Agile Metrics: Three Secrets to Success

Table of Contents

SEI WEBINAR SERIES | Keeping you informed of the latest solutions........ccccceveveeviieeiiieeccieeeee, 4
Carnegie MEllON UNIVEISITY.....uiiiiiiiiei ittt ettt et e e s e e s sra e e e s sbae e e e ssabaeeessaraeeesnan 4
Copyright 2016 Carnegie Mellon UNIVErSity.....ccoccveeiiriiieeiiiiieeeesiieee e s e e s siaeee s saraeeesnaes 5
Agile Metrics: Three SECrets t0 SUCCESSiiiiriiiiiiiiiieeeiiiieeeesritee e sreee e ssiaeeesssiaeeesssbaaeesssnraeeesnnns 5
AGIlE IN GOVEIMIMENT c...iitiiii ittt ettt e se e e s st e e s aba e e e s s bbeeeessabaeeesssseeeeessseaeessnnsaeeesnnns 8
BOTEOM LINE UP FrONT ..ttt et et te e te s setetesesssesesnsenesnnnnes 9
A FamMiIliar ProblEmi. ..o ettt s 12
Multiple INterseCting SYSTEMSciiiiiiiiie et e e s e s s sbae e e e s sabae e e s saees 14
Barriers to AUTOMATION ...cciiiiieiiiiiiiee e e e e e 17
(oo [T a T @ TU T o o I - 2P PP PP 19
Taking a Deterministic View Three Numeric EXamplescoovviieieiiiiieeiiniiieeecieee e 21
S Y (ol Y 1] o] [T PP R PP 22
[T MOAEINIZATION...coitiiiiiie et e s r e s e sba e e sbe e e sanee s 23
IT MOdernization EXAMPIEcuvvveeeiiee ettt e e e et e e e e e e e e seabtbereeeseessenansbsaeneseeenns 24
Managing Three Planned REIEASEScccuvveviiiiieiieiireeeee e e e et e e e e s senbbraereeeeeeas 25
Understanding Benefit of IT Modernization.........couvcciieeiieiiiiiiiiiieeeeeeec et eeeeirreeee e e e 28
SUStaINING EMBDEAAEd SYSTEIMS ...ttt e e et e e e e e e e abbbreeeeeeeseenansrreees 30
Sustaining Embedded Systems EXamMPIEcoocviviiiieiiiiiciieeeee et e e e s narreees 31
D T A=Y o [=To B B L) =Tt £ PR RP PP 32
Enabling Mission Threads With DR FiX@S.......uuueiiiiiiiieiiiireeiieeeeeiiiiiirreeeeeeeeessinnreeeeeeesssesnssnseeesesenns 34
R&D Pathfinder PrOJECES ...cciveieiiirieiiee ettt e e et e e e e e e e e s bbb areeeeeesseansbraeneeeeenas 36

Page 1 of 94

R&D Pathfinder Projects EXAMPIEccouiuirieiiieie ettt e eesnrree e e e e e s senbbaaereeeeeeas 37

BUIldING @ Proof Of CONCEPT ...uuviiiiiiiie ittt e e e e e st ereeeeeesseansbaaeneeeeeens 38
Understanding User Value with KANO ANalySis™uveeiiiiiiiiiiiiiieeeec et eeivreeee e 41
POIING QUESTION H3 ..uiiieiieiieieicitteeeee et e e e erer e e e e e e se bbb e e e e e e eeeeesassbsbareeeeesssesnsrrseneeeeenns 43
Flow Metrics Examples Cumulative FIOW Diagrameeeeieiiiciiiirreeeeeeeeiiinreeeeeeeeeeennnnneeeeseeeens 44
Constructing @ Cumulative FIOW Diagrami ..ccccuvreeeeieiiiiiiiiieeeeeeeeeeeiiirrereeeeeeeesannreeeeeeeeseennssesenes 45
Constructing @ Cumulative FIOW Diagrama ...cccuuvveeeieiiiiiiiiiieeeeeeeeeeeiiirreeeeeeeeeesnnreeeeeeeessesnsssseees 46
Constructing @ Cumulative FIOW Diagrams ...cccuvuveeeieeiiiiiiiiiieeeeeeeeeeiiirreeeeeeeeeeeannreeeeeeeessesensrssenes 47
Constructing @ Cumulative FIOW Diagramaceeiveuiieiiniiieeieiiiiesesieee st ee s sire e e s siee e e s ssveeeeenaes 48
Theoretical Basis Little’s LAWcoouiiiiiiiiiie ettt s 49
Little’s LaW in AGIlE IMIELIICS oovueiiieieiieee ettt s s e e st e s s sbae e e s s sabae e e s naees 50
UTITIEY OF LItt1e'S LAW weeeiiiiiiiei ettt et e s e e st e e s s stae e e e s nabae e e e nanees 52
Exercise: What is GOING ON HEIE?uiiiiiiiie ettt sttt e e s s sbae e e s anes 54
Exercise: What MIGHT BE HapPeNiNG1 .ccceuvieeiiiiiieeiiiieeeesieee e ssreee st e e s sane e ssaaee e s ssinae e e s nases 55
Exercise: What MIGHT BE HapPeNING2 ..cccuuvveeiiriiieeiiiieee sttt e e s stae s st e e s ssinae e s s 56
(oo [T g T @ TU TS o o I -7 PRSPPI 57
Cumulative Flow Diagrams — BEYONd BASICScccvvuuiiiiiriiiiieiiiiiieeesiieee s esiieeesssiree s ssieeee s ssivneeesnaes 59
Influence on Modern Agile Practice Lean ECONOMICS......cccuueieiriiieeeniiiieeenieeeesniieee s snvaee e 64
ECONOMIES OF BATCN SIZE ..cvniiieiiiieeee ettt s 65
Metrics for Flow-based Product Developmentcoocuviiiiiiieeiiiiiee e 69
POIIING QUESTION #5 ...t e s e e e s s b e e e s s abe e e e s s abaeeessabaaeeesnnbaeeesnnsees 70
Clash of Mind-Sets Deterministic Plans for an Uncertain World..........c.cccocveeiiiiiniieeniieenieenne 72
Value Flow: Utilization is the WIrong GOlcoccuirveiiiiiiiiiiciiiiieeie et e e eeseirnreee e e e e e e eeanns 73
Maximum Utilization is COUNtEIrProdUCTIVEcoovieiviieeiiee et e e eebrrreeeeee e 75

