead of streal. sirmcpy mstead of stepy. el
applealions UpoR Which your code is dependant

Your server products and your custom web applications

== Software Engineering Institute | Carnegie Mellon University

**016 Probably the next most

widely used source of guidance is
OWASP, the Open Web Guidelines,
and again, here's the generic buffer
overflow guidance that they give, and
they say, "So, what should you do to
prevent it?" Well, it says, "Code
carefully." It says, "Read your code.
Have developers look it over. Run
some tools on it." Sometimes you
might even see things like, "Check
that your indexes are okay." That's a
little better, but still is not very
prescriptive of what you should do,
or proscriptive of what you should
avoid. And again, let's consider some
reasons why.

[Distribution Statement A] This material has b

= Palches — Be sure o keep your web and applicalion servers fuly palched, and be aware of bug reports relaling to

« Periodically scan your agplication with cne or mire of the commonly available scannérs Bl look for bufler cverfion flaws in

From Secure Coding to Secure Software
August 17, 2016
©2016 Camegie Mellon University 16

d for public release and

Page 22 of 80

Buffer overflow has many causes

Buffer overflow has many causes

Buffer Overflow (BOF): The software can access through an array a memory location that is outside the

array boundaries. Causes

" InpuiNot
~Checked Properly

Incorrect Calculation
o Integer i
Missing ™ ‘” oger
|) - Coercion _
- Factor ~ T

—_ |, “NoNULL ™
o~ Integer Overflow ‘\) \\ _Termination . /
\ >~ Wrap-around__~ [™ I
\ /“Incorrect N _ —
\ N ;Argmncm/,»’l" Integer
N ZUnderflow_//

:izirlfny Un:‘-g e

/" Incorrect ™,
. Conversion -

Data Exceeds Array
‘Arra},’ Too Smarllf > |

A _’I 0o Much Data) /

N~ 'Vﬁéng Index / Pointer "‘
AT OutofRange

Attributes

Access:
v Read
v Write
Boundary:
¥ Below
¥ Above
Location:
v Heap
v Stack

'} Magnitude:

v'Small

v Maderate

v Far
Data Size:
v Little
¥ Some
v Huge
Reach:

Consequem‘es

CInformation Exposure >

/

\

v Continuous \

¥ Discrete

' \ ‘\\\ \%é_y-slem Craél};-— —

% “_Resource Exhaustion >

.}:(:[;l‘lf;)_l'mﬂliﬂll Change/_L’ug_st >

< Altered Control Flow >

K "_I-ﬁr.orre ct Resulis >

" =(Program Crash).

Y,

S ;ﬁ;?_)i[‘[aly Code Execut_iéfl, a

Source: Bojanova, et al, “The Bugs Framework (BF): A Structured, Integrated Framework to Express Software Bugs”,2016, http://www.mys5.org/Proceedings/2016/Posters/2016-S5-Posters_Wu.pdf

== Software Engineering Institute | Carnegie Mellon University

**017 Like, again, the usual buffer
overflow. It turns out buffer
overflow-- and this is a simple one,
as [said. For the other ones, they're
much more complicated. Buffer
overflow actually has many, many
different things that cause that
problem to occur. So, for example, it
could be that the input that came in
through the system is tainted. It
could be that you didn't have the
right scaling factor. It could be that
you had some sort of integer
overflow, or integer underflow. Now,
that one may not seem apparent, but
let me give you an example of how
that might work in practice. And
again, it goes back to the realization
that people pointed out, that when
you're writing code, especially if
writing something like C, you're very
conscious about trying to be very

[Distribution Statement A] This material has b

From Secure Coding to Secure Software

August 17,
©2016 Camegie Mellon University 17
4 for public release and

Page 23 of 80

fast, trying to be very small. So even
if you give the guidance, check your
bounds, and that will prevent buffer overflow.

What does a C programmer do?
Well, the usual calculation in C for
array access, which I suspect most of
the folks on this webinar given the
background that they have, is
basically taking an address, a pointer,
and you add a number to it, and then
that gives you a pointer into the
array, and then you use that to
index. And so the efficient way in C
in order to see whether you've
exceeded the bounds is you start
with the start of the array, the
pointer, you add in what you think is
the test index, some value that you
read in from the outside, and you
compare it to the pointer that is at
the very end. You think you've now
checked the bounds, the thought
being-- let's say if you have an array
of 10 and you get an 11, it's a little
bit beyond the bounds. You see that
it's beyond the bounds. You say,
"Oops, there's an error.” The
problem is, if you're having
something malicious, is that it's not
10 going to 11 that comes in, it's 10
going to 100 million that comes in.
When you add a gigantic number to
that initial address, you get an
integer overflow. That's a fancy way
of saying the number wraps around,
and actually will be below the original
base. So if you want to see have |
gone beyond the end of the buffer,
the answer is no. It'll look like you're
in front of the buffer and you'll say,
"Everything is fine," and then you
start getting into problems.

Page 24 of 80

Now, there is a way to do this kind of
buffer overflow, checking, bounds
checking, but it's a lot more subtle
than what you might expect to do as
a standard C programmer. Coming
up with those kind of actionable,
precise rules that actually help you
build programs that are resilient is
really what rules ought to be about,
as opposed to what we see here in a
lot of the overall guidance, which is
useful at one level but not really actionable.

Learning from rules and recommendations

Learning from rules and recommendations

Rules and recommendations in the secure coding standards focus to improve behavior

The “Ah ha” moment: e Compliant solutions in a
Noncompliant code blue frame that conform
examples or antipatterns in with all rules and can be
a pink frame—do not copy T reused in your code

and paste into your code i R

From Secure Casing to Secure Sofware
== — n : . S Rugust 17,2016
== Software Engineering Institute | Carnegie Mellon University ©2016 Camegi Melon Uniersty 18

[Distribution Statement A] This material has b d for public release and

**018 And so what a couple of
groups have done-- we are one of
them. Frankly, MISRA is another
one-- is develop standards that don't
say, "Don't do buffer overflow." They
say, "Here's how you should carry
out the pointer arithmetic in these
kinds of situations so you don't

Page 25 of 80

generate these overflows, and you
actually check to see whether you're in
bounds or not." That is a way then
that you can make sure that you are
meeting the goal of not creating a
buffer overflow from at least one
source, the integer overflow.

Now, in the case of both us and
MISRA, the way we do it is we have
some rules-- that's what the very top
part of this is-- but perhaps as
important is in the next section of the
standard, we give examples of what
code that looks good might seem,

but really isn't, as the example I gave
where you're trying to do the pointer
calculation and you wind up wrapping
around and you think that you
haven't exceeded the end of the
buffer, but you have. Showing you
then how you might have written it,
which is not correct, and then
showing you the right way to do it is
provided so you can see the better
way to do it and actually accomplish
what you want, to not have the
buffer overflow.

So I mentioned CWEs don't have as
many of these kinds of things. We
focus on it. MISRA focuses on it. We
focus on particular elements to make
things secure. MISRA focuses on
particular things for safety in
embedded systems. Just to give you
an example, we worry about things
like integer overflows driving buffer
overflows. They worry about running
out of space. So their rules, for
example, would include, "Don't use
malloc. No recursion in functions,"
things of that sort, as a way to

Page 26 of 80

maintain static memory allocation so
that your card doesn't run out of
space as it's trying to do some kind
of thing. But the point is, these two
sets of rules are actionable as
opposed to many other sets of rules,
which are, "Don't do something bad."
And for something like SQL injection,
it's a lot more involved to explain to a
developer how it is that you should
code in order to prevent SQL
injection, other than something very
overwhelming like, "Don't do any
executable code." Which is kind of
difficult in today's environment where
you want maximum flexibility.

