Leading a Successful Large IT Modernization Project

Table of Contents

SEF'WEBINAR SERIES ...ttt ettt ettt sttt e s it e et e e saeeeabeesateebeesateebeeeaee 2
Carnegie MEllON UNIVEISITY.....uiiiiiiiiei ittt ettt et e e s e e s sra e e e s sbae e e e ssabaeeessaraeeesnan 2
Copyright 2017 Carnegie Mellon UNIVErSity......ccouivieiiiiiieeeiiiieee et esieee e ssre e e siaeee s sireee e s 3
5 Things You Need to Know for Leading a Successful Large IT Modernization Project 3
(o] g T @ T =T d o 1 PRSPPI 5
5 Things You Need to Know for Leading a Successful Large IT Modernization Project 6
(o] | g T @ T =1 d o 1SRRI 8
(o] | T a T @ T =TS o 1. SRR 9
Data COllECTIONeiieeeeeee et ettt e e e st e s bt e s bt e e sbe e e snee s 11
KNOW Where yoU Want t0 De.......coiiiiiiii e 12
KNOW WHEIE YOU @@ ..ciiiiiiiieiiiiiiee ettt ettt e st e e s s ta e e s s abe e e e s sasbee e e ssasaaeeesnasaeeesnannnes 16
KNOW WHAT YOU NEBEA .ceeeiiieietiteieee ettt e e et e e e e e e e s abbbaeeeeeeessennsbaaeeeeeeenns 20
KNOW hOW 0 MOVE FOrWArdc...ooiiiiiieiieeeeeee et 28
[Teratively MOVE fOrWATIT . ..ot e e e e e e e s abbb e e e e e eesseassbaaeneeeeenas 33
Periodically Re-evaluate ROGAMAPccooveuririeiieeee ettt eeetrrre et e e e e e sabrereeeeeesseanaraaeeeeeeeeas 39
Periodically Re-evaluate ROGAMAPccooveuririiiiiiee ettt e et e e e e stbrreee e e e e e s seanbraaeeeeeeeeas 41
Periodically Re-evaluate ROGAMAPccooveuririiiiiiee ettt e et e e e e stbrreee e e e e e s seanbraaeeeeeeeeas 42
Continuously Update the Modernization Artifactscccvvveeeeiiieiiiiciiieeeiee e 43
SEFWEBINAR SERIES ...ttt sttt sin e s esmneeneennneeas 52

Page 1 of 52

SEI WEBINAR SERIES

(7 SEl WEBINAR SERIES | Keeping you informed of the latest solutions

Software Engineering Institute | Carnegie Mellon University

Carnegie Mellon University

Carnegie Mellon University

This video and all related information and materials (“materials”) are owned by Carnegie Mellon University.

These materials are provided on an “as-is” “as available” basis without any warranties and solely for your
personal viewing and use.

You agree that Carnegie Mellon is not liable with respect to any materials received by you as a result of

viewing the video, or using referenced websites, and/or for any consequences or the use by you of such
materials.

By viewing, downloading, and/or using this video and related materials, you agree that you have read and
agree to our terms of use (www.sei.cmu.edu/legal/).

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

© 2017 Carnegie Mellon University.

5 Things you need to know

SIge oy [Distribution Statement A: Approved for Public
Software Engineering Institute ‘ Carnegie Mellon University 2

©2017 Gemmegss Mellon Universiy Release; Distribution is Unlimited

i

Page 2 of 52

Copyright 2017 Carnegie Mellon University

Copyright 201 T Camegie Mellon Unbsersity

This maternial is basedupon work funded and supported by the Department of Defense under Contract Mo, FAST21-05-C-0003with Camegie
kellon University for the operation of the Software Engineering Insfitute, a federally fundedresearch and development center.

Any epinions, findngs and conclusions o recommendations expressed inthis material are those of the author(s) and do not necessarily
reflectthe views ofthe United States Department of Diefense.

N WARRANTY. THIS CARNEGIE MELLOMUNINVERSITY AND SOFTWAREENGINEERING IMSTITUTE MATERIAL IS FURNISHED ON
AN “AS-1S"BASIS, CARNEGIE MELLOMUNIVERSITY MAKES MO WARRANTIES OF ANY KIND, EITHER EXPRESSEDOR IMFPLIED, AS
TOANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITHESS FOR PURPOSE OR MERCHANTABILITY,
EXCLUSMTY, OR RESULTS OBETAMED FROMUSE OF THE MATERIAL. CARMEGIE MELLONUNIVERSITY DOES MOT MAKE AMY
WARRANTY OF ANY KINDWITHRESPECT TO FREEDOM FROM PATENT, TRADBMARK, OR COPYRIGHT INFRINGEMEMT.

[Distrbution Statermaent 4] This material has been approved for public release and unlmited distibution. Please ses Copyright notice for non-
U5 Government use and distibution

This material may be reproduced in its entirety, without modification, and freely distributed inowritten or electronic form without requesting

formal permission. Permission is required for any other use. Reguests for permission should be directed to the Software Enginesring Institute
at permission@@se cime.edu

C-0004558

' & il FEpr——T—
ETHrysmuresd ke beor [itiribsionSiswears Far Pl

45 Saftware Engineering Institute | Carneic Mellon Universiiy i e Hibaie DisrEasanic Ui ied 3

5 Things You Need to Know for Leading a Successful Large IT Modernization Project

5 Things You Need to Know
for Leading a Successful
Large IT Modernization

Project
Stephany Bellomo

Felix Bachmann

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

Software Engineering Institute ‘ Carnegie Mellon University

**004 Presenter: And hello from
the campus of Carnegie Mellon

Page 3 of 52

University in Pittsburgh, Pennsylvania.

We welcome you to the Software

Engineering Institute's webinar series.

Our presentation today is Five Things
You Need to Know for Leading a
Successful Large IT Modernization
Project. Depending on your location,
we wish you a good morning, a good
afternoon, or good evening.

My name is Shane McGraw. I'll be
your moderator for the presentation,
and I'd like to thank you for
attending. We want to make today
as interactive as possible, so we will
address questions throughout the
presentation, and again at the end of
the presentation. You can submit
those questions to our event staff at
any time through the Ask a Question
tab on your webinar control panel, or
the Chat tab, also on your control
panel. We will also ask a few polling
questions throughout today's
evening, and they will appear as a
popup window on your screen. In
fact, the first polling question we'd
like to ask is: How did you hear of
today's event?

Page 4 of 52

Polling Question 2

Polling Question 2

a) Yes

Have you ever been involved in a modernization effort?
b) No

"N‘WI

Software Engineering Institute | CarnegieMellon University

**005 Another three tabs I'd like to

[Distribution Statement A: Approved for Public
Release; Distribution is Unlimited

point out are the Download Materials,

Twitter, and Survey tabs.