Page 2 of 94

Diagnostic Metrics Helping TEaAMS DEIIVETcooiiiciirieiiei ettt ebrreeee e e e 77

Batch Size ANalysis — StOrY Siz€ FOCUSuuuririiiiiiiiiiciieeeeee et eeeeeearreeeeeeeessenrraaeeeeeeeeas 78
Potential Story Granularity INAICAtOr?.......uuveeiiiiiiiiiee e e e e e e e 79
Coefficient of Variation — ANalysis Of VEIOCItY.......euviiiiiiciiiiiieiiiiieeieieeeeee et 81
Diagnostic Metrics Understanding Program Performance.......cccceeeeveeiviicciireeeeeeeeeieiiirreeeeee e, 83
[aTo ITor= | o gl L 1] o] (=13 PR PP PUPPT 84
[aTo ITor= | o gl S L 1] o] (=13 PR 87
Adopting New Approaches Assessing ENZagemMeNt........coovvvvrreeiieeieiiiiiiireeeeeeeeeeieinreeeeeeeeesenanns 88
Simple Indicator, POWErful ANAIYSISuiiiiiiiiie ettt e e s s saae e e e 89
[T (o] o = PP PRSP 90
BOTEOM LiN@.iiiiiiieee et e e 91
SEI WEBINAR SERIES | Keeping you informed of the latest solutions.........cccceeeveeviieeiiieenceeene 94

Page 3 of 94

SEI WEBINAR SERIES | Keeping you informed of the latest solutions

(1 SEl WEBINAR SERIES | Keeping you informed of the latest solutions

=== Software Engineering Institute | Carnegic Mellon University

Carnegie Mellon University

Carnegie Mellon University

This video and all related information and materials (“materials”) are owned by Carnegie Mellon University.

These materials are provided on an “as-is” “as available” basis without any warranties and solely for your
personal viewing and use.

You agree that Carnegie Mellon is not liable with respect to any materials received by you as a result of

viewing the video, or using referenced websites, and/or for any consequences or the use by you of such
materials.

By viewing, downloading, and/or using this video and related materials, you agree that you have read and
agree to our terms of use (www.sei.cmu.edu/legal/).

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

© 2016 Carnegie Mellon University.

= N M M " ST T . o [DISTRIBUTION STATEMENT A] This material has been
B= Software Englneering Instituts | Carnegie Mellon University approved for public release and unlimited distribution. 2

Page 4 of 94

Copyright 2016 Carnegie Mellon University

Copyright 2016 Carnegie Mellon University

This material is based upon work funded and supported by the Department of Defense under Contract No. FAB721-05-C-0003 with Carnegie
Mellon University for the operation of the Software Engineering Institute, a federally funded research and development center.

ArRz opinions, ﬁndin%s and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily
reflect the views of the United States Department of Defense.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON
AN “AS-1S" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS
TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY,
EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY
WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

{E)istribulfon Statement A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-
S Government use and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without requesting
formal permission. Permission is required for any other use. Reguests for permission should be directed to the Software Engineering Institute
at permission@sei.cmu.edu.

Carnegie Mellon® and CERT® are registered marks of Carmegie Mellon University.

DM-0003841

Dt Sctasece. What i 1s w5 How I Can Help Yosr Company
Juty 1, 2098
CE

@ = Software Engineering Institute | Carncgic Mellon University

Agile Metrics: Three Secrets to Success

Agile Metrics:

Three Secrets to Success

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

Software Engineering Institute Carnegie Mellon University

**¥004 Presenter: And hello from
the campus of Carnegie Mellon
University in Pittsburgh,
Pennsylvania. We welcome you to

Page 5 of 94

Virtual SEI Virtual SEI is our new
streaming platform where you can

watch live events or access on-demand
videos discussing our latest cybersecurity
and software engineering research and
best practices. Our presentation today is

Three Secrets to Successful Agile
Metrics by Will Hayes. And depending
on your location, we wish you a good
morning, a good afternoon, or a good
evening. My name is Shane McGraw.
I'll be your moderator for today's
presentation. And I'd like to thank
you for attending.

We want to make today as interactive
as possible. So, we will address
questions throughout the
presentation. And you can submit
those questions through the Q/A tab,
or the chat tab, on the page

interface. Now, we will also ask a few
polling questions throughout the
presentation. But they will only
appear as a slide within the video
window. And we ask that you put
your response into the chat tab. So,
you'll need to type in your response
to that polling question into the chat
tab as we go along.

Also, a link to today's-- a PDF copy of
today's presentation slides are in the
chat area now that you can link and
download those slides. And also, with
this new platform, we ask that you fill
out a survey upon exiting today's
event. And that survey link will be
added to the chat tab as well. And

we greatly value your feedback there.
For those of you using Twitter, be
sure to follow @SEInews and use the
hashtag #seiwebinar.