An methodology for rule creation

An methodology for rule creation

Exploit language ambiguities
Analyze vulnerable programs
Systematically test the rules

And still consult with experts

19

|U|"U|

Software Engineering Institute | Carnegie Mellon University

**019 So how do we generate these
kinds of rules? Well, we actually
have developed a methodology. So
we've done this for a couple of

Page 27 of 80

languages and we can apply these to
other languages, and if you wanted
to build your own set of rules for
your own company, you might do this
as well. First, we look for ways to
exploit language ambiguities. We
then actually look at vulnerable
programs. Where have things gone
wrong? We create some rules and
systematically test them, and we
then ask for personal opinions from
experts. Most of the other rules that
we talk about that you read are
frankly just that last one. A group of
very smart people get together and
say, "I think it looks like this," but
then you wind up with these sort of

generic rules of what can you do

about it.

Examine language definitions and standards for undefined, unspecified and
implementation-defined behavior

Examine language definitions and standards for
undefined, unspecified and implementation-defined

behavior

2

343

undefined behavior

behavior, upon use of a nonportable or erroneous program construct or of erroneous data,
for which this International Standard imposes no requirements

NOTE Possible undefined behavior ranges from ignormg the situation completely with unpredictable
results, to behaving during translation or program execution in a documented manner characteristic of the

environment (with or without the issuance of a diagnostic message). to terminating a translation or
execution (with the 1ssuance of a diagnostic message).

EXAMPLE An example of undefined behavior is the behavior on integer overflow.
3.44

unspecified behavior

use of an unspecified value, or other behavior where this International Standard provides
two or more possibilities and imposes no further requirements on which is chosen in any
instance

EXAMPLE An example of unspecified behavior 1s the order m which the arguments to a function are
evaluated.

Source: http://www.open-std.org/jtc1/sc22/wg14, ‘docs/n1124.pd (1SO 9899 - Languages —C draft)

== Software Engineering Institute | Carnegie Mellon University

From Secure Coding to Secure Software

August 17, 2016

©2016 Camegie Mellon University

[Distribution Statement A] This material has b d for public release and

20

Page 28 of 80

**¥020 So, as an example, this is

from C. The C language has things
like undefined behavior, unspecified
behavior, implementation-defined
behavior. Each of those ambiguities
in the language offers an opportunity
for exploitation. Now, we know why
they were put in the language. They
were put in because different
compiler writers for different
architectures and different systems
wanted to have different
interpretations of those so that they
could optimize the language for their
system. At the same time, that
leaves open the other interpretations
which can be exploited sometimes for
security flaws.

Examine vulnerable code for patterns

Examine vulnerable code for patterns

Malware repository with millions of unique, tagged artifacts

CERT Secure Coding Team has evaluated over 100M LOC

@‘%Sﬂlﬂum ineering Institute | C:

Iniversit

Vulnerability Notes Database

Advisery and mitigation information about software vulnerabilities

information ab

“== Software Engineering Institute | Carnegie Mellon University

**021 The second thing we do is we
look at a lot of existing programs.

bic Vulnesabdity

anan i well

ntial information regarding thousands

& advance waming and impartant
rabilities, intruder acthty. or other critical security threats

[Distribution Statement A] This material has b

e
b
O Camest Meln Unerly 21

d for public release and

Page 29 of 80

We're fortunate in this respect at
CERT that we have a huge malware
repository, and as part of our
research work, we have evaluated a
lot of code, over 100 million lines of
code, and so we have seen both
other people's code and problems
that have arisen in the security area,
and basically how the bad
programming happened, and so that

gives us the patterns of things to look

for to at least advise people of what
to avoid.

Implement candidate rules and run against sample code

Implement candidate rules and run against sample code

* Focus rule when possible to
* maximize true positive of weakness (tag bad code)
* minimize false negative of weakness (don'’t tag good code)

» Write program to evaluate source code for particular rule

* Run program against collection of known bad source code and a
collection of other (suspected good) code to check sensitivity and

specificity of results

== Software Engineering Institute | Carnegie Mellon University

**022 Having done that, we then
take the next step, which is kind of
tricky as well..we then kind of come
up with rules. If you've used any of
the static checkers, and I suspect
many of the people have, the

problem of false-positives is endemic.

22

Page 30 of 80

You put something in and you get
hundreds and hundreds if you're
lucky, thousands and thousands if
you're not, of messages telling what's
the problem with your code, and it's
very difficult to actually then do
something with that. And so the
challenge is coming up with a rule
that will maximize the true positives--
you really want to find the bad code--
but also not tag the good code. So
what we do is we generate some of
these rules, and because we want
them to be precise and concrete, we
write a program that implements
them and we run them over a lot of
code, usually around tens of millions
of lines of code, and we see what the
results are, and then sometimes we
tweak the answers and then get

something which is a lot more precise.

Experience with systematic testing

Experience with systematic testing

» Candidate rule typical evaluation

» 10 iterations of proposed rule and associated checker
e 7 internal evaluations
e 3 external evaluations

» Each evaluation iteration carried out against > 10M lines of representative code
» Variety of domains
» Variety of code quality

» As part of creating C++ standard, general methodology applied to generate 46
rules and corresponding Clang C++ checkers

19 by CERT researchers, 27 by others

“== Software Engineering Institute | Carnegie Mellon University e

[Distribution Statement A] This material has b d for public release and

Page 31 of 80

**023 For example, we typically do
this ten times in order for us to get
the rule right, if you're curious about
our experiences here, and as part of
the most recent standard that we're
working on in C++, in about a year's
time we were able to, working with
others, generate about 46 rules. So
if you want to know how much effort
is involved in trying to put something
like this together, that's been our
history here.

Tapping into expert knowledge for developing CERT coding s tandards

Tapping into expert knowledge for developing CERT
coding standards

Consensus
on
vulnerability
and
mitigation

Tool vendor
analysis

“== Software Engineering Institute | Carnegie Mellon University

24

[Distribution Statement A] This material has b

**¥024 And of course, while we do
the systematic analysis, judgment
always comes into play as well, and
so we do have a wiki that we invite
people, experts and other
practitioners, to participate in, and
we'll probably talk a little bit about
that more later, but it's a way for

Page 32 of 80

both people who want advice to see
the discussions of the various kinds
of rules and their implications, and
for those who have advice to offer, a
forum by which they can share that
knowledge, and of course it feeds
into our process for how we go about
developing these new rules. And to
give you some more concrete
examples, I'm going to turn this back
over to Bob and let him show you
some of the rules.

New Rule Example

New Rule Example

EXP46-C — Do not use a bitwise operator with a Boolean-like operand
iIT (1(getuid() & geteuid() == 0)) {

/> ... */

i1If (1(getuid() && geteurd()
/* .. */
+

CWE-480, Use of incorrect operator

“== Software Engineering Institute | Carnegie Mellon University

**025 Presenter: Thank you, Mark.
Before I get started with that, let me
just say that ['ve been watching
some of the comments and there's a
really great discussion going on.
Thanks to everyone for keeping it
professional. I'd love to throw in
some comments on everything that's

==0)) {

25

Page 33 of 80

been talked about. There's one in
particular though that I really want to
mention, or refer to, a question by
Brian about, "Aren't the C++ rules
and recommendations marked
basically with page warnings right
now about them being outdated?"
We're actively updating the C++ wiki
site right now, and as part of that
effort, one of the first things we did

was went through and marked mostly

recommendations-- not rules, but
most of the recommendations. We
just noticed that a lot of them have
not been reviewed in a while, and
when we reviewed them we had
some concern about some of the
accuracy, and since we had to stage
our efforts to update the C++
guidelines, we decided to start with
the rules because those are the most
important, and so we're working on
those first. So you shouldn't really
see many, if any, of the outdated
marks on rules because we're
updating those now, and then once
we get to the recommendations we'll
peel off those warnings about the
outdated nature of them, and you're
welcome, Brian.

So as Mark said, I'm going to just
mention a couple of examples that
pulled from the standard. They're
relatively simple because we don't
have a lot of time to go into in-depth
code, but these are two examples
that I pulled out specifically that are
in the updated C standard in the PDF,
compared to the previous version
that was published in late 2013, early
2014.