Page 5 of 52

5 Things You Need to Know for Leading a Successful Large IT Modernization Project

5 Things You Need to Know
for Leading a Successful
Large IT Modernization

Project

Stephany Bellomo
Felix Bachmann

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

Software Engineering Institute ‘ Carnegie Mellon University

**004 The Download Materials tab
has a PDF copy of the presentation
slides there now, along with other
related work and resources from the
SEL For those of you using Twitter,
be sure to follow @seinews, and use
the hashtag #seiwebinar. And now
['d like to introduce our presenters
for today.

First, our facilitator. Mr. Will Hayes is
a principal engineer at the SEI and
Will provides direct lifecycle
management support to major
software-intensive programs in
government and military
organizations. He also does research
and consultation, and the application
of agile methods in highly regulated
settings.

Next, Stephany Bellomo is a senior
member of the technical staff and

Page 6 of 52

she teaches courses in software
architecture and service-oriented
architecture. Her current research
interests include technical debt and
architecting for dev-ops. She's an
IEEE senior member and serving as a
guest editor of the IEEE Software
magazine in 2015 and 2017.

And lastly we have Mr. Felix
Bachmann. Felix is also a senior
member of our technical staff, where
he's a member of the architecture
practices group. He's a coauthor of
the Attribute-Driven Design method,
a contributor and instructor for the
ATM Evaluator training, and a
coauthor of the "Documenting
Software Architectures: Views and
Beyond". Will, Felix, Stephany,
welcome. Will, all yours.

Presenter: Thank you, Shane, very
much. As we pose the first polling
question about our audience--

Page 7 of 52

Polling Question 2
Polling Question 2

Have you ever been involved in a modernization effort?

a) Yes
b) No

[Distribution Statement A: Approved for Public
Release; Distribution is Unlimited 5

i

Software Engineering Institute | CarnegieMellon University

**005 Let me ask Stephany and Felix to
just chime in with: What do you mean by large-
scale IT modernization?

Presenter: Well, I take that one.
Okay, so when it comes to the
modernization, what the name of
course says is you want to kind of get
something new, shiny, great,
wonderful, because you are unhappy
with what you have. But to make it
clear what we really are looking for
are more those projects we have of
IT infrastructure. Typically you have
20 years old, 15 years old, even older
applications running there which
don't fulfill whatever you need to do
for your business or for your mission,
and you are kind of thinking in terms
of you want to replace them or do
something with them. So we are
typically talking about many systems,
usually big systems, and we are

Page 8 of 52

talking about there's probably some
timeframe where you have to live
with the old and the new system in
parallel.

Presenter: So I think our polling
question was to how many have
been involved--

Presenter: So we have 83 percent
with Yes, 17 percent No, and we'll
launch the third one now, just asking
about the successful of that effort.

Presenter: And so the next one is
about success.

Polling Question 3
Polling Question 3

On a scale of 1 to 5 can you rate the success of that
effort? (5 being most successful)

a) 1
b) 2
c) 3
d) 4
e) 5

[Distribution Statement A: Approved for Public
Release; Distribution is Unlimited 6

i

Software Engineering Institute ‘ Carnegie Mellon University

**006 I know you've both been
involved in a lot of projects that fall
under this description. Could you
talk about some of the challenges,
successes, as people think about
their experience? Could you reflect

Page 9 of 52

on the good, the bad, and maybe
some of the ugly?

Presenter: So I think some of the
challenges that we run into, and one
of the themes that we're going to talk
a little bit about that are common
across many projects, is that there
are technical and nontechnical
aspects. And so I think what we'd
like to do today is elaborate a little bit
more on both sides of that coin.

Felix, do you have some other
thoughts on--?

Presenter: Yeah, I think thatis
probably our most important
observation that we had with those
kind of projects. Since we are not
really talking about the minute
change somewhere in the
technology, we talk about bigger
change. So there is, without the
right organization support, many of
those modernization projects are
actually getting into trouble, and
that's the topic we would like to
elaborate a little bit here for the next
hour.

Presenter: So let's get a sense
from the audience of what kind of
success--

Presenter: Right, so we had 39
percent rated it a three; 32 percent a
four; 13 percent five; 13 percent two;
and 3 percent at one.

Presenter: So we're favoring more
successful-- middling to more
successful.

Page 10 of 52

Presenter: Sounds like it. Okay, good.
Presenter: Good.
Presenter: So let's start talking

about the five different things that
lead to success.

Data Collection

Data Collection

@2‘] Roadmap

Current State

Environment

Software Engineering Institute | Carnegie Mellon University

|"|‘|‘|‘|||

**007 Presenter: Yeah, well,

okay. Let me start it in the following
way. Of course probably everyone
here in the audience knows that if
you want to change anything-- so
modernization is some kind of
change-- at the very minimum what
you need to do is you need to have
some kind of pretty clear picture of
where you want to be. You need to
have some idea of where you are
today, and then of course you would
have to go forward and move from
today wherever you want to be. So
those are the obvious ones in there.

©2017 Camegie Mellon Univer

rsity

* Know where you want to be
- “Realistically”

* Know where you are
- “Honestly”

* Know what you need
- “Affordably”

* Know how to move forward
- “Cautiously”

[Distribution Statement A: Approved for Public
Release; Distribution is Unlimited 7

Page 11 of 52

There are a few things that come in
addition that we usually see they're
overlooked, or maybe not overlooked
but sort of treated as not a second-
class citizen. So that's kind of where
we want to dive a little bit more into
the details, by-- let it go to topic by
topic.

Know where you want to be

Know where you want to be

It is easy to list all the great cool things you
want to use in the future

o * Introducing new technologies. Such as
@o service oriented or perhaps micro services

Technology

i * Utilizing new hardware, such a multi core

. * Ability to support fast and agile feature
‘ development

Organizational 0

220 What factors hindered you in the past to
always get what you needed?

* New technologies come have a learning
curve

* Is there an agreement on the requirements
* Will modernized system require the
business processes to change

5 Things you need to know Distribution Statement A: Approved for Public

Software Engineering Institute ‘ Carnegie Mellon University 5017 Garegio olon Uriersy Release; Distribution is Unlimited 8

"N‘WI

**¥008 Presenter: So in the area of
knowing where you want to be, what
are the important considerations
there?

Presenter: Yeah, again, from the
technical perspective, it is so easy to
say, "Oh yeah, | want to have this
great, wonderful, new shiny thing,
that whatever comes up,

because it really looks so good and it
really sounds like whatever problems
[have, those problems will be solved
by just doing that." So there are a

Page 12 of 52

lot of things that actually can be
done, but instead of just saying, "Oh
yeah, | want to have that shiny
thing," so let me give you an
example. So, cloud for example.

So I hear, "Cloud, oh yeah, we can
save a lot of money. We don't have
that much responsibility anymore.
We're just putting it in the cloud and
everything is just fine." Yeah? Yeah.
Now, fact is, that is not that easy.
There's a lot of work to do, and you
are not really sure that whenever you
go to the cloud, for example, does it
really fix the problem that you
encounter today?