Page 6 of 94

And now, I'd like to introduce our
presenter for today. Will Hayes is a
principal engineer on the Agile in
government team at the SEI. Will
currently supports major programs in
DoD and other government agencies
that acquire software from
contractors applying Agile
methodologies. And throughout his
twenty-six-year career at the SEI, he
has supported numerous commercial,
government, and defense
organizations providing consultation
and coaching for a wide range of
roles from engineers to CEOs. And
now, I'd like to turn it over to Will
Hayes. Will, all yours.

Presenter: Thanks, Shane. Thanks,
everyone, for tuning in. We've got
lots of neat stuff to talk about. And
we're going to do our best to involve
you at every turn. So, first, an official
disclaimer, I'm not here to provide a
dashboard for project managers to
use to manage Agile projects. We're
really wanting to talk about the
considerations that let you make the
right choices and how you know that
the choice you've made was a good
one.

Page 7 of 94

Agile In Government

Agile In Government

i T:“A.;iim

-

= Software Engineering Institute | Carnegic Mellon University Soroved for publ reless and unimited dibugon. 2
**005 As a backdrop, our focus on
the Agile in government team really
is how these concepts are playing out
in the government ecosystem. Those
of you who work in this ecosystem
understand that there are some
unique aspects of being successful in
this realm. There also are some
extremely demanding challenges that
are placed on people who are
successful in this realm. As well, the
concept of an Agile government, that
government personnel implementing
these concepts from Agile, is relevant
here. But that's not the central focus
of what we're talking about here.

One of the ways you might
summarize what you would aspire to
come away with is what would the
role of an Agile government product
manager be. The notion of a product
manager is well understood in a

Page 8 of 94

commercial setting, as well the role

of a product owner is well understood
in the context of individual teams.
We're starting to see now with many
of our government clients that product
management is a role that is becoming
more and more obvious. And so, as you
think about the concepts that we talk
about today, have that perspective at
least in the back of your mind. And I
know from looking at the sign-ups that
there are folks in the audience who do
have that role and that you are facing
challenges that are perhaps new to a
job like that. And we're keen to hear
from you if you could drop us a line.
So, Agile in government, that's our
backdrop.

Bottom Line Up Front

Bottom Line Up Front

1. Exercise Due Care

The level of discipline and rigor applied must match the context served by the work
Metrics give voice to things we want to hear about, we are responsible to choose
Some very important things will lack high-resolution measures to inform us

2. Consider Systems’ Perspectives
A scrum team is its own system, and rich metrics to serve the team exist
The enterprise consists of many other systems, which bring different perspectives
Boundaries of generalizability exist among these systems

3. (Ruthlessly) Automate Basic Indicators and Analyses

Wield tools in service of your needs, and do not limit the sphere of focus artificially
Make metrics routine and boring — not episodic and authority-focused
Tool chains and visualization techniques offer new opportunities

——é— Software Engineering Institute | Carnegie Mellon University

**006 The three main points, right
up front we want to talk into these.
And we'll cover them again at the
end just to make sure we've got

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.

Page 9 of 94

them all throughout. So, first, as we
think about why and what you would
want to measure, you take on an
obligation in roles where metrics are
involved to exercise due care. Often,
we hear methodologies or particular
approaches to software development
espoused, very good approaches,
many of them we can learn from. But
sometimes, the audience will limit
their view according to what is in the

off the shelf version of that methodology.

As we know from the history of
progression in Agile approaches,
many of these concepts evolved from
a commercial setting. And some of
the demands that are placed on
those of us operating in a
government setting may not coincide
very well with the presumptions that
occur there. And so, as we think
about what due care represents, we
really need to think about the
environment in which the system
we're working on operates as a basis
for deciding what is the level of
precision, what is the level is the
level rigor that's required.

Just because you've heard somebody
say that Agile methods are more
informal, doesn't mean that the use
of those methods to develop life
critical systems can afford to be
informal. And so, you must think
about mission criticality, life criticality,
those sorts of things, as you consider
what is the sharpness of the lens we
need to have as we measure
progress, as we measure success in
the application of these techniques.

Page 10 of 94

Secondly, the perspective of different
systems, those of you who've worked
in the government setting for a long
time understand there is no software
reliant system that doesn't operate in
a system of systems context. Every
system has connections to everything
else in our domain. And in a similar
way, as we think about the personnel
engaged in the work, they too are
operating within a system of systems
concept. And as we look at the
application of things like Scrum, there
is a very nice description of a system
for a Scrum team described there.
And there are metrics, well
understood metrics, that have been
used with great success within a
team setting. And we would certainly
want to keep using those things that
are successful. But to presume that
our sprint burn-down charts would be
something that we would present at
a congressional oversight hearing is
folly. And so, there are similar sorts
of boundaries that we need to think
about in terms of the systems of
interacting people in roles of
responsibilities that exist.

And then finally the third point,
there's bit of a tongue in cheek
mention of ruthlessness here. And
the joke that goes with this is my
bathroom scale ruthlessly tells me
how much I weigh every single
morning. So, should I be attributing
such human emotions to a machine,
the bathroom scale? Certainly, not.
You can see the folly of that.
However, when we think about
metrics and the way measures are
used in the kinds of settings that

Page 11 of 94

we're talking about, we often have
fears and trust and similar concerns
associated with the way measures
are used.

As we see developments in places
like DevOps, and things like DevOps,
and the great progression of insight
that we can get when we instrument
things well, the benefits that could
accrue from very inexpensive, very
timely measurement, those things
can be attenuated by these more
cultural or socio-technical issues that
arise in use of measurement. And so,
we want to make sure that we
address those concerns as we think
about metrics in Agile in government
setting.