Page 34 of 80

So this first one is kind of a simple
piece of code, and here is the rule:
Do not use a bitwise operator with
Boolean-like operand. Depending on
its use-- I mean, it's a conditional, so
it might be used and might go down
a path that you're not intending,
which might lead to a security issue,
but it looks pretty innocuous. You
see an "and" there and you see a
comparison with an "equal to". The
issue here is that that's a bitwise
"and", not a logical "and", and it's a
fairly common issue, and a lot of
static analyzers will find this, and so
we added this as a rule recently, and
just to show you the comparison,
that's the fix there with the logical
"and", and this maps to CWE-480 for
anybody looking against the CWEs,
as Mark was talking about, of use of
incorrect operator. And so this is a
rule that we have added within the
last couple years.

Page 35 of 80

Updated Rule Example

Updated Rule Example

ARR38-C — Guarantee that library functions do not form invalid
pointers

if (1 + 2 + payload + 16 > s->s3->rrec. length)
return 0; /* Silently discard per RFC 6520 */

CWE-119, Improper Restriction of Operations within the Bounds of a Memory Buffer
CWE-121, Stack-based Buffer Overflow

CWE-123, Write-what-where Condition

CWE-125, Out-of-bounds Read

CWE-805, Buffer Access with Incorrect Length Value

== Software Engineering Institute | Carnegie Mellon University

[Distribution Statement A] This material has b

Heartbleed.com

26

**026 Another one that I have here,
more so because of its popularity or
notoriety, is related to the Heartbleed
issue of 2014. So this is not a new
rule, but we've also updated the rules
in the comments and notes to keep
them current when examples pop up
that become fairly well known. And
so here we see-- this is the correction
of the code. The issue, as many
people know, was that Heartbleed
was an SSL defect where it was-- you
could query it with a heartbeat
request, and it would give you more
memory than it should have back as
aresponse, and it was basically an
information leakage issue, and the
reason was because they didn't have
this simple comparison here. What it
was doing was asking the user, or
the code-- it allowed a user to ask for
a particular size and it didn't check to

Page 36 of 80

make sure that the size it was asking
for actually matched the size of the
buffer that it was supposed to
respond with. And so you could ask
for a buffer larger than you should
have been able to get access to and
it would give you information, such
as SSL keys and other information
that you shouldn't have access to,
and all it required was this simple
comparison, making sure that the
payload that was asked-- the size
that it was asked for actually met the
size of the buffer. And so that,

again, is not a new rule but we
added a reference to this particular
piece of code, and this rule actually is
a very long rule. There are lots of
examples and lots of nuances, but it
also, as you can see, is pretty
connected to-- or refers to several CWEs.

Development and Verification

Development and Verification

Sustainment

Engineering and Development

Mission Threat s e Lo rieach
Thread Analysis Cases d

Verification

Requirements and Acquisition Deployment and Operations

From Secure Coding to Secure Software
1_ ~ . . . Quzg;]sé ::7, 2016
== Software Engineering Institute | Carnegie Mellon University :

[Distribution Statement A] This material has b

27

Page 37 of 80

**#027 So now we're going to talk

for a couple minutes about how can
you use these rules, and in particular
secure coding, and adopt.

So first, again, just to kind of focus
on where we are, here's our secure
development lifecycle, or software
development lifecycle, and focusing
on coding rules and guidelines and
testing, validation and verification,
and largely for secure coding,
development and verification is really
where the action happens. So you
need to know how to develop secure
code, and then you need to either be
able to analyze it, review it, test it, or
know what secure code looks like to
verify that those practices and those
coding constructs were used.

DISA STIG Requirements

DISA STIG Requirements

Application Security STIG Requirements:

* APP3550: CAT | — not vulnerable to integer arithmetic issues

* APP3560: CAT | — does not contain format string vulnerabilities

 APP3570: CAT | — does not allow command injection

* APP3590.1: CAT I — does not have buffer overflows

» APP3590.2: CAT I — does not use functions known to be vulnerable to buffer

overflows

 APP2060.1: CAT Il — development team follows a set of coding standards
APP2060.2: CAT Il — development team creates a list of unsafe functions to
avoid and include in coding standards

APP2120.3: CAT Il — developers are provided with training on secure design
and coding practices on at least an annual basis

From Defense Information Systems Agency Application Security and Development Security Technical Implementation Guide, V3 R10 (2015)

== Software Engineering Institute | Carnegie Mellon University 28

[Distribution Statement A] This material has b

Page 38 of 80

**028 For the people on that are in
the government or, in particular, in
defense that have to deal with DISA
STIGs-- that's the Defense
Information System Agency Security
Technical Implementation Guide-- I
just have this as a reference. These
are just some of the STIG
requirements that are related to our
secure coding rules and standards.
So if you're trying to-- and you notice
there's several CAT I's and a couple
CAT II's-- you're trying to-- if you're
required to address these, then,
following the standards or setting up
your own standards based on our
standards will help to effect that.

And you'll notice the last-- or I'll point
out the last one there is that
developers are provided with training
on secure design and coding
practices, and we'll come back to that.

Page 39 of 80

Adopting Secure Coding Practices

Adopting Secure Coding Practices

Secure Coding Infrastructure
* Defining Secure Coding Practices
* Influencing Language Standards
* Influencing Tool Vendors

Processes

* Coding Standards and Security Standards, Testing

Technology
*Tools: IDE’s and Analyzers
* Automated transformation and remediation

People
* Workforce Development

== Software Engineering Institute | Carnegie Mellon University

**029 So, adopting secure coding
practices, how to do that. Well,

we're trying at CERT, at the Software
Engineering Institute-- we're trying to
do a few things to help the

community, and so [wanted to start
with that just for a moment. It's

what I call secure coding
infrastructure, or community adoption.

So as I mentioned, we're obviously
defining secure coding practices.
We're also, to help the community
adopt them, we're trying to influence
language standards, and if we get a
chance, I know there was some
discussion on the chat about different
languages, and maybe we'll have a
moment to talk about the languages,
although it seems like other
commenters have addressed some of
that. But we're trying to influence

[Distribution Statement A] This material has b

29

Page 40 of 80

language standards so that they
adopt secure code, improve the
language itself, to make it easier for
developers to develop secure coding.
And we're also trying to influence the
tool vendors. The tool vendors are
also connected to the language
community, so it's not too far, but
trying to help the tool vendors,
and/or help people's awareness of
the tools that can help their secure coding.

So we'll talk a little more about
processes, coding standards,

technology that you can use, and
workforce development and training.

Risk Assessment

Risk Assessment

Risk assessment is performed using failure mode, effects, and criticality

analysis.

Severity—How serious are the consequences of
the rule being ignored?

Likelihood—How likely is it that a flaw introduced
by ignoring the rule can lead to an exploitable vul-
nerability?

Cost—The cost of mitigating the vulnerability.

Value Meaning Examples of Vulnerability

1 low denial-of-service attack, abnormal
termination

2 medium | data integrity violation, uninten-
tional information disclosure

3 high run arbitrary code

Value Meaning

1 unlikely

2 probable

3 likely

Value Meaning Detection Correction

1 high manual manual

2 medium | automatic | manual

3 low automatic | automatic

|U|"U|

Software Engineering Institute | Carnegie Mellon University

**030 So, one of the issues with
adopting this and improving your
practice-- well, I'll start-- and this has
been commented in here-- I'll talk for

From Secure Coding to Secure Software
August 17, 2016
©2016 Camegie Mellon University

[Distribution Statement A] This material has b d for public release and

30

Page 41 of 80

a couple minutes about developing
your own standards. So developing
your own secure coding standards
with something to base off like ours
is a really good start. The problem is
it may seem overwhelming at first
because the secure coding standards
are fairly voluminous. Right now I
think there are 99 C rules that you
should be following.

So one of the challenges is to
prioritize those, especially when
you're trying to adopt them. And so
we have a few mechanisms of
guidance of how to prioritize. One is
we have a risk assessment, and so
the risk assessment, for each role,
provides a value of how risky a defect
or weakness related to that

rule is such that it's likely to end up
as an exploitable vulnerability.