Presenter: So it's notjust about the
shiny thing, it's the context in which
it will be used as well.

Presenter: Right.

Presenter: Stephany, can you
elaborate?

Presenter: Yeah, there are some
other areas too to consider. So
everybody does tend to focus a lot on
the future vision and the shiny-shiny,
we call it-- the cloud and the micro-
services, etcetera. But there's also
factors to consider for the future
vision that are needed to enable that,
and some of them are things like you
need to have the right skill sets, and
you also need to have some people
things, like agreement on the
requirements-- everybody has to
agree on the future vision, and a lot
of times that's not necessarily the
case; and another big aspect is just

Page 13 of 52

needing to be ready to make
sometimes some pretty significant
business process changes. So, for
example, a lot of people like to use--
move to something like an ERP, an
Enterprise Planning Resource tool, or
SAP kind of things, but at the end of
the day those are great products for
the right use, but if your business
processes don't align with those
things, it can be a big change for you
and the organization has to be ready
for them.

Presenter: Soit's really a
sociotechnical challenge--

Presenter: As well.

Presenter: And the engineering
solution is just a piece of the larger
puzzle.

Presenter: Mm-hmm. Mm-hmm.

Presenter: Ithink yes. That's
exactly it. I mean, the warning we
would like to put out here when it
comes to vision is just: Get real. So
think about things within your
organization-- so no matter how the
organization is-- you probably know
your organization the best. Think
what you can actually really achieve.
Trying to put changes in there that
look great and wonderful, but if no
one in your organization can actually
deal with that, if they are not willing
to change the process, for example,
then you will fail. You get that shiny
thing, it won't work, you end up with
two systems now that you have to--

Page 14 of 52

Presenter: Many people would
think of the technology as a support
to the workflow, and this
sociotechnical entanglement, if you
will, those folks might say, "First
define the workflow, and then
engineer the tool to meet the needs."
Has that been your experience, that
that approach works?

Presenter: Well, I would say
actually both approaches work, as
long as we keep in mind that we
have to change both sides of the
equation to make it happen. If that
is clear, then it doesn't matter from
which side you start. If you have
some kind of new technology which
requires you to change your
organization, your approach,

and you are willing to do

the change, then of course yes, it
does work. But, especially with the
Organization you typically

are working with, it makes more
sense to look at the processes
themselves first, and then start
thinking about how can we actually
map that into the technical future of
the organization.

Presenter: So maybe part of that is
looking at the current state then.

Page 15 of 52

Know where you are

Know where you are

Technology

%

Current State

© e

Organizational

Conway’s Law

Organizations which design systems ... are
constrained to produce designs which are
copies of the communication structures of
these organizations

Conway, Melvin E. (April 1968), "How do Committees Invent?",
Datamation, 14 (5): 28-31, retrieved 2015-04-10

|"|‘|‘|‘fl

Software Engineering Institute | CarnegieMellon University

**¥009 Looking at what-- you have to
understand where you are today and
where you're headed in the future.

Presenter: Right. And there, when
we're sitting down-- and we're talking
always the same thing-- you have a
technology and you have to think--

Look at your organization,

and many of you in the audience,

you probably heard about the
Conway's Law, which-- right now we
just looked at the date saying it's
now 50 years that that law was first
stated, by Conway, which says that
basically organization and the system
that support those organization align,
and to make it even stronger, they
have to align. If they don't align,
your system will not work. So that
means, for the second step, looking
at the current state, you need to take

Determine which of the implemented
solutions caused you to do the modernization.

» Old design principles, such as let the
database run everything?

» Plethora of outdated technologies?
» Dependencies that inhibit scaling?

What went wrong in your organization that led
to these issues?

» Skill set of your employees?

* Competition between “siloed
organizations”?

* Prioritized funding decisions favoring new
features?

§Things you [Distribution Statement A: Approved for Public
arch 13, e o
©2017 Camegie Release; Distribution is Unlimited 9

ellon University

Page 16 of 52

into account that you are so far, the
whole time, under that Conway's
Law, and you ended up with
whatever you have because of it. So
of course now again from the
technical perspective, you would look
into your existing system and trying
to identify, "What is it that [don't like
anymore? What is it in the system
that makes my life difficult?”

Again, giving an example here, many
of the older systems I actually
implement within the database. So,
stored procedures in the database.
Now, in the past, when we started
doing this, 20 years, 25 years ago, at
that point we were pretty much
resource-constrained. So to make
big system perform well and fast
enough, it was basically our only
chance for achieving this-- put
everything into the database. It
makes it fast. Great. A side-effect of
that, of course, is we created a
maintenance problem. That is the
problem that hurts us now today. So
one possibility would be you look at
the system and say, "Okay, we
learned that having everything a
stored procedure in the database is
not a good idea. We cannot utilize
modern technologies if we keep
doing this," so you want to remove
this. Great.

But, again, now back to the Conway's
Law. Think about that over the past
20, 25 years, you and your
organization created people who
know exactly how to deal with those.
Those are experts, and they love
their job. So if you say, "We don't

Page 17 of 52

want that anymore," what do you
think those people will do? They will
be not very happy. So at that point,
from the relationship, look at your
organization. What is it in your
organization that led you to the point
where you are? And if there is
something in the technology that you
would like to change, think about it
instead-- impact that your
organization has, whatever got you
there. Can you actually remove this
and change this? If yes, great. If you
think it is impossible, well then, why
would you think that the change that
you now propose, what you don't like,
will work in the future?

Presenter: So Conway's Law would
alert us to be mindful of the potential
disruption of changing the
communication channels supported
by IT because the communication
channels that exist in the
organization have gotten used to
them. Does that mean that we have
to keep this mirror between the IT
system and the organizational
structure? Can we hack Conway's
Law?

Presenter: Yeah, let me answer
that. So I think one of the issues we
run into when we look at multiple
systems, multiple IT systems that
need to interconnect, is we find out
that there are a lot of stovepipes,
and that we find out that the
different programs or projects have
not been speaking to each otherin a
long time, and when we dig
underneath we actually see that the
systems reflect that, and therefore

Page 18 of 52

they won't necessarily be easily
interoperable. They might not have
APIs, they might not have any kind of
capability to share data between
them. So it's a different result of, to
some extent, the way the
organization is structured, and the
other byproduct of that that can be
seen in the current state is you might
have redundant capabilities. So
because you have all of these
different stovepipes everywhere,
everybody builds a full stack
everywhere that they need a system,
and therefore you have duplicative
capability, maybe duplicative
features, but also cross-cutting
functionality like access control,
event handling-- things that can be
handled more economically across
multiple systems or handled all the
way through each stack. So I think
that's also one thing, where you can
see that the organization, if they're
not willing to change organizationally,
it's very hard to think about how do
we restructure the systems to go
against that kind of pattern.