A Familiar Problem

A Familiar Problem

——é— Software Engineering Institute | Carnegie Mellon University

**007 So, diving a little bit into each
of those concepts, many of you likely
are familiar with the notion of

Data can shine a light on important
things.

If we don’t focus on the right thing,
we won’'t get what we need.

Due Care is context-dependent, and
should not be left up to the advocate
of a particular methodology.

[DISTRIBUTION STATEMENT A] This material has been

approved for public release and unlimited distribution.

Page 12 of 94

searching for information, or-- there's
an old story, sorry. A fellow comes
upon someone stumbling around
underneath a streetlamp in the
middle of the night, looking
somewhat distraught. And that fellow
says, "What are you doing there,
buddy?" He says, "I'm looking for my
keys." "
you last saw them?" "Well, I was
down that dark alley down there."
"Well, then why are you looking out
here?" "Well, of course because the
light is so good here." And this story
is kind of an interesting way to shine
a light on the way we sometimes
approach metrics. We often try to
make the most of convenient and
available data without really
recognizing the limitations of the
utility of that data and the fact that
they may be out of focus or totally
off-target for the decision that needs
to be made.

Well, where were you when

And so, as we consider what it takes
to exercise due care, we need to
think about the affirmative obligation,
and I chose a specific term that
comes out of the finance industry
there, an affirmative obligation we
take on to assure that we're focusing
in on the place where the information
can be found as opposed to merely
using convenient data. So, this notion
of searching and taking the
responsibility to collect the right
information and to be open about the
level of information and the certainty
you have, those are essential for us
being successful as we consider the
other two of the three main points,

as well.

Page 13 of 94

Multiple Intersecting Systems

Multiple Intersecting Systems

=& Software Engineering Institute | Carnesie Mellon University

**#008 And so, here we're moving
into notion of the ecosystem. And
this is a marvelous picture that our
colleague Kurt Hess drew for us for
one of our early Agile and metrics
technical notes. Here we see a
system of systems where the
gentleman in the middle, the captain
in the picture, has an obligation to
understand the progression and the
success of the development firm
that's supplying to this military
organization in this case. And so, you
see him pondering these different
representations of metrics that tend
to come from Agile teams.

And in your upper left, you see a
gentleman wearing a necktie
intended to depict a commercial
provider who is contracted to a
military branch in providing
capabilities that will be fielded to

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.

Page 14 of 94

support the war fighter. So, the
captain has an obligation to
understand what's happening in that
largely commercially driven world,
although many of these providers
have a keen and deep understanding
of the military setting and how the
products they work on are used. But
that captain needs to understand so
that he can then provide information
that is needed by the other two folks
in the picture. So, the colonel, to his
right, has an obligation perhaps as
the material leader in this system
program office to make sure that the
program is going in the direction and
at the speed that it needs to go. Not
just the work of an individual
provider, the one depicted in the
upper left, but he needs to balance
the contributions of many different
parties. And the captain understands
his role there.

Then the general depicted in the
upper right quadrant, she can ill
afford the time to look at sprint burn-
down charts or to understand things
associated with individual defects
that might occur, though she often
gets pulled into conversations like
that when the visibility rises. But that
captain really needs to supply a
different kind of information to go up
the chain to that general than he
does to his colonel. And so,
understanding these different needs
and the interactions among them is
really, really essential to having
effective and efficient approaches to
measuring progress.

Page 15 of 94

There's a contrast between project
management goals and product
management goals that are found in
this picture. The project management
goals, primarily the focus of the
gentleman in the necktie in the upper
left, don't necessarily find their way
to the general in the upper right. And
in fact, it's bad news when that
happens, when the general has to
look down in to focusing on the
taking care of business, the hygiene
issues, are we taking care of the
business that needs to be done
routinely. We want the general to be
championing the cause of the whole
enterprise that's represented in the
system program office. And so, there
are roles relating to sponsorship,
roles relating to being a stakeholder,
and differences in tactical versus
strategic that all come into play as

we think about the interacting
systems where we need to apply due
care to collect information to feed the
needs of decision makers that are a
part of these systems.

Page 16 of 94

Barriers to Automation

Barriers to Automation

**009 And then finally, perhaps my
favorite of the three to talk about,
there are a history of cultural and
socio-technical issues associated with
the way we do measurement in a
business setting. Often, we are
focused on appeasing an authority
role to assure that they understand
that we are competent. And a very
keen point made by many Agilists is
often our metrics focus on validating
the single chosen path, a path

chosen long in advance of the work
occurring. As we see the benefits of
Agile approaches growing more and
more across the government setting,
we understand now that the intent is
to have short learning cycles so that
we can pivot and move in a direction
that's more beneficial to the program
overall rather than blindly following a
plan that was made based on less
knowledge than we have at this point.

== Software Engineering Institute | Carnegie Mellon University

Metrics often focus exclusively on:
» Appeasing an authority role

» Demonstrating competence

» Validating the chosen path

This may engender trust concerns, and
often conflicts with the concept of an
empirical process — one where we learn
from looking at facts that inform
tactical/strategic options.

[DISTRIBUTION STATEMENT A] This material has been

approved for public release and unlimited distribution.