And so here we have this rating and
it's on three different dimensions--
severity, how bad would it be and
how exploitable, or what would the
effect be, the worse being running
arbitrary code and giving control up;
the likelihood being another
dimension; and then the cost of
remediating or mitigating, which is
how hard is it to find and/or fix, and
as Mark mentioned, a lot of tools give
out a lot of false-positives, so finding
can be a challenge, or as much of a
challenge, if not more, than fixing it
once you find the issue.

And so you can use our risk
assessment on these rules to decide

Page 42 of 80

which rules you're going to first
adopt because they're the highest

priority.

Priorities and Levels

Priorities and Levels

Low severity, unlikely,
expensive to repair flaws

From Secure Coding to Secure Software
August 17, 2016 31

== Software Engineering Institute | Carnegie Mellon University £ oo ety

[Distribution Statement A] This material has been approved for public release and unlimited distribution.

**031 And so we mapped those into
these priority levels just to make it a
little easier, rather than having 27--
and the actual numbers are a little
less-- but there's three different
ranges for the priority levels of rules.

Page 43 of 80

Conformance Testing

Conformance Testing

The use of secure coding standards defines a proscriptive set of rules and

recommendations to which the source code can be evaluated for compliance.

For each secure coding standard, the source code is certified as provably

nonconforming, conforming, or provably conforming against each guideline in the

standard:
Provably The code is provably nonconforming if one or more violations of a rule
nonconforming are discovered for which no deviation has been allowed.
Conforming The code is conforming if no violations of a rule can be identified.
Provably Finally, the code is provably conforming if the code has been verified to
conforming adhere to the rule in all possible cases.

Evaluation violations of a particular rule ends when a “provably nonconforming”

violation is discovered.

== Software Engineering Institute | Carnegie Mellon University

**032 What you also want to be
trying to do ideally is looking for code
that conforms to the secure coding
standards, or the secure coding
standards that you choose to adopt,
and so that's kind of the goal of
analyzing and verifying your code, is
you're looking for conformance
because conformance means that the
software will be much more secure
because it won't have these

weaknesses that lead to vulnerabilities.

[Distribution Statement A] This material has b

32

Page 44 of 80

Polling Question 4

Polling Question 4

What testing does your organization perform on your software?

» Static Analysis
« Dynamic Analysis
* Both

* None

== Software Engineering Institute | Carnegie Mellon University

**033 With that-- and before we get
started talking about tools and
analysis-- and [know there's already
been some comments on the chat
about that-- [was wondering if we
could find out more about what you
use to analyze currently in your
processes.

Presenter: So that question is
posed and we can wait for some
results and move on, Bob.

[Distribution Statement A] This material has b

rom Secure Coding to Secure Software

F
August 17, 2016
©2016 Camegie Mellon University

d for public release and

33

Page 45 of 80

Tools encourage application of secure coding

Tools encourage application of secure coding

Sisssismiiissss - Moving rules into IDEs improves application of

secure coding:

e = * Exceptions are understood in context.

Adoption of secure coding IDEs
* help deploy tools
e training on tools
» extend tools to meet targeted needs

== Software Engineering Institute | Carnegie Mellon University

[Distribution Statement A] This material has b

* Early feedback corrects errors on introduction.

34

**034 Presenter: Sure, sure. And

so now to talk about tools, the first
tool that a lot of people don't think
about is the IDE itself, the
environment that you're developing.
Those tools can provide warnings
that can be really helpful to, at first
sight, find and fix some simple
issues, and so we absolutely
recommend looking at those
diagnostics from the IDEs. IDEs are
getting smarter about presenting
information to the developers, and so
what we're trying to do in some of
our research is align our diagnostics,
or diagnostics that tools find related
to secure coding vulnerabilities, and
present that to the developer while
they're coding, because finding and
fixing them, of course, earlier in the
lifecycle is cheaper, but finding them
right when they write them is the

Page 46 of 80

cheapest it can be because they're
already presently-- mind is present in
the code they're writing.

Static Testing - Source code analysis tools

Static Testing — Source code analysis tools

== Software Engineering Institute | Carnegie Mellon University

**035 Static analysis is definitely a
practice that should be used. There
was a question about one particular
tool, whether or not it's good
enough. We have a recommendation
that no tool has complete coverage.
Every tool has prioritized or optimized
particular types of defects that it's
trying to find with really high
accuracy, to try and reduce the
amount of noise of false-positives.
And so that's where their market
differentiation is, is what they're
trying to find and help you fix. So we
recommend that you use multiple
tools, and as I said, consider your
IDE, or your development

Secure Code Analysis Laboratory
(SCALe)
*C, C++, Java, PERL, Python,
Android rule conformance
checking

* Thread safety analysis

s Information flows across Android
applications

* Operating system call flows

35

Page 47 of 80

environment tool, or even if you're
programming in GCC, just running it
with diagnostics.

Similarly-- and Mark mentioned this--
there was also some discussion in
there about how different languages
are optimized for different things,
some for speed, some for safety and
protection. The static analysis tools
and even the dynamic analysis tools
are optimized for different things.

SCALe Multitool evaluation

SCALe Multitool evaluation

Client
Code

SCALe
Analysis Tool

Build

= Analysis Tool
Environment

Analysis Tool

Secure Coding Filters]

} ¢
Merged
flagged

non- Flagged
conformities non-

conformities |

Confirmed
violations

Frobable
violations

“== Software Engineering Institute | Carnegie Mellon University

**036 Now, of course, if you're
running multiple static analysis tools,
you have multiple environments
where you're getting lots of
diagnostics, and so we also
recommend using a diagnostic
aggregator of some sort. There's a
few on the market, and we also have

Improve expert review productivity
by focusing on high priority violations
Filter select secure coding rule
violations

* Eliminate irrelevant diagnostics

e Convert to common CERT Secure
Coding rule labeling

Single view into code and all
diagnostics

Maintain record of decisions

From Secu

August 17,
©2016 Can
[Distribution Statement A] This material has b d for

36

Page 48 of 80

aresearch tool and one that we use
whenever we do audits ourselves
called SCALe, the Source Code
Analysis Laboratory, and what that
does for us is it-- as you can see from
the graphic there-- we run multiple
analysis tools and then we run it
through SCALe, which first runs it
through some secure coding filters to
help us prioritize the diagnostics it
found related to security as opposed
to style or other issues that are
unlikely to be affecting security. And
then it aggregates all that data so
that we can-- all the diagnostics of
the tools-- so that we can review and
audit the code in one interface and
with one data set and database, and
it also connects us directly to the
source code to easily find the lines of
code that the diagnostics are pointing
to.

Page 49 of 80

Polling Question 5

Polling Question 5

Do you use multiple static analysis tools?

* Yes, and we use a tool diagnostic aggregator

* Yes, but we review the tool diagnostics separately

» No, we just use one static analysis tool

» No, we don’t use static analysis tools

== Software Engineering Institute | Carnegie Mellon University

**037 And so with that, as |
mentioned, I'm curious to find out
about our audience, what they're
doing currently with static analysis, if
they're running multiple static
analysis tools and how they are.

Presenter: So that question is
posed, and I'll give the results from
the last one. The last question was:
What testing does your organization
perform on your software? We had
44 percent with static analysis, 4
percent with dynamic analysis, 41
percent with both, and 12 percent
with none. Okay, so the next one's
launched, so back to you.

Presenter: Yeah, so I'll just
mention that dynamic analysis-- I'm
not going to talk about it too much--
we do have a group here at CERT

[Distribution Statement A] This material has b

37

Page 50 of 80

that focuses on that. Largely it's the
vulnerability team. A lot of that work
is in fuzzing, and it's extremely

effective at finding real vulnerabilities

because you're testing it dynamically
after the code is available and you're
finding ways that it's vulnerable
through paths the software is actually
taking, as opposed to looking at the
source code that's probably really
complex, and seeing defects in the
code that may be part of a path that
isn't going to be taken. So it's really
effective at finding vulnerabilities in
code, so we definitely recommend
using that as well.