Presenter: So it sounds like there
may be local optimizations that have
entrenched over time, and the
systems and the organizational
structure kind of collude to keep that
suboptimization system level for
optimization department level, and
you're really talking about changing
both simultaneously, aren't you?

Presenter: Yes. Yep. In alot of cases.

Presenter: So what more in the roadmap?

Page 19 of 52

Know what you need

Know what you need

Technology

Organizational

@ Environment

Software Engineering Institute | CarnegieMellon University

|"|‘|‘|‘fl

**010 Presenter: Yeah, so the

next point there-- actually you would
like to spend a little bit of time here,
because that's one of those topics
that is very quickly overlooked. So
after you kind of know where you
want to be and you figure out what is
it actually in the current system that
you would want to change to get
there, then we all feel good about it
and say, "Okay, let's do it." So, but
what we also see there is something
beside of this, before we can even
start, something that you need to set
up. You have to create environment
for that period of time, which may
be, depending on what kind of
systems you have, between
somewhere three years, maybe five
years, when you transition from
wherever you are to wherever you
want to be, to make actually that
transition happen.

For the endeavor to be successful you need
tool support and adjusted processes.

» Automated regression testing?
» Appropriate documentation / models?

* Synchronization of old data model with
new data model

If you do not have that support now, what
were the reasons?

* Right skill set of the people doing the
modernization

* Necessary training in place
» Right contractors selection?
» Enforcement of essential principles?

§Things you [Distribution Statement A: Approved for Public
arch 13, s o
©2017 Camegie Release; Distribution is Unlimited 10

ellon University

Page 20 of 52

So, simple example. What will
happen over time is you will take,
function by function-- so business
function by business function-- and
move them over from the old existing
system into some newly structured
system in there. While you are doing
this, you want to make sure that you
don't break anything, because during
that period of time old and new has
to work together, and make sure that
the users that you have can still use
the old function for everything else
that's not moved yet, and can use

the new function and whatever they
do with the new function will not
impact the old one.

So what is on the table is regression
testing-- automated regression
testing. [know itis an old topic. We
know that, of course, yes, we should
have automatic regression testing.
Unfortunately, almost every time
when we come to an organization,
ask that question, "Do you already
have automated regression testing in
place?”, the answer is, "Well, not
automated. We have our users doing
it." Well, if you don't have that in
place, then you will suffer a lot
during that transition period, because
every time you do something new,
something will break and your users
will be very upset. So one thing in
the environmental infrastructure that
needs to be there is to make sure
you have your automated regression
testing. If you don't, set it up first,
and then use it continuously, just as
an example.

Page 21 of 52

Documentation is another example.
Many issues that we encounter, you
may encounter, is that the problems
that you have is because you don't
really have a proper documentation
for it. Just over time, over the past
20 years or so, you just add to it, and
no one actually knows where stuffis
and how stuff works. Maybe one of
the decisions that you had was, "We
need to fix it." We don't really want
to have all the documentation-- by all
means, no-- but the right
documentation. Butif you are not
used to it, then you need to set up a
definition of what is it that you need
to be done; you have to have a tool
environment where you can do that
very easily, and such. So there are
environmental tools that you need to
put in place to make the whole
transition happening.

Presenter: And there's also-- I'd

say, Will-- there's also focus on the
sort of organizational and
nontechnical aspects of that
environment too. So what we're
talking about is putting in place this
environment that allows you to move
from the current state to the future
state. So we know there's the
technical that Felix just talked about--
having automated regression testing,
having strong documentation models
of the future-- the current and the
future-- those kinds of things, tools
to support that. But you also need to
think about, "Well, do [have the
right skill sets?" People who, say,
want to move to the cloud. "Do |
have that?" You've got the right
acquisition strategy.

Page 22 of 52

But also, I think a really important
piece that we've run into quite a bit is
the notion of having governance over
sort of common principles, and when
[say that, I don't mean software
engineering principles and practices,
like, "Just follow good coding
standards.” What [mean is once you
have identified a future vision or a
future state that you want to move
toward, you need to define some
principles or some guideposts, or
guiderails, to kind of keep you inside
that boundary as you move forward,
because what happens is you go out
and chart out this great new vision,
and as developers are making day-to-
day decisions, they aren't aware of
what actions they might take that
might run counter to that vision, and
what happens is over time you start
to just diverge too far from it. Soit's
very important to establish some set
of principles and some governance
structure.

And so an example of thatis a
common place for large-scale IT
systems to start is to create a set of
data services because it allows you to
encapsulate your application layer
from your data layer, and what that
does, it allows you to modernize the
application layer separate from that
without a ripple effect. That's one
tactic sometimes you can use. If, for
example, you use that tactic and the
developers don't have a principle or
guideline that says that they should
not directly connect databases, they
may go in and just do that, and then
when they do that, there you are
running counter to that vision and

Page 23 of 52

that goal, and it makes it difficult to
get there. So I think part of that
environment includes having a set of
principles that are specific to your
future vision to keep people sort of
moving in that direction.

Presenter: So those principles are
essential to the architecture, right?
Oh, you have a good question?

Presenter: Oh, cool.

Presenter: Yeah, [was just seeing
here. So there's actually a very good
from-- [think it's David. So saying,
"You also need to put an incentive
structure into place to support the
whole transition." Yes, absolutely.

Presenter: Yes.

Presenter: So that would be one of
the topics that you need to think
about when you create the
environment: What can you do to
give the incentive to the people to
actually follow and provide the new
things? Absolutely. Very good
question, thank you.

Presenter: So there's an

architecture flavor to what you're
saying here, including the incentives.
We need to align the different
communications with a common view
governed by principles. Can you
portray this with an architecture
background?

Presenter: Yeah, I think. So the

issue here is-- so as soon as you get
some idea about what you try to

Page 24 of 52

achieve, you need to have a tool that
helps you to get structure into the
whole modernization project, which
means the technical structure, but
also the organizational structure.
You need to have something. So
kind of like a skeleton where you can
put the meat around it to actually
then hopefully build some nice
human body. And that guiding
structure actually is the architecture.
Going back to Conway's Law, there is
an alignment between organization
and the technical system. If you can
capture whatever makes sense in
your organization in an architectural
structure in there, that also maps to
your organization, where you can
really say that, "Okay, yeah, so that
structure, I can see that also in the
organization, and the organization
will support it in some way," then you
have the internal schedule that you
can use for making your technology
decision, making your architecture
decision. So Stephany was talking
about some kind of governance
infrastructure. You can align that
around that architecture. So your
testing environment or your tools
environment can all be around that
architecture, so you start creating the
first structure that allows you then,
little by little and in steps, to build
out until you are then, after a certain
amount of time, achieve what you
want to achieve.