Page 17 of 94

Because of this tradition of appeasing
authority, focusing on competence,
and making sure we're validating the
correct path, we tend to have
concerns relating to trust. And we
tend to see conflicts in the mix here.
Those things are barriers to
automation because the
interpretation of an individual item of
data is so context dependent, is so
dependent on who's in, who's out,
what's up, what's down right now.
Whereas, my bathroom scale doesn't
really care. It doesn't care that hey,
it's a weekend. I'm not supposed to
be as active as [am during the week.
Give me a break scale. Give me a
lower weight. That's a silly thing to
ask. And if you think about the way
we constrain our measurement
approach, the kinds of barriers that
exist for automation, these are really
legitimate concerns that we need to
address.

And many of the efforts that we're
seeing among champions for Agile
methods try to address these things.
Some of them address them by trying
to draw a strong boundary around
the team to protect them from such
influences. Others address them by
showing a clear path and an
enterprise awareness such as we see
in the disciplined Agile context.

Page 18 of 94

Polling Question #2

Polling Question #2

Your Role

1. Government employee working in a program office
Contractor working in a government program office
Employee of a firm serving a government program
Employee of a firm doing commercial work
Coach/Advisor/Consultant for government
Coach/Advisor/Consultant for industry

No o~

None of the above

i Software Engineering Institute | Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been

**010 So, with that, we've got a poll
question here, a polling question, to
try to get a bit of a gauge on who
our audience is. And so, [would ask
you to sue the chat window or the
Q/A tab, whichever is visible to you.
And simply enter the number that
best describes who you are. Now, let
me see if Shane's got a comment or
a question from the crowd, yet.

Presenter: No, just a reminder to
folks that the slides are available
you'll see in the chat window to
download a PDF. That will open up a
new tab. And you can walk away with
those today. People from various
locations joining us, Will, but no
actual audience questions at this
time. But we'll give them a little bit of
time to chime in since they're having
to write it in. So far, I've got, let's

see, three, five, six, one. So, we'll

approved for public release and unlimited distribution.

10

Page 19 of 94

tabulate them as they're coming in.
But we'll turn it back to you to--

Presenter: So, I had a chance to
review the registration list. There
were some four hundred folks, some
old friends I hadn't seen for a long
time. [hope you don't mind my gray
hair. It's been some years for some
of you. And it's interesting to see the
range of roles that are participating.
We have people that are engaged in
law enforcement roles. We have folks
that are engaged in commercial large
retail chains, a good crowd from
Sandia, some folks from U.S. Air
Force as well. Glad to have you.

We will use these polling questions as
a break in between segments. So, if
you have questions come up, try to
get them into the window before the
polling question comes up. And that
way, you'll be in the queue. So--

Presenter: We have a very diverse
audience. Yeah so, I'm seeing every

number and very infrequent switches.

So--
Presenter: Great.

Presenter: No tabulations, we'll just
turn it back to you.

Presenter: So, everyone didn't say
none of the above. We don't have a
bunch of mystery folks.

Presenter: That's right.

Presenter: Okay, terrific.

Page 20 of 94

Taking a Deterministic View Three Numeric Examples

Taking a Deterministic View

Three Numeric Examples

Software Engineering Institute

**011 So, let's dive into a numeric
example. What | want to use-- what I
want to do is use a colorful and kind
of a catchy image to thread
throughout some specific examples.
And so start with this pie chart.

Carnegie Mellon Univ

ty

Page 21 of 94

Basic Example

Basic Example

=& Software Engineering Institute | Carnesie Mellon University

**¥012 And those of you who've

been in Agile classes I've trained, you
might have seen this before. But here
is a simple pie chart reflecting the
status of thirty different things. And
these thirty different things go
through four different states. We
start with waiting. There are eighteen
things that have not been started.
There are four things that are in the
process of being worked, five things
being tested, and three that are
done. And what I'm going to do is
use this graphic and this set of
numbers for a set of contrasting
examples. But the point is this is a
single snapshot in time. This is how
we understand the status of each of
the thirty items at this particular
point.

B Waiting
Working
 Testing

W Done

[DISTRIBUTION STATEMENT A] This material has been

approved for public release and unlimited distribution.

12

Page 22 of 94

IT Modernization

IT Modernization

— Software Engineering Institute Carnegie Mellon University

**013 And so, first let's talk about it

in the context of an IT modernization
effort. What [want to allude to here
when I use the term IT modernization

is systems that collect, organize, analyze,
store, protect, and communicate data
and information. So, these are software
reliant systems that primarily manage
data in the ways that I listed.

Page 23 of 94

IT Modernization Example

IT Modernization Example

m Waiting
Working
Testing

m Done

These are 30 RICE* objects that define the scope

of work for one or our vendors.

They will be folded into a series of three releases,
which will integrate the work of multiple vendors.

Size Breakdown Planned Release
Object Type Count L M S R1 R2 R3
Reports 3 2 1 1 1 1
Interfaces 4 4 2 2
Conversions 3 1 1 1 3
Enhancements 20 12 5 3 2 6 12

* note: CEMLI might be more familiar for those in this domain. RICE was chosen for the sake of brevity...

<= Software Engineering Institute | Carnegie Mellon University

**014 And so, that single point in
time status provided by the pie chart
might play out in this way. We have
thirty objects here. I'm using the
acronym RICE for reports, interfaces,
conversions, and enhancements. And
those of you who work in this domain
know that this is a somewhat older
language. There's a newer term
that's in vogue. [have a little
footnote there. But RICE allows me
to have a smaller table on the charts.
So, I chose that one.

And so, these might be objects that
are being created by a provider who
will then supply these into a larger
program of modernizing some IT
system that we're responsible for. We
might have data of the type depicted
in this table here. And we would
likely have much, much more about
these things than is depicted here.

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.