Presenter: And just to close out
this question, Bob, we had 52
percent-- the question was: Do you
use multiple static analysis tools?
Fifty-two percent "No, we just use
one tool"; 22 percent, "We just don't
use static analysis tools"; 22 percent
was "Yes, but we review the
diagnostics separately”; and 4
percent, "Yes, and we use a tool
diagnostic aggregator".

Presenter: So, I'm sorry, what
were the first two.

Presenter: Fifty-two percent at,
"No, we use just one static tool."

Presenter: Just one. Okay, so

more than half is using at least one,
so that's really good. As I said, you
should-- and several of the
commenters on the chat have said
static analysis is a really effective way
to find defects.

Page 51 of 80

Select SCALe Assessments

Select SCALe Assessments

Codebase | Date Customer | Lang ksLOC Rules | Diags True | Suspect | Diag
/KsLOC

6/12 Govl
3/13 Govl
10/13 Gov2
6/12 Gov3
9/12 Gov2
11/13 Gov2
2/14 Gov4
3/14 Govb
5/14 Mill

1/11 Gov3
5/14 Gov3

-
| c |
| o |
N
LK

2% Software Engineering Institute | Carnegie Mellon University

**038 And here I just want--
speaking of that specifically. So
here's some data of the audits that
we have done across several
projects-- anonymized, of course--
but it shows that, on average, there's
a large disparity across projects of
the quality of the code, but on
average we've seen about 20 to 30
diagnostics that were true issues per
KLOC, or yes, there is significant-- we
remove whitespace and some other
--and comments and things like that.
But the takeaway from this is that
just about all code will benefit from
static analysis. Regardless of the
process that you went through, if you
have not done static analysis, you
should, because you will find defects.

Cc
Cc
Java
Java
Java
Java
Java
Java
Perl
Perl

38.8
87.4
9,585
4.27
61.2
17.6
653
151
403
93.6
10.2

28
18
18
33
21
29

8
27
36
10

1,071
17,543 86
289 159
345 117
538 288
414 341
8526 64
53 53
3114 723
6,925 357
133 84

[Distribution Statement A] This material has b

1,019
17,457
130
228
250
73
8,462
0
2,391
6,568
49

e Coding to Sect
o ot 17,2016
©2016 Camegie Mellon Uni

d for public releas

27.6
200.7
0.03
80.8
8.8
235
13.1
35.1
7.7
74.0
13.0

 Software

niversity
and

38

Page 52 of 80

Polling Question 6

Polling Question 6

Have you taken some training on secure coding practices?

* Yes, self-taught

* Yes, through an online-delivered program

* Yes, through an in-person delivered program
* Yes, through my academic education

* No

== Software Engineering Institute | Carnegie Mellon University

**039 And so here I'm-- so we've
talked a little bit about the processes
and adopting secure coding
standards and tools. I wanted to talk
a little bit about training and
development of the staff and the
developers, but before [do that, I
was hoping to see about this polling
question about what training there is
in common.

Presenter: Yeah, so that question

has launched, so maybe we work on
one question from Juan while this has
launched, Bob, and maybe you
covered or not, but I'll ask it. This
came in earlier. "How effective is
static code scanning-- i.e., Fortify-- to
detect bad security practices? How
effective is static code scanning?

Presenter: Sure, sure. So that's

[Distribution Statement A] This material has b

39

Page 53 of 80

the static analysis that I've said. So
['ve not given quantitative metrics
other than showing that it is very
effective in finding issues. Again, if
you've not done static analysis, you
almost definitely find issues by doing
it. HP Fortify is one of the top
products out there, and what I didn't
make clear about SCALe-- I think |
might have implied it but didn't make
it clear-- SCALe itself is not a static
analysis tool; it is only an aggregator.
So those boxes in the diagram about
static analysis tools, we are using a
lot of the same tools that are
available to the public, like Fortify
and some others, and then we're
reviewing those diagnostics. So itis
very effective.

Presenter: Okay, we'll just wrap up
this polling question here and one
other question. The question, real
quick, was multiple people asking if
an archival recording is available
from the talk. An archive of the
whole seminar will be available by
tomorrow-- same registration URL
that you used today that you can
watch the archive. So the question
was: Have you taken some training
on secure coding? Thirty-one
percent yes, self-taught; 12 percent,
yes, through an online-delivered
program; 14 percent yes, through an
in-person delivery program; 5
percent yes, through an academic
education; and 38 percent no.

Presenter: Okay, great, and thanks
everyone for being honest. So it's
actually a little better than I thought.
[like to say, generically, in today's

Page 54 of 80

world, because it's so easy to
program that a lot, if not a majority,
of developers, people that are
software developers, have not been
properly trained in software
development, and almost none of
them have gone through secure
coding training. So it's actually--
even the self-taught people I think
are better off. It shows that you
have an interest in learning about
secure coding practices, and it's a lot
more effective than not having any.
So for the-- I think it was 38 percent-
- the 38 percent that was no, [would
definitely recommend at least trying
something online as a MOOC or
something else, and if you have a
large group, we have instructor-led
training. We also, if you want
something more formal-- and I'll talk
about this in a minute-- but we have
online training as well.

Page 55 of 80

Secure Coding Professional Certificates

Secure Coding Professional Certificates

/\ = Software Engineering Institute ; ' y
lcErT Caracgie el University CERT Secure Coding Professional Certificates

4i Secure Coding Professional Certificates

b Our certificate programs will help developers to increase security
and reduce vulnerability within the programs they develop

Online Courses with Exam and Certificates for C/C++ and Java
2 Courses (Secure Software Concepts & Secure Coding) and Exam
Onsite, instructor-led courses available for groups

rom Secure Coding to Secure Software

F
August 17, 2016

== Software Engineering Institute | Carnegie Mellon University 2015 Camegie Melon Uriversiy

[Distribution Statement A] This material has b d for public release and

40

**040 And so to kind of roll into
that, as [was mentioning there, we
do have online training that ends
with a secure coding professional
certificate, and this training is in the
C, C++-- so one edition of the training is C and C++
combined, and the other is Java, and
each of those certificate programs
have two courses, a secure software
concepts course and then a secure
coding in the particular language
course, and then it ends with a
completion exam. And then we also,
as I mentioned, for larger groups at
an organization, we have instructor-
led courses onsite as well.

Page 56 of 80

SEI Secure Coding in C/C++ Training 1

SEI Secure Coding in C/C++ Training 1

The Secure Coding course is designed for C and C++ developers. It encourages
programmers to adopt security best practices and develop a security mindset that
can help protect software from tomorrow’s attacks, not just today’s.

Topics
* String management
» Dynamic memory management
* Integer security
» Formatted output
* File 1/0

http://www.sei.cmu.edu/training/p63.cfm

== Software Engineering Institute | Carnegie Mellon University

**041 Here I'll talk just for a minute
about some of the topics and the
objectives of the course, and these
are really topics and objectives that
you'd look for any course that you
were going to take, and training.
These are kind of the common
issues. So secure coding in C and
C++ obviously really important for
string management-- string meaning
array, meaning buffers and buffer
overflows. Dynamic memory
management is another big issue,
and pointers and properly freeing
memory. You have integer security,
as Mark was mentioning-- wrapping
of integers and that, especially if it's
in pointer arithmetic, that being an
issue, and formatted to output, that
being format strings, and then file
1/0.

41

[Distribution Statement A] This material has b d for public release and

Page 57 of 80

SEI Secure Coding in C/C++ Training 2

SEI Secure Coding in C/C++ Training 2

Participants gain a working knowledge of common programming errors that lead to
software vulnerabilities, how these errors can be exploited, and mitigation strategies to

prevent their introduction.

Objectives

* Improve the overall security of any C or C++ application.

» Thwart buffer overflows and stack-smashing attacks that exploit insecure string manipulation

logic.