Presenter: So tools really can be
significant here. The use of
application lifecycle management
tools is very common in industry, and
['ve heard of organizations describe

Page 25 of 52

the process of bringing someone new
onboard, not as a, "Sit in this
conference room, view these slides,
listen to this training,” but go into the
tool, and understand the
architecture, understand the
technical decisions that have been
made. Can you discuss how that
kind of engagement using tools
assists in this process?

Presenter: Yeah, that's actually--

for me actually always-- yeah, |
should say "funny" in quotes. It's
amazing to watch people. So, as the
organization we are typically working
with, when it comes to dealing with
architecture, [wouldn't say they're
that mature. So for many of those
organization, architecture is still those
boxes and lines that you draw on the
whiteboard and many people talk
long time about it, and then when
you are done, then you do the real
work. So, what I just said, that you
actually use the architecture as a
skeleton to build your system out,
means that you need also get a little
bit more sophisticated with
architecture. So, and here we are
talking about something that you use
as a communication tool, which
means it has to be explicit. It cannot
be in the brain of some people,
because those people may not be
available when you need them. So it
has to be documented in some way.

But we also know putting everything
in a text document, that is the same
thing like just saying-- digging a hole
and putting it in there and building a
grave for it. Won't work. So you

Page 26 of 52

really have to create a living model],
and that's where the tools come in.
So if you build the architecture using
a tool-- and there are enough tools
available for doing that-- and you
take it serious-- so you build the
model and you...and you
communicate that model throughout
the process-- that is one of the
important factors for success for a
project. And yes, I know architects
have a hard time at the beginning to
get used to it, because it is work.

You have to be precise, not just like
boxes and lines on the whiteboard,
which is sort of like you can interpret
anything you want to. You have to
be precise, it has to be consistent,
and all of this, and that is tough.
That is hard. But you have to do it.

So after we guide the architect
through, after they get to the point
where they actually have a model,
we can actually use it to
communicate. Itis amazing to see
them watch and say, "Wow. All of
the sudden there were questions; |
was able to answer them. Within five
minutes that topic is done. Here, we
can move on to the next problem."
We don't have hour-long discussions
about things. So yeah, tool,
absolutely.

Presenter: So this is another aspect
of connecting the new shiny thing to
the real environment in which people
have to operate and continue to
provide value to their customers.

Presenter: Yeah, let me move this
forward a little bit here. Let's talk a

Page 27 of 52

little bit about this next topic,
because this rolls right--

Know how to move forward

Know how to move forward

Technical Roadmap
* Use of new technologies is risky.

Technology - plan for feasibility studies / Prototypes
OCfg ; - off-the-shelf product integration
S @ * Plan for backing out off a technology in
@!‘7 Roadmap case it shows to be inappropriate
oot Strategic roadmap supporting technical
Organizational roadmap_

» Set up a steering group

» Set up the funding model

« Set up review boards

+ Set up investment management

5 Things you need to know [Distributi
s

Software Engineering Institute ‘ Carnegie Mellon University 2017 Camogle Mellon Universiy Release;

Statement A: Approved for Public
ibuti

ion is Unlimited 11

WUWI

**¥011 We're going to segue back to
this topic in a second and talk a little
bit about the incremental
architecture. So why don't we talk
for a second about the roadmaps,
where basically one of the things that
we suggest is to develop a roadmap
that includes both the technical and a
nontechnical flavor to it. So in the
technical aspects, where it's the
typical phasing and tasking that you
would expect to have a roadmap, a
technology roadmap, that defines
your future architecture. So that's
where you would have your technical
architecture, your future vision. But
then we'll also want to be thinking
about some of the nontechnical
aspects. And so we suggest that you
also have along with that a strategic

Page 28 of 52

roadmap, we call it, which basically
allows you to think about some of the
other mechanisms that you need to
have in place to move that forward.

So, for example, some of the things
you might want to have in the
strategic roadmap are things like a
steering group that helps you to
make decisions across multiple
groups, because one of the problems
that you run into in these complex
environments is, like we said with
Conway's Law, you end up with these
groups that are stovepiped
everywhere. You need to kind of
bring them together and start to be
able to make common decisions. So
one of your first common decisions
might be, "Do we actually agree on a
common vision?" Which is
sometimes something that takes
quite a bit of-- and in order to do
that, you really need to have the
level of what Felix is talking about.
So one of the things you can run into
is that if you're looking at a bunch of
PowerPoint slides that are very
roughly thrown together, it's really
hard to say, "Well, do we agree on
this vision, and what is this going to
buy us from a quality attribute
standpoint, performance, security,
etcetera?” It's just too vague. So
you really need to get down to the
level where you can actually define
that future state pretty well in a
model in order to have good,
intelligent conversations about it, and
then to agree on, "Do we agree as a
group that we're going to support
this?" And then as somebody else
was just chiming in, then you need to

Page 29 of 52

think about, "Well, how are we going
to fund this and incentivize it?"

So it usually can cost more; it can be
painful, especially if you're building
common components, so you have to
think about if you are building
components that are going to cross
multiple programs, are you going to
have each program fund a little bit of
it? Are you going to have some other
structure? How can you basically
fund common components, is a huge
challenge that people run into,
especially when they want to be able
to leverage the ability to share
common infrastructure across
multiple systems. So those are a
couple of the things to think about
from a roadmap and a planning
aspect. I think it's important to think
about how to focus on the
technology but then also to focus on
the nontechnical.

Another one is the architecture
review boards. Again, if you're
making decisions as you're going
through the development and the
implementation and the architecture,
and then you're evolving other
features at the same time-- like Felix
said, it's not a case of it being-- you
can't stop and just start doing an
architecture project and migrate it.
"If you build it, they will come." That
doesn't work. We know that doesn't
work. So you have to be basically
developing your architecture
alongside of your features, and
therein is a big challenge. So as
people are developing features,
making new features with the

Page 30 of 52

existing systems, and you're focusing
on trying to build infrastructure for
the new, you have to weave those
together. That means that there
needs to be an architecture review
board that crosses multiple programs
and projects that allows you to
determine whether a decision you're
making today is going to impede or
enable your future architecture. So
you can't just focus on one or the
other; you have to be focusing on
both of those at the same time, and
your transition plan, like Felix said,
from the beginning. So those are
some of the other areas to focus on
the nontechnical.

Presenter: [was just going to,

from the technical side, just throw
one thought in there, and that is be
aware of whenever you do the
transition from today to tomorrow,
you are in a high-risk area. You are
not running a project that you did
many times during the past 20 years.
Those are big projects, they have a
high probability of failure, so take
that into account. Don't think you
can just put in some kind of timeline
to do all of those things and it'll be
just fine. Yeah? The positive way.
Think more in terms of: Every time,
every step that you go along
probably will fail. So take that into
account, and that means-- and plan
for it. So plan for feasibility study,
prototypes or something.