14

Page 24 of 94

So, I just want to make sure you're
aware of that. There may be three
releases we're planning. And the first
release contains eight items. And so,
three of them are done. And five of
them are in test now. And we may be
looking at this pie chart for a status
on how we're doing on this first
release. We could see there are size
breakdowns. And we can see how
many of each type of object. So, we
might have data of this type for a
plan for an IT modernization effort.

Managing Three Planned Releases

Managing Three Planned Releases

Release 1
Release 2
Release 3

A A A

Common Focus for Metrics
» Size

Effort

* Quality

lrl'lrl

**¥015 And breaking that down a
little bit further, if we think about
traditional ways that we might define
measures, very handy, very useful
goal question metric approach, we
might have the high-level goal of
predicting release performance,
which plays out in a variety of ways.
Our focus might be on size, effort,

Goal:

Predict release performance

Questions:

Is the work larger/smaller than estimated?

* Is the work taking more/less effort than we estimated?
» Will the quality of the delivered products be acceptable?
Metrics:

Software Engineering Institute | Carnegie Mellon University

Estimated vs. actual effort

Planned vs. delivered products
Estimated vs. actual size of products
Defect counts and profiles

Measures of performance

[DISTRIBUTION STATEMENT A] This material has been

approved for public release and unlimited distribution.

15

Page 25 of 94

and quality. Those are very common
areas of focus for metrics. And so,
the questions we would have relate
to are things larger or smaller than
we estimated. And who would have
such questions? Would the general in
the picture have such questions? We
probably want to spare her the time
that it takes to focus on that.
Certainly, the provider working on
this needs to understand have we
sized things up well, and are we
getting ourselves into a deeper pool
than we'd anticipated. Or is it simpler
or smaller than we'd anticipated?
Those are things they need to
understand.

They need to understand progress.
And as we think about the level-- the
rate at which things are proceeding,
the captain in the center of that
picture now really needs to
understand in order to be able to
convey information to the colonel
who then puts this in context of a
larger set of providers.

Will the quality of the delivered
products be acceptable? That seems
to be a concern for everybody in that
picture. The kind of information that
they would use to judge the result or
the answer to such a question may
vary, though. And so, we have some
examples of metrics presented below
there.

There may be measures of
performance, just jumping to the
bottom of the list quickly. There may
be things about the capacity of the
system, the speed at which

Page 26 of 94

processing occurs, the access to
diverse data sets required to perform
the function. Such things would likely
rise to the level of concern for the
general if performance was lagging
behind what was expected. But
certainly, defect counts in profiles of
which types of defects, those aren't
metrics we would necessarily present
to the general, and perhaps not to
the colonel. And whether or not the
captain needs to be concerned with
these has something to do with the
status of the program.

And so, with the traditional approach
to decomposing from goal to
question from metric, one path, and
just one path through that process,
might lead us to this set of
information being sought. Many
others would be of interest. And
there are likely some that are unique
to the context in which we're talking
about adding metrics. And so, these
may or may not fit you.

Page 27 of 94

Understanding Benefit of IT Modernization

Understanding Benefit of IT Modernization

fJugﬁl’ @:f-\? :"""_

g o> 5,8
7 j'fgf’l -,

<= Software Engineering Institute | Carnegie Mellon University

**016 But one of the things that
Agile processes bring to us, this
picture of the plan-do-check-act cycle
on the left, what we're trying to do
when we're successful in using Agile
methods is to shorten the time
between when we have an initial
concept to when we have a
demonstrable capability potentially
field-able. That cycle time is
something we're trying to shorten.
And at the end of the day, the
product management focus we might
have in an IT modernization setting
might be more like the list of bullets
we see here. The enterprise that is
relying on this information
technology, how much of the
processing they have to do has to be
handled through exceptions? What
kinds of manual paths exist? And how
often are they utilized versus the
information technology is able to

What combination of choices leads to
improvements in things like:

» Amount of exception-handling

» Users finding the correct path through
the system on the first try

» User migration to a new system

Can we iterate and experiment with
functional changes as well as technological
changes, to improve performance of the IT-
enabled service?

[DISTRIBUTION STATEMENT A] This material has been 16
approved for public release and unlimited distribution.

Page 28 of 94

encompass that part your concept of
operation, your workflow. Changes in
that performance are very, very
meaningful to the enterprise.

Users finding the correct path
through the system on their first try,
those are things that really can make
the workflow work much more
efficiently. You could think of those
as requirements to levy on the
software development firm. But there
may be other considerations if we're
able to adopt and be successful with
Agile processes. As we think about
migrating to a new system, the users'
level of involvement in specifying and
reviewing what that new system is
might have a lot to do with their
propensity to migrate to it.

And finally, one of the exciting things
we're seeing in some of the clients
we're supporting, a very powerful
consequence of succeeding at Agile,
whereas in the past we would have
had a workflow that was defined and
we would specify requirements for
information technology to support
that static definition of a workflow,
now we're able to see iterative
development and refinement of
workflow, create a little bit of
technology, look at how it works in
the workflow, adjust the workflow to
pursue a new opportunity, custom
develop another iteration of
technology that supports that newly
defined workflow. And with a
collaboration between functional,
technical, and acquisition
organizations, we're able to see this
plan-do-check-act cycle play outin a

Page 29 of 94

very different way. And so, in that
setting, Agile is not merely a software
development activity. In that setting,
Agile is an approach to understanding
needs and trying to fill those needs
that plays out on a number of
different fronts.

And so, this third slide in the
sequence-- and there will be two
more sequences. This third slide in
the sequence is really intended to
highlight the perspective that a
government product manager might
have and the opportunities they
might pursue.