« Avoid vulnerabilities and security flaws resulting from incorrect use of dynamic memory

management functions.

* Eliminate integer-related problems: integer overflows, sign errors, and truncation errors.
« Correctly use formatted output functions without introducing format-string vulnerabilities.

* Avoid I/O vulnerabilities, including race conditions.

== Software Engineering Institute | Carnegie Mellon University

**042 And the objectives are to
improve the overall security of the C
and C++ applications that you're
developing; avoiding vulnerabilities
by learning what, again, the
constructs in C and C++ are that you
shouldn't use, or how to use them
appropriately, because often just
calling a particular method or
function is not the right way to do it,
that there's other checks that you
need to put before or after you call
functions to protect the software, and
this teaches you how to do that.

[Distribution Statement A] This material has b

42

Page 58 of 80

Java Secure Coding Course

Java Secure Coding Course

The Java Secure Coding Course is designed to improve the secure use of Java. Designed
primarily for Java SE 8 developers, the course is useful to developers using older versions of the
platform as well as Java EE and ME developers. Tailored to meet the needs of a development
team, the course can cover security aspects of

Trust and Security Policies Object Orientation Serialization

Validation and Sanitization Methods The Runtime Environment

The Java Security Model Vulnerability Analysis Exercise Introduction to Concurrency

Declarations Numerical Types in Java in Java

Expressions Exceptional Behavior Advanced Concurrency
Input/Output Issues

http://www.sei.cmu.edu/training/p118.cfm

== Software Engineering Institute | Carnegie Mellon University 43

[Distribution Statement A] This material has b

**043 And then the Java Secure
Coding course, as mentioned. So a
lot of people immediately think,
"Well, Java is secure as is. It has
memory protection and it has a lot of
other protections.”" Well, as it turns
out, there's a lot of different ways
that you can misuse Java. Not the
same ways as C and C++, but you
can get into trouble. I'll just mention
the one in the top right there.
Serialization and deserialization has
been a very-- recently come out as a
trouble spot with Java and using it
correctly. So there definitely are
issues there. Go ahead, Mark.

Presenter: And just to illustrate the
comments that people were making
before with SQL injection, even

within Java you have the same issue
that is a vulnerability whenever you

Page 59 of 80

open up the capability to execute
arbitrary code. In the case of Java,
they call it class loaders, but
nevertheless it's the same paradigm
that we see repeated in languages
again and again, and how you
protect against it has the same
generic answer; the details depend
on the language.

Presenter: Yeah, that's right,
interfacing-- using Java to interface
with other languages and using the
constructs of Java correctly are not
always obvious, and so this teaches
you how to use those APIs correctly
and in a secure way.

Polling Question 7

Polling Question 7

Are you more concerned about the secure code that you develop or acquire/procure?

» Software we develop

» Source code we acquire/procure

» Third-party libraries we acquire/procure

» Complete software we acquire/procure and integrate

» All of the above

|U|"U|

Software Engineering Institute | Carnegie Mellon University

**¥044 And so that covers most of
what ['m going to talk about of
developing software. Of course that

[Distribution Statement A] This material has b

44

Page 60 of 80

doesn't address everybody's concern-
- well, nothing does-- but there's a
big area that it doesn't address, and
that is that a lot of people acquire
software or acquire source code or
libraries that have been compiled,
and they're using third-party software
but they're not sure what's in it. And
so first I'd like to find out from this
polling question what people's
proportion of building versus buying,
so to speak, even though I know that
often it's open source and free.

Presenter: So we've got 34 percent
software we develop; 3 percent
source code we acquire or procure;
10 percent third-party libraries; 1
percent complete software we
acquire; 52 percent all of the above.

Evolution of software development

Evolution of software development

Custom development — context: Shared development — ISVs (COTS) —
+ Software was limited context:

= Size » Function largely understood

= Function = Automating existing processes

= Audience + Grown beyond ability for using

« Each organization employed developers organization to develop economically

e Outside of core competitiveness by

e Each organization created their own .
acquirers

software

45

== Software Engineering Institute | Carnegie Mellon University

[Distribution Statement A] This material has b d for public release and

Page 61 of 80

**045 Presenter: Okay. So alot

of integrating pieces and packages

from a lot of different places. So |

was wondering, Mark, could you talk

a little bit about acquiring software securely?

Presenter: Sure. And also we'd like
to just react to a couple of the
questions that came by. First of all,
there was a fair amount of discussion
about SCALe, about the aggregator
that we talked about, and clearly we
have been asked to include
information about where to find that
in reports and so on. So we'll include
that in the website rather than trying
to give all those URLs on the fly here.

Presenter: Right. Right.

Presenter: There was also a
discussion about compiler
optimizations, and someone used the
word "undesired". Our technical team
actually is really fascinated by that
particular topic, and they've put
together a whole other presentation
and seminar, which, if you want, by
all means, let Shane know, but we
call it "unexpected compiler
optimizations" because all those
optimizations were put there for a
reason, and certainly in many
circumstances they were desired.
The question is whether you expect
them or not, and the broad-brush
comment we'd make is either-- one
set of problems happens when
people really don't understand the
language in enough precision. The
other circumstance where it runs into
problems is in portability, in where
they do understand the language and

Page 62 of 80

the correct precision, but they move
it from one system to another
system, and a common one that
we've seen is moving from 16-bit to
32-bit machines, and all of the
sudden optimizations which they
thought-- assumptions and
implementations they thought-- no
longer hold and they run into
problems. But that's a whole other
talk. There's a whole lot more to be
said. We'll defer that to another
time, if you'd like to hear about it.

But one of the topics that we've run
into when we talk with development
organizations about the problems
that they face, part of it is-- what
we've discussed here-- is the code
that they are writing, and historically
that really was the focus of attention.
So when software started being
developed-- and I'll use my own
sister as an example. She worked for
a large manufacturing company and
one of the jobs she had to do was to
build an airline reservation system.
No, she didn't work for Delta or
United or whatever. She worked for
a company that had plants and
extrusion lines and so on, but they
had a bunch of corporate jets and
they needed to schedule them, and
so she went and built an airline
reservation system from scratch.

In that kind of context, it was custom
development, limited amount of
software, limited audience, limited
function, and for those purposes,
companies like that one basically
employed their own developers and
they created their own software.

Page 63 of 80

They developed everything. That
turned out to be fairly expensive, and
quickly they decided that there were
some things which really weren't
their core differentiation, and so the
industry of independent software
vendors came up, and they were
automating well-known processes. [
don't know about airline reservations
being so ubiquitous, but things like
general ledger work, enterprise
resource management, supply chain
management-- the whole variety of
common kinds of functions that
needed to be done that were not the
specialty of any one company, and so
you had Infor Global, SAP, Oracle-- a
whole variety of companies who went
and built this, and now you started
getting a supply chain-- a very small
supply chain-- it was just the vendor
that you dealt with.

Page 64 of 80

Development is now assembly

Development is now assembly

General
Ledger
1
[|]
. SQL Server ‘ WebSphere . GIF library
1
T T]
. HTTP ‘ Oracle DB . SIP servlet
server container
\
. XML Parser

Note: hypothetical application composition

== Software Engineering Institute | Carnegie Mellon University

**046 What has evolved over time

is that actually there's very little
development being done on large
programs outside of these
independent software vendors. I
mean, obviously Oracle or Microsoft
spend a great deal of their time
building programs completely from
scratch. But for most places,
development is assembly. It's simply
too large for any individual
organizations. There's too much
specialization in each individual
component, and frankly, every little
component doesn't have enough
value to invest in it, whether it's a
SIP container to connect to telephony
systems, your own database, your
own XML parser, and so on.