For some organizations, there was
also a way that they looked at all the
steps that they want to do in the new
system and asked the question,

Page 31 of 52

saying, "If this step would fail, how
easy is it for us to back out again of
it?" And they preferred mechanism
that helped them to go a little bit
further, see how it goes, and if it
doesn't work, go back again. So
those are all criteria to take into
account when creating a roadmap. It
is not just, "Oh yeah, here's a bunch
of activities. See who is available,
and then just put it on the timeline."

Presenter: So as we think about

the tactics and the intermediate
stages that we want to progress
through, it is not limited to the
deployment of new technology. Itis
about the human resources that
operate that technology who need to
recover gracefully if the technology
doesn't work, or who bring you new
requirements if the technology
changes the way they do their work.
It's really a complex, as we said,
sociotechnical challenge.

Page 32 of 52

Iteratively move forward

Iteratively move forward

Attribute Driven —

Quality Attribute Design
Workshop
BUSINESS | 7 .. \
AND MISSION Architecture, | ooy TECTURE
GOALS . Pra es

|"|‘|‘|‘|||

**012 Presenter: Yeah, itis, butI
think one of the things that I think is
important on the technical side is--
and I think you alluded to this earlier-
is the importance of doing this
incrementally. So one of the things
that we feel is very important is to
focus on doing and developing your
architecture and delivering your
architecture, pieces of your
architecture, incrementally as well.
So like I was saying with agile, we've
gotten pretty good at identifying
smaller batches, we have stories, we
develop features, we put those into
sprints, but a lot of times what
people still do with architecture is,
like Felix said, they go off and they
try to do that as an ivory tower
project. It's off to the side and has
some kind of pilots, concept pilots,
but there's no real integration
between the two, and what we've

N’

Views and __ |
Beyond

Software Engineering Institute | Carnegie Mellon University

5 Things you need to know
March 13,2017
©2017 Camegie Mellon University

Active Design
Review

SYSTEM

[Distribution Statement A: Approved for Public
Release; Distribution is Unlimited

Conformance
Review

12

Page 33 of 52

found, at least in the environments
we work in, is there's not the funding
and the business doesn't have the
tolerance for that kind of thing. You
need to be able to identify that future
architecture vision and then figure
out how to weave those features in
as you're delivering other features,
and that is really the art and craft of
basically trying to manage the
dependencies to make that cycle
work, and I think one of the things
too that's important to do when
you're developing architecture
incrementally is to basically have a
pretty tight cycle for being able to
identify the design that you're going
to develop in an increment, be able
to go in and do a very quick review,
design review-- you can't do a CDR
that takes five days. Forget that.

You need to be able to do that very
quickly, efficiently, whiteboard
session-- done-- and then you need
to be able to develop that piece of
architecture along with your other
features, make sure it conforms with-
that the implementation, the code,
conforms with the design, and then
you need to make sure that all of
that is documented from the
beginning, and then as you go back,
what you've learned, you've
integrated it back into your design
model. Soit's important to have a
very tight sort of process there for
doing all those things, because no
longer can we have these long,
drawn-out-- they never worked in the
first place, but people would try to
have these long, drawn-out

Page 34 of 52

architecture tasks that just never got
integrated, and--

Presenter: And this is really the
fifth element. The astute observer
would have noted that you had four
boxes in the graphics used till now,
and this is the fifth element.

Presenter: This is the fifth one.

Presenter: Ijust want to go there,

is a question here, very interesting,
right for that topic, asking for: Are
there any strategies to convince the
business, a business unit, that
treating architecture as a first-class
citizen actually provides value? So
what Stephany just said is-the...
really is that you have to

show value, and you have to show
value very quickly. So you cannot try
to convince a business unit and say,
"Okay, give me one year time, and |
will provide to you this document
here that will solve all the questions
that you have." No business will go
for this. You have to show that you
do your first increment of the
architecture-- so focusing on one
topic, one topic only, saying, "Okay,
we'll fix this." In the architecture you
describe how to fix it, and what else
is involved, including the
organization, what they need to do,
and then you integrate that piece and
go to the developers and say, "Here's
how you do it." So you align the
architecture into the code, and make
sure whatever the developers do is
actually aligned to the architecture
back again. So to try to solve one
problem, you show that now very

Page 35 of 52

quickly you can use that actually as a
communication tool. You can guide
your development to implement the
right thing so when they put it out, it
actually works and solves the
problem.

Presenter: Yeah, I agree. Ithink

that the showing value-- you're right
on with the value-- and I think one of
the things that we've had to develop
a skill to be able to do is to work with
the business and figure out what
projects are coming down the pike
that can actually be nice candidates
for your architecture component. So
say, for example, you have data
services as one example. Maybe
there is a need, a project coming
down the pike, where you need to
share data externally securely, or
maybe you need to share data within
your organization. We will latch onto
that project and try to move it
forward by getting that architecture
component in there for them so that
the value is that that project actually
gets delivered with business value at
the same time as delivering version
1.0 of the architecture feature that
could be shared, and that's a tricky
thing to do. It requires working
closely with-- the business and the
architect can't be far apart. We have
to work very closely and collaborate
on figuring out where the windows of
opportunity are for doing that kind of
thing.

Presenter: So you reminded me of
a story. I once interacted with a CIO
who was very successful, and he
talked about all the expensive art he

Page 36 of 52

had on his bookshelf. These were
documents full of technical drawings
that were inanimate, and what you're
talking about is how quickly we can
go from strategic to tactical to
realizing what's described there, and
that getting to what people need to
use and what people benefit from is
one thing that makes the architecture
a first-class citizen.

Presenter: Yes.

Presenter: Right, but also, back to
that comment, only if you really do
that iteratively.

Presenter: Mm-hmm. That's true.

Presenter: So the way how this--

the one slide that we just showed-- is
built intentionally to really show that
we are not doing a one-step
approach here, which you probably
had in your experience that it doesn't
work. We have that all over the
place. It doesn't work. So don't

even try. So there are circles in
there, iterations, between the
business-- because the business--
we're talking a longer period of time-
- the business will change too during
that time, which means we need to
do some adjustment in the
architecture, and which leads to
adjusting the system. We typically
ignore the cycle between architecture
and system. There is still-- in many
organizations, there is still a big wall
in between. So architects also are
the ivory tower people. They get all
the big bucks, and we poor people
here that do implement, we don't get

Page 37 of 52

anything and have all the work. That
wall is still there. But the work
actually has to be done by both.

Presenter: And an iterative
approach really keeps the speed of
communication going too, so that
people who think strategic thoughts
have to come to a cadence that's
new, perhaps. It allows them to
have strategic thoughts more
frequently, [would suspect though,
instead of just one time.

Presenter: Well, it does. It does,

but it also helps to be a little bit more
grounded. So of course the
developers will say, "What a great
and a wonderful idea that you had.
Sounds good, but it won't work."

Presenter: Where's the practicality?
Presenter: That's right.