Sustaining Embedded Systems

Sustaining Embedded Systems

Software Engineering Institute Carnegie Mellon University

**017 So, we'll change to a different
example now in the setting where
we're sustaining an embedded
system. An embedded system, it's
basically a component of a larger
physical electronic or mechanical

Page 30 of 94

system that is created through
software. And often, there are real
time considerations that this is a
system whose real time operation has
fairly dramatic benefits or
consequences to the mission that the
enterprise is serving.

So, we'll take it to that pie
chart of thirty things again.

Sustaining Embedded Systems Example

Sustaining Embedded Systems Example

e OPErational utility of the system in the field
Working tod ay.

"™ There is a strategy for patching the fielded
system based on logical groupings of the
defects.

M Done

Sample of Fields in the Defect Database

Description
FindActivity lifecycle or mission activity that uncovered the defect
FindDateTime date and time when the defect was discovered
TestID If found in test, the ID# of the test that exposed the defect
FeatureBlocked user capability that does not function due to the defect
SysComponent configuration item or other component containing the defect
“E= Software Engineering Institute | Carnesic Mellon University <porouedfor Pl relasead e dsnon

**018 But instead of RICE objects, maybe
we think of these as must fix defects,
DRs, deficiency reports as you might
know. And so, we might be looking at

a snapshot in time with how far the

team has gotten in resolving those

thirty defects. Three of them are
finished. Five are in test, four in

work, and eighteen waiting to be

started.

These are 30 Must-Fix Defects which limit the

18

Page 31 of 94

We have a table here thatis just a
small piece of what we might see in a
defect logging system. So, we have
things about the test that uncovered
it or the event that occurred that led
to us discovering this defect, when it
was injected, and so on, and so

forth. Many other things might be
known.

Fixing Fielded Defects

Fixing Fielded Defects

S L

Common Focus for Metrics

* Cycle Time per Fix
» System Availability/Function
* Quality

== Software Engineering Institute | Carnegie Mellon University

**¥019 Applying the goal-question-
metric concept again with a different
graphic on the left here. We might be
focused on cycle time per fix, system
availability, and the mean time
between failures, the amount of
down time, or what sorts of
functionality are enabled or disabled
because the defects still exist, and
certainly the quality. And so, our goal
might be a timely resolution of known
defects.

Goal:

Timely resolution of known defects

Questions:

How many defects remain to fix?

How many defects have been fixed?
How many fixes have been deployed?
How many fixes had to be redone?
How fast are we fixing things?

What functionality remains blocked?

Metrics:

Tally of defects remaining/fixed
Number of fixes per month

First pass fix rate

System down time
Revenue/mission loss due to quality

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.

19

Page 32 of 94

We might have questions of the type
we see here, often quantifying what
the status is today, how today's
performance matches against our
plans from the past. And so, we
might have a metrics along the lines
of tallies, numbers that are fixed per
unit of time, a first pass fix rate. So,
how many times do we need to pull
the patch back because there was a
new error introduced? That's a very
powerful metric we've seen in a lot of
our clients. We might be very
concerned about system down time.
And that might have a lot to do with
the choices we make in fielding these
patches. And certainly, revenue or
mission loss, threat to the enterprise
that comes about from the
persistence of these defects, these
are all metrics we might need to
know about.

Again, who in that picture needs to
be thinking of these things? If the
general is spending time watching
the tally of defects that remain to be
fixed or have been fixed, she's
probably not able to focus on the
much more important, much more
broader, longer term things that she's
charged to attend to. And so, was we
think about the strategic and tactical
differentiation, as we think about
project management goals versus the
goals of the enterprise that is
responsible for this embedded
system, we really need to consider
what is the audience for different
metrics.

Page 33 of 94

Enabling Mission Threads with DR Fixes

Enabling Mission Threads with DR Fixes

The impact of fixing defects is charted for six

Mission Impacts Addressed (6) mission threads.

--- Scope of Impacts —Fielded Fixes
Alpha Looking at the area inside the blue dotted line:
Epsilon has the greatest number of DR
impacts
Zeta Beta . Zeta has the lowest

Looking at the area inside the red line:
Fielded fixes have benefitted Delta the most
Zeta the least

’

Epsilon Gamma

DR = Deficiency Report

[DISTRIBUTION STATEMENT A] This material has been 20
approved for public release and unlimited distribution.

-‘; Software Engineering Institute | Carnegie Mellon University

**020 And so, taking this to the
product manager perspective, one
example might be what we see here.
So, this is a Kiviat diagram or a bull's
eye chart as some folks refer to it.
And what we've done here is to array
on these different axes, these are six
different axes, different mission
threads. And so that's a way for us to
understand the intention of the
system's usage, the different avenues
where utility is found. And we could
think about the threat to succeeding
in that use of the system as depicted
in the different axes here.

The dotted line colored blue
represents the number of defects
that map to each of those mission
threads. And so, mission thread-- the
one that's labeled Epsilon has the
largest number of defects in that pool
of thirty that relate to it. Whereas,

Page 34 of 94

the mission thread labeled Zeta has
perhaps the smallest number. And
so, those are the places where fixes
are needed.

The line in the solid red now depicts
where we are today, that status that
we looked at from the pie chart. And
so, we have addressed a largest
percentage of defects that relate to
mission Delta. But mission Epsilon
that seems to have the largest
population of defects tied to it has
received perhaps less attention. And
that may be quite intentional. Mission
Epsilon might be something that has
an alternative manual workaround
that's tolerable. Whereas, mission
thread Delta is an extremely time
critical, mission critical thread which
we can't afford to be disabled.