Collective development — context:

. Too large for single
organization

. Too much specialization

. Too little value in individual
components

rom Secure Coding to Secure Software

Fro
August 17, 2016
©2016 Camegie Mellon University

[Distribution Statement A] This material has b d for public release and

46

Page 65 of 80

Software supply c hain for assembled software

Software supply chain for assembled software

Expanding the scope and complexity of acquisition and deployment

Visibility and direct controls are limited (only in shaded area)

Purchasing
Organization

Source: “Scope of Supplier Expansion and Foreign Involvement” Develop

graphic in DACS www.softwaretechnews.com Secure Software | In-house I [Reuse

Engineering, July 2005 article “Software Development Security: A

Risk Management Perspective” synopsis of May 2004 GAO-04-678 K

report “Defense Acquisition: Knowledge of Software Suppliers Reuse ?

Needed to Manage Risks”

== Software Engineering Institute | Carnegie Mellon University

[Distribution Statement A] This material has b

rom Secure Coding to Secure Software

Fro
August 17, 2016
©2016 Camegie Mellon University

d for public release and

47

**047 So instead, we've wound up

as having a large supply chain, in
where you reach out to lots of

vendors, and they reach out to
vendors, and they reach out to vendors.

Page 66 of 80

Substantial open source contained in supply chain

Substantial open source contained in supply chain

Bl
BER=ZE
OV AN
gmﬁﬁg
al 2B A

90% of modern applications are
assembled from 3™ party components

At least 75% of organizations rely on open source
as the foundation of their applications

Most applications are now assembled
from hundreds of open source
components, often reflecting as much

as 90% of an application

Distributed development —
context:

* Amortize expense

* Outsource non-differential
features

e Lower acquisition (CapEx)
expense

Sources: Geer and Corman, “Almost Too Big To Fail,” ;login: (Usenix), Aug 2014; Sonatype, 2014 open source development and application security

survey

== Software Engineering Institute | Carnegie Mellon University

**048 But in this supply chain, you
have a large amount of open source.
So what's the magnitude of this?
Well, when we've done-- [shouldn't
say we've done-- we rely on third-
party surveys-- they found that about
90 percent of applications, in fact,
are assembled. They're not
constructed. And perhaps as
importantly, of those assembled
applications, 90 percent of their
content comes from the outside, and
so now you have a very long supply
chain of people getting pieces from
other people. It's very long.

e Coding to Secure Software

o ot 17,2016

©2016 Camegie Mellon University

[Distribution Statement A] This material has b d for public release and

48

Page 67 of 80

Open source s upply chain has a long path

Open source supply chain has a long path

XML Parser
Generated
Parser
Parser
Generator
204 Compiler

From Secure Coding to Secure Software
August17, 2016 49

== Software Engineering Institute | Carnegie Mellon University 25 Cameg veten ety

[Distribution Statement A] This material has been approved for public release and unlimited distribution.

**049 Just to give you an example,
let's say you have an application
server. That contains an HTTP
server that came from another place,
which has an XML parser which came
from another place, which came with
some C libraries that came from
another place that was generated by
a compiler that came from another
place. The compiler itself was
generated by a parser generator that
came from another place, and so on.
You wind up that there's a huge long
list of dependencies.

Page 68 of 80

Corruption in the tool chain already exists

Corruption in the tool chain already exists

. 8 w . e

Sources: http://www.macrumors.com/2015/09 p-25-apps-apple-list,
...... 5. fected

html

== Software Engineering Institute | Carnegie Mellon University

**¥050 And there are problems. You
might think that, "Who's going to
really screw around with a compiler?”
Well, it's happened already. For
example, Apple had their
development environment attacked
and, as a result, they had

applications built with Xcode being corrupted.

XcodeGhost corrupted
Apple’s development
environment

Major programs affected

* WeChat

» Badu Music

* Angry Birds 2

» Heroes of Order &
Chaos

* iOBD2

50

Page 69 of 80

Open source is not secure

Open source is not secure

Heartbleed and
Shellshock were fol

by exploitation 1.8 billion vulnerable open

Other open source
software illustrates

source components =N
downloaded in 2015

vulnerabilities from cf 26% Of the most common s

fand context

inspection open source components o

chool symbolic

and injection
e are dead, right?

have high risk vulnerabilities [,

{bashbug}

. ShellShock

ap-end-ane 2: Larry Cashdollar® 1

Sources: Stew Ch tvaHTREJ&E n Martin (OSF), Buying Into the Bias: Why Vulnerability Statistics Suck, https://media.blackhat.com/us

Ma

Sana(ype, 2016 State of the Software Supply Chain; Aspect Software “The Unfortunate Reality of Ins: Lb

== Software Engineering Institute | Carnegie Mellon University

**051 And open source is not

secure. We use a lot of it. People
know about Shellshock and bashbug,
just as two common examples that
happened because people were
explicitly exploiting them. But worse,
a study that was presented at Black
Hat showed that finding bugs was
basically shooting fish in a barrel, and
they were quoting some researchers
here which said, "We just decided to
go look for a particular kind of bug,"
and they found so many that it was
upsetting all the statistics that were
being used.

Now, to quantify this, rather than just
saying, "Well, there's Shellshock,"
and whatever, again, there have

been studies done just in 2015, close
to 2 billion open-source components
with serious vulnerabilities were

[Distribution Statement A] This material has b

" March 2012

s-Suck-Slides.pdf; Sonatype, Sonatype Open Source Deve \pmet nd Application Security Survey;

51

Page 70 of 80

downloaded. Twenty-six percent. A
quarter of the most open-source
components have high-risk
vulnerabilities. If you're using Spring,
you probably are one of these people.

Reducing software supply chain risk factors

Reducing software supply chain risk factors

acceptable level

Software supply chain risk for a
product needs to be reduced to

updated product
is acceptably
secure

practices that
reduce supply
chain risks

transmitting the
product to the

purchaser guard
again tampering

Operational

; Product

Supplier Product Product Control
Capability Security Distribution

Supplier follows Delivered or Methods of Product is used in a

secure manner

== Software Engineering Institute | Carnegie Mellon University

**052 How to do that. How to
reduce this. Well, by managing your
software supply chain-- and the
methodology we use is called SPDO,
very minimal methodology, if you'd
like to remember it that way--
making sure your supplier knows how
to do secure coding, that their
product was built correctly, that it
wasn't modified in distribution, and
that it's in the right operational
context.

Now, for each of these, we have

[Distribution Statement A] This material

rom Secure Coding to Secure Software.

F
August 17, 2016
©2016 Camegie Mellon University

I has b d for public release and

52

Page 71 of 80

specific recommendations that you
can follow.

Supplier security commitment evidence

Supplier security commitment evidence

Supplier employees are educated as to security engineering practices
* Documentation for each engineer of training and when trained/retrained
* Revision dates for training materials
* Lists of acceptable credentials for instructors
* Names of instructors and their credentials

Supplier follows suitable security design practices
* Documented design guidelines
*Has analyzed attack patterns appropriate to the design such as those

that are included in Common Attack Pattern Enumeration and
Classification (CAPEC)

» Application of code signing techniques (interest in ISO 17960 — in early
draft)

== Software Engineering Institute | Carnegie Mellon University 53

**053 For supplier evidence, do

they really know what they're doing?
And again, you can look at the details
on replay.

Page 72 of 80

Evaluate a product’s threat r esistance

Evaluate a product’s threat resistance

What product characteristics minimize opportunities to enter and change the
product’s security characteristics?
* Attack surface evaluation: Exploitable features have been identified and
eliminated where possible
- Access controls
- Input/output channels
- Attack enabling applications — email, Web
» Design and coding weaknesses associated with exploitable features have been
identified and mitigated (CWE)
* Independent validation and verification of threat resistance
* Dynamic, Static, Interactive Application Security Testing (DAST, SAST, IAST)

* Delivery in or compatibility with Runtime Application Self Protection (RASP)
containers

== Software Engineering Institute | Carnegie Mellon University 54

[Distribution Statement A] This material has b

**054 Similarly, how to evaluate a
product that you're getting, whether
it's been properly put together or not.

Page 73 of 80

Establishing good product distribution practices

Establishing good product distribution practices

Recognize that supply chain risks are accumulated

» Subcontractor/COTS-product supply chain risk is inherited by those that
use that software, tool, system, etc.