Presenter: As an architect, you

have to deal with it. So either
convince that person that that
person's wrong, or fix something, and
you need to be convinced to do
something right.

Presenter: So, roadmabp, I think.

Page 38 of 52

Periodically Re-evaluate Roadmap

Periodically Re-evaluate Roadmap

Roadmh‘.
defined el

Revalidation.
of Roadmap -

s Tings you Distribution Statement A: Approved for Public
fi=-titejan Release; Distribution is Unlimited 13

Software Engineering Institute | CarnegieMellon University s .

"N‘WI

**013 This is what we're into now, the
next series. Why don't you go ahead
and walk through this?

Presenter: So we're are trying to

put all of this together, what we just
said. So after you did all the work,
all those first four steps-- you did a
great job, you looked at where you
want to be, you made a very
appropriate selection, saying, "From
all the possible things that we could
do, we only focus on those things
because that would make our life a
little bit easier." You had a very close
look to what you have. You really
identified the key issues that you
really want to solve. You put all your
environment into place. So you have
your regression testing, you have
your steering group, you have
everything in place. So after you did
all the work, which can be-- it's a lot

Page 39 of 52

of work-- there you are at that point
and saying, "Okay, now [know it.
Now I know exactly where | want to
be, know exactly what [have, and
so just let's now go on and move and
justdoit."

So, but fact is, as we already started
talking to, is whatever you know now
is a very high risky area. You don't
really know where you will end up
with. You're also talking here a
longer time. So it might be a good
idea-- we talked about iteration-- it
might be a good idea from the whole
effort perspective every now and
then-- so let's say maybe after half a
year or year, depending on how long
the project is-- to stop. Look at what
you achieved. See what you learned.
You worked now for, let's say, a year.
So you learned a lot of things, and
you may have devised whatever you
think the future should look like from-
the issues that you may have
identified a year ago may not be the
real ones. You may have identified
others, and such. So you revisit that
and make some course corrections.

Presenter: A new bearing.
Presenter: Yeah. So therefore now

at that point the risk that you still
have is hopefully a little bit smaller.

Page 40 of 52

Periodically Re-evaluate Roadmap

Periodically Re-evaluate Roadmap

Revalidation
of Roadmap
. 5 Things you need to know [Distribution Statement A: Approved for Public
== Software Engineering Institute l Carnegie Mellon University €017 Camegio Melln Unhersiy Release; Distrbution is Unlmited 14

**¥014 But there is still a pretty big
area of risk that you don't really
know where you end up with.

Page 41 of 52

Periodically Re-evaluate Roadmap

Periodically Re-evaluate Roadmap

Hl‘HWI

Software Engineering Institute | CarnegieMellon University

**015 So which means you repeat
that process after-- periodically.
Maybe it's each year, or each half
year. So at some point. Make the--
revisit that problem, see where you
are, and come closer and closer to
where you actually end up with, and
then hopefully end up at the place
where you would like to be. But
because of this, you also need to
keep in mind--

[Distribu
Release;

tior

; Distribut

ement A: Approved for Public

ion is Unlimited

15

Page 42 of 52

Continuously Update the Modernization Artifacts

Continuously Update the Modernization Artifacts

—~~—
O 9o 1
\ /' Q a...@
hlﬁ _ hlé &.ﬁ o&

diln X X

Adjust Activities g
as needed . 4

/c&

need to know [Dtb(S((me(AApp ved for Public

Software Engineering Institute | Carnegie Mellon University Sz’é?;‘éefm Welon Universty Releas; Distrbuton s Unlmited. 16

|"|‘|‘|‘|||

**¥016 That for each of those

points in time, we want to look at do
you have to make course correction
or not. You have to look at all the
artifacts that you created the first
time and you have to make some
adjustment to it. It actually might be
a good idea-- so while you are
actually doing the transition here to
the new place-- that in parallel you
actually always look at your artifact
that you have-- your future vision,
your current state, your environment,
all the infrastructure that you put into
place-- if you have to adjust
something. Because you know the
time will come when I have to look at
that again and make another course
correction. So that is the fifth point,
to execute this in iteration. Don't
believe the first roadmap that you
have. It's a good first cut. You have
to do it, because it gives you an idea

Page 43 of 52

of how to move forward. But you

can also be assured that roadmap will
be wrong. So therefore every now
and then you have to revisit, make a
course correction until we get to the
point we really want to be.

Presenter: So reexamine both the
social and technical as well. So you'd
be looking at what's been the benefit
accrued from this initial release,
perhaps; how does it change our
workflow; what new needs for
technology does that create; and you
really want to reenvision where
you're heading.

Presenter: Right, and I think
somebody pointed out here that the
business case-- making the business
case from the beginning of maybe
wanting to do some architecture
work is an important thing to do, and
it also does need to be revisited. So
if you make a business case that,
say, you're going to put in a security
infrastructure or something like that,
or maybe you're going to improve
performance, you're going to put
caching in or something like that for
critical services, you do that, you're
going to want to make sure that you
do go back and see if actually, once
you implemented that, did you
actually reduce the cost, or did you
reap the benefits. So I think there's
that, of establishing those business
cases, which is-- whoever submitted
that is absolutely right. You have to
have that from the beginning to
actually sell it, but then making sure
that you're actually getting the

Page 44 of 52

benefit. I thought that was a good
observation.

Presenter: So I think Shane has a
comment from a viewer.

Presenter: Yes, just two in the

Chat. First one's from Daniel, asking,
"We have an interesting case where
we've used an automatic migration of
our legacy system in one big bang.

It was a huge project and the switch
was very successful. However, now
we need to figure out how to live
with automatically migrated system."”
So, any comment to that?

Presenter: Yeah. So--andIdon't
know what the migration was. I
assume that that means you
migrated from one language to
another one. So maybe it was Cobol
to Java or something. SoIdon't
know what it is. Butin general, keep
in mind that, yes, all those
automated tools will help you to
switch from one technology into the
other. But it will not change anything
in terms of how your system works.
So there are no functional changes.
So if your problem is only that you're
using a language or maybe a
framework or something that is not
supported anymore and therefore
you need to go to something else,
then yes, it's a good approach. But
as you discovered, you now have
code that was touched by some
automated tool with changes in there
and there is no guarantee that for a
human being that is actually an
appropriate representation that you
can actually read and understand it

Page 45 of 52

and do something with it. You may
end up with solving the first problem
but ending up with another problem
that you cannot maintain the code
anymore.

Presenter: So it's rare that the
transition being desired and
attempted is purely a technical one.

Presenter: Rarely.