Apply to the acquiring organizations and their suppliers
* Require good security practices by their suppliers
* Assess the security of delivered products

* Address the additional risks associated with using the product in their
context

Ideally open source is built with a compiler you trust

== Software Engineering Institute | Carnegie Mellon University 55

**055 How do you know that it has
been distributed in a way that hasn't
changed along the way?

Page 74 of 80

Maintain operational attack r esistance

Maintain operational attack resistance

Who assumes responsibility for preserving product attack resistance with product
deployment?

» Maintaining inventory of components

 Patching and version upgrades (component lifecycle management)
» Expanded distribution of usage

* Expanded integration

Usage changes the attack surface and potential attacks for the product
* Change in feature usage or risks
* Are supplier risk mitigations adequate for desired usage?
» Effects of vendor upgrades/patches and local configuration changes
« Effects of integration into operations (system of systems)

== Software Engineering Institute | Carnegie Mellon University 56

[Distribution Statement A] This material has b

**056 And perhaps most
importantly, that you haven't
changed the operational
environment. Most of the problems
that we see in large systems have
the consequence that they were built
under one set of security
assumptions, put into a different
environment, and they've changed
the security assumptions.

Page 75 of 80

Where to start

Where to start

Anywhere Plenty of models to choose from

BSIMM: Building Security in
‘g No meaningful controls over what Maturity Model

components are applications . .
CMMI: Capability Maturity Model
No coordination of security Integration for Acquisitions

‘ practices in various stages of the PRM: SWA Eorum Processes and
Gt development life cycle "
Practices Group Process
Reference Model

No acceptance tests for third-
‘@ party code RMM: CERT Resilience

Management Model

SAMM: OWASP Open Software
Assurance Maturity Model

Sources: Sonatype, 2014 Sonatype Open Source Development and Application Security Survey;
Forrester Consulting, “State of Application Security,” January 2011

== Software Engineering Institute | Carnegie Mellon University

[Distribution Statement A] This material has b d for public release and

57

**057 So, we've said an awful lot of
things you can do, and you might
say, "Well, what should I go after
first?" The unfortunate truth is that
there is so much to do that you can
pretty much start anywhere. On the
left you can see the large fractions of
people who basically have huge
security gaps in their development
processes, and there are lots of ways
to do this, and on the right we list a
variety of choices that you can use
depending on if you like us, you can
use things like RMM, comes from
CERT. If you like what Cigital does,
you can use BSIMM. But there are
many alternatives-- each one has
their pluses or minuses, but there's
such a gap that pick one and use it
as you would like.

Page 76 of 80

Questions

ring Institute | Carne

**058 With that, I'm going to let
Bob close here.

Presenter: Sure. Thanks Mark, and
sorry for-- well, thank you for doing a
good job of kind of getting through
that. Sorry to the audience for him
having to do that. If you have
questions, please let us know, and
we'll be sure to follow up. With that,
that pretty much closes, except for
questions, and there are two things I
wanted to say really quickly. One
was that-- where are we going with
research. Just quickly, we're looking
at ways to use machine learning to
improve the accuracy of static
analysis tools. In particular, can we
use the data of what we've found
with diagnostics that are either true-
positives or false-positives, and use
other information to improve our

Page 77 of 80

prediction of whether or notit's a
true-positive or false-positive and
something to pay attention to; as
well as working on automatically
correcting code, finding code that an
analyzer might find as a diagnostic
but that we feel-- we're pretty sure
that it is a defect and informing the
developer on the spot what could be
done to correct the defect, or for
code that is out in the wire, just
fixing the code with near-perfect or
perfect accuracy to not cause any
problems.

The last thing wanted to mention
was that we do have a secure coding
symposium coming up if you're
looking for more information about
secure coding, both from the SEI and
from the community. On September
8 we'll be in Arlington, Virginia, at the
Secure Coding Symposium. Largely
the day-- it's a one-day event. It will
be a few keynotes and several panel
discussions and then a tutorial. The
keynotes will be outside speakers;
the panels will be a mix of SEI and
outside speakers from government
and industry. And we'll end with a
tutorial. And the registration page is
already available, and I believe it's in
your resources areas. There's a
general agenda listed as well, and
we're going to be updating that
within the next couple days with the
names of speakers and the
presenters.

Presenter: And I'll just add there's
no cost to attend that but space is
limited, and a lot of space is already
taken up.

Page 78 of 80

Presenter: Thatis correct. Thatis
correct.

Presenter: So if you have interest,
make sure you click on the link in the
Resource tab. So we know it is two
thirty, so if you have to go, we
understand, but I'd like to just get
one question before we wrap up, and
that's from Brian, asking, "Would you
agree that turning up compiler
warnings to a high level], e.g.,, W4,
should be a priority to secure a
legacy code base?"

Presenter: It depends who you

ask. This goes back to the false-
positive comment, that it will
definitely increase the number of
diagnostics that get generated, and
the question becomes at what point
do your developers start ignoring all
the diagnostics. We've gotten stories
from development organizations like
Google who tell us that if they put
out any false diagnostics the
developers revolt and they can't put
them out at all. Other places are far
more rigid and say you've got to
address every single diagnostic that
comes out of every single tool, and
they pay the price for it, but they feel
they get the value, and that's an
organizational choice.

Presenter: Yeah, yeah. Agreed, agreed.

Presenter: Okay, just a couple
closing comments from me. So we
had a number of comments through
the chat-- so great participation
there-- and a number of questions

Page 79 of 80

we didn't get to. There is a secure
coding forum on LinkedIn. We ask
that everybody join that forum
through LinkedIn. Just search for the
secure coding forum within the
groups and you can join the group
and continue the conversation there.

As Bob mentioned, the symposium is
coming up. It's in your Download
Materials tab, that you can get
information on that. Of course we
ask you to fill out the survey upon
exiting today's event, as your
feedback is always greatly
appreciated.

And lastly, the next webinar we'll
have is going to be on September 14.
The topic will be building and scaling
a malware analysis system by Brent
Fry. So that's all we have. Thanks
again for everyone's participation
today. Have a great day.

Page 80 of 80

	From Secure Coding to Secure Software
	Table of Contents
	From Secure Coding to Secure Software
	Why Software Security?
	Software and security failures are rampant
	Software and security failures are expensive
	Polling Question 2
	Engineering and Development
	Most Vulnerabilities Are Caused by Programming Errors
	Secure Software Development
	Sources of Software Insecurity
	Polling Question 3
	Coding rules – 2016 Edition
	CWE Guidance
	OWASP Guidance
	Buffer overflow has many causes
	Learning from rules and recommendations
	An methodology for rule creation
	Examine language definitions and standards for undefined, unspecified and implementation-defined behavior
	Examine vulnerable code for patterns
	Implement candidate rules and run against sample code
	Experience with systematic testing
	Tapping into expert knowledge for developing CERT coding s tandards
	New Rule Example
	Updated Rule Example
	Development and Verification
	DISA STIG Requirements
	Adopting Secure Coding Practices
	Risk Assessment
	Priorities and Levels
	Conformance Testing
	Polling Question 4
	Tools encourage application of secure coding
	Static Testing – Source code analysis tools
	SCALe Multitool evaluation
	Polling Question 5
	Select SCALe Assessments
	Polling Question 6
	Secure Coding Professional Certificates
	SEI Secure Coding in C/C++ Training 1
	SEI Secure Coding in C/C++ Training 2
	Java Secure Coding Course
	Polling Question 7
	Evolution of software development
	Development is now assembly
	Software supply c hain for assembled software
	Substantial open source contained in supply chain
	Open source s upply chain has a long path
	Corruption in the tool chain already exists
	Open source is not secure
	Reducing software supply chain risk factors
	Supplier security commitment evidence
	Evaluate a product’s threat r esistance
	Establishing good product distribution practices
	Maintain operational attack r esistance
	Where to start
	Questions