Presenter: Yeah, and so what-- |
don't know what this migration was,
but one of the problems that we run
into is that people see-- they fund
projects, even an architecture
project, with a start and a stop, and
so there is no funding for the
remaining cleanup that needs to be
done, and often there's a lot of
cleanup-- and maybe there's ongoing
work to sustain and maintain that
architecture component-- butit's a
very tough business case to sell, in a
lot of cases, to actually sustain them,
or to finish the migration. So maybe
it's technical, maybe it's not
technical, maybe it's a mix of things
that are left hanging out after this
migration, but [think a key part of it
is trying to get it in the plan that
you're going to deal with the
technical all the way through and
continuously maintain that as well as
the people side of it.

Presenter: So while you were
finishing up, Felix, Daniel did get
back saying it was a language. It
was EAE LINC to I think C-Sharp is
the language, was his follow-up.
Then we had another comment from

Page 46 of 52

Carl saying, "This reexamination
requires honest reflection. How can
we ensure that this process is
handled honestly? It's not easy for
architects to admit to the team they
were wrong."

Presenter: Oh, yep. You've got a
very sore point here. So, the best
solution that I can-- that we actually
see and actually that's our advantage
here of being is it would

be a good idea to get a third-party in
there that facilitates that reflection
process. Ask tough questions, ask
everyone, maybe some interviews, to
get the collection, saying, "Okay,
what went well? What didn't go that
well?" And for everything that didn't
go well or did go well, then ask really
the question to all of them, saying,
"Why is it so? What happened?” So
if you can get-- and it does not
necessarily have to be an external
organization. So in your own
organization you find a group which
are not involved in that project but
do similar things. Might be a good
idea-- maybe talk to them and get
them in as interim facilitator. Yeah,
but you're right, if you cannot get to
an honest reflection, it's the same
like saying, "Oh yeah, yeah"-- we
close our eyes and say, "The first

is still fine. We just follow it." And
who knows where you end up with?

Presenter: Yeah, and I think too it's
the perspective. So Google and
Amazon and whatnot, they've turned
to looking at failure as success. So
what you learn from failure in a lot of
cases, they incentivize more than

Page 47 of 52

success, according to what I read.

So I think we need to change the
way we think about things too,
because sometimes-- okay, so maybe
a solution didn't turn out to be the
best solution, but you learned a lot
about your environmental constraints
and it may be people stuff, it may be
technology stuff-- for whatever
reason that solution didn't work.
However, there are probably things
that were successful there that you
want to build on. Most of the time
we see successful efforts that we can
build on. And then there are places
where you don't want to go down
that path again and pick it up,
because it is a learning process, and |
think if we don't treat it that way, for
whatever reason-- in agile and in
product development flow and
things, we've learned in lean thinking
that we need to do that for features.
We need to put them out there and
let the users react. However, for
architecture, we still seem to hold a
binary-- you succeed or fail. And we
also need to-- these are big
decisions, big changes, and so a lot
of times you need to be able to work
with the management to say, "Okay,
we don't want to have a huge
outright failure, but we are going to
learn in a pilot, and we're going to
take that forward, and just know that
some things will go forward, some
things won't. Butit's not a huge
failure if you--

Presenter: It seems like the
iterative approach is really essential
here, and if you're able to do small
iterations the consequence, the

Page 48 of 52

adverse consequence, of an
unfortunate path is limited to a
greater degree if it's a small iteration.

Presenter: Yes. Yeah.

Presenter: I also think there's a
mindset behind it.

Presenter: Mm-hmm. I agree.

Presenter: So if you're an architect
and you come up with a solution, the
worst thing that can happen to you is
that you actually believe what you
have. We have a way better
approach when saying, "Okay, it's a
good first guess. So there is a good
chance that's the right one, but it's
just a chance. We don't know. And |
as an architect don't know about it."
If you as an architect get that
mindset in there, that opens up and
saying, "Okay, so now [know that
['m not having right solution. I need
to put a mechanism in there that
helps me discover if | have the right
solution," which gets the iterations in
there. Feedback on those. Soit's a
mindset issue.

Presenter: So there are learning
cycles.

Presenter: Mm-hmm. Mm-hmm.
Mm-hmm.

Presenter: Great.

Presenter: Okay, before I turn it
over for any last words-- we're done
in about three minutes-- I just
wanted to remind everybody-- a

Page 49 of 52

couple questions in the queue asking
if the slides from today are available
and if this is archived. The slides are
available now in the Download
Materials tab on your webinar
interface. The eventis archived, so
you will receive an email letting you
know when that's available
tomorrow. A reminder to everybody
to please fill out the survey upon
exiting today's event. We appreciate
your feedback, your thoughts on
today's presentation. And then lastly,
we wanted to let everyone know
about SATURN 2017, and SATURN is
our SEI Architecture Technology User
Network Conference. It's an annual
software architecture conference.
This year it's taking place May 1
through 4 in Denver, Colorado. The
great lineup of speakers and program
is now available on the SATURN
website, and from registering from
today's event, everyone will get 15
percent off for attending SATURN,
and we'll send out that discount code
out through email, so we hope to see
some people there. So, last

thoughts. Will, anything you want
to-- we have one more comment in
the queue we can wrap up with
unless you guys just want to close it
out with something else.

Presenter: Well, let's hear the comment.

Presenter: Okay, from Tito asking,
"In Agile, hardening sprints can be
used to tackle the problem of
cleaning up code and maintaining the
architecture, documentation,
etcetera, instead of leaving it to the
end of the project implementation."

Page 50 of 52

Presenter: So we can explicitly
account for the need to do that, and
as we look at the balance between

the social and the technical, I think
opportunities to harden the workflow
and make sure that people's work
instructions are sufficiently updated.
That may be something that comes
into play.

Presenter: Right, right.

Presenter: Thanks very much for
speaking today. This is a really
important topic, and more and more
modernization issues are going to be
coming to us. So, glad to have you.

Presenter: Well, the older the IT
system that we all use, again, the
more you have the problem to
modernize them. Yes.

Presenter: Great. Excellent talk
today, folks. Thank you very much.
Folks, that's all the time we have for
today. Again, please fill out that
survey upon exiting today's event, as
your feedback is always greatly
appreciated. Thanks everyone.
Have a great day.

Page 51 of 52

SEI WEBINAR SERIES

(7 SEl WEBINAR SERIES | Keeping you informed of the latest solutions

Software Engineering Institute | Carnegie Mellon University

Page 52 of 52

	Leading a Successful Large IT Modernization Project
	Table of Contents
	SEI WEBINAR SERIES
	Carnegie Mellon University
	5 Things You Need to Know for Leading a Successful Large IT Modernization Project
	Polling Question 2
	5 Things You Need to Know for Leading a Successful Large IT Modernization Project
	Polling Question 2
	Polling Question 3
	Data Collection
	Know where you want to be
	Know where you are
	Know what you need
	Know how to move forward
	Iteratively move forward
	Periodically Re-evaluate Roadmap
	Periodically Re-evaluate Roadmap
	Periodically Re-evaluate Roadmap
	Continuously Update the Modernization Artifacts
	SEI WEBINAR SERIES