And so, as we look at the progress
depicted in a simple pie chart, there's
really a much more dynamic, much
more involved story behind it. And as
a government product manager-- I'm
pushing that title I suppose, though
that's not my intent, we might have
concerns relating to the larger picture
not just the performance of this
software fix effort that's underway.

Page 35 of 94

R&D Pathfinder Projects

R&D Pathfinder Projects

— Software Engineering Institute Carnegie Mellon University

**021 Now, to the third and final
example using the same pie chart,
there's this notion of a pathfinder
project or a research and
development effort. Sometimes, we
see in major system programming
offices risk reduction efforts that are
chartered in order to quickly get to a
proof of concept to make sure that a
larger bit of work is feasible in the
long run.

Page 36 of 94

R&D Pathfinder Projects Example

R&D Pathfinder Projects Example

m Waiting
Working
Testing

m Done

These are 30 requirements to meet in
order to establish a proof of concept for a
new product offering.

A prototype satisfying most, if not all, of
the requirements will be used to assess
the potential market for the concept.

ID# Priority Requirement Text Success Criteria
1 H ... text statements ... text statements
2 H ... text statements ... text statements
3 M .. text statements ... text statements
30 L ... text statements ... text statements
-‘; Software Engineering Institute | Carnegie Mellon University gils:x::g?:uﬁif}gz! QaTﬁix?f:;::;fﬁfﬂ 22

**022 And so, as we look ata

simple pie chart, this may be a set of
thirty requirements that, once
implemented successfully, act as a
proof of concept for something. In a
commercial setting, this might be a
new product offering. In a product
line sense for a military command,
this might be diversifying the range
of mission capabilities that are
available on a given platform. And so,
quickly getting to a proof of concept,
achieving knowledge point as we
sometimes refer to it, is a very
important priority in this sort of
project. And so, we might say that
three of the thirty are to the point
where we have information on them.
Five of them, we are proving them
out, and we are in the final stages of
testing. And four are in work.
Eighteen are ready to be picked up. A

Page 37 of 94

single snapshot in time, I'm going to
remind of us all of that.

We might have data of the type
vaguely described in the table here.
We might have prioritized high,
medium, low. Certainly, we would
have ID numbers if they're stored in
a database. And we might have
descriptions of what the requirement
is, what sorts of success criteria
we're striving to achieve.

Building a Proof of Concept

Building a Proof of Concept

Common Focus for Metrics
* Requirements Satisfaction
» Test Cases Passed/Failed

» Technical Performance
Attributes

Goal:

» Effective demonstration of capability
Questions:

* |s each requirement achievable?

* Which are the most challenging?

» How confident can we be about production
feasibility?

* What are the bases for estimating total lifecycle cost
for this product?

Metrics:
* Count (or %) of objectives achieved
» Number of business case questions answered

» Effort expended

[DISTRIBUTION STATEMENT A] This material has been

. - Software Engith Institute | Car nrgwhlr.lllml-mwml_\ approved for public release and unlimited distribution. 23

**¥023 And then taking it to the next
picture, what we're trying to do with
this very cute graphic in the top left,
we're taking the idea and expanding
it into all the possibilities that it
offers. That's the purpose of that
image. Our focus might be on the
extent to which, or whether or not
we have satisfied individual
requirements. We might have a set of

Page 38 of 94

test cases that are tied to that

success criteria that was on the table

in the previous slide. And we could
understand which test cases are
presently passing, which are

presently failing. In a test-driven
development sense, we might be
looking to manage progress in that way.

And certainly, technical performance
attributes as we're looking at a proof
of concept for a new capability, what
aspirations do we have for how
effective it is in light of the workflow,
or mission that it needs to serve? And
so, the goal would be to effectively
demonstrate a capability. We might
have questions about the
achievability, which requirements are
most challenging. We might have
things that help us understand what
would be the long term, total lifecycle
cost relating to adding this product to
our offering or adding this capability
to a platform. So, metrics might be
fairly simplistic in some cases,
counting or percentage of the
objectives that we've achieved,
number of business case questions
that have been answered, so how
much insight do we get about
feasibility, how much insight do we
get about the range of utility for this
new capability we're trying to field,
and the effort expended.

And so, let's go back again to that
picture of the different systems of
people. Which of these rises to the
attention of the general? Which of
them are strictly the parlance of the
captain? And which of them are really
the business of the commercial

Page 39 of 94

provider that is doing the technical
work for us? We really need to think
about that. And the answer,
especially in this case, will be very
different depending on the context.

So, some commercial providers for a
government audience are very
engaged in a product line approach.
And so, when you go to them, you

are looking for a new instance of
something they have well-established
experience and expertise in. And so,
their level of interest, and their level
of coverage for these concerns may
be much greater. And your ability, as
a government person, to get into that
detail may be more limited because
they're much closer to, although
they're not actually, a shrink-wrapped
software provider. Their level of
competence in the market might be
much higher.

In contrast, you might be in a setting
where the government is really taking
a lead to push the technological
boundary. And they're having a much
more active engagement in the
process of doing the work, the
process of understanding
performance. And so, they may more
likely be partners in that setting. And
so, the kinds of roles, the kinds of
people that would be interested in
these things would be quite different.

And so finally, going to the
product manager perspective.

Page 40 of 94

Understanding User Value with KANO Analysis*

Understanding User Value with KANO Analysis*

User Delight

r

Feature

Absent /)—»
N

y

* Adapted from the work of User Disgust
Professor Noriaki Kano

=&= Software Engineering Institute | Carnegie Mellon University

**024 If you've not heard of KANO

analysis, [really encourage you to look it up.
There's lots to be learned from the

work of this Japanese professor. And

the graphic here really tells a good

story once you understand it.

So, depicted in the red arrow, this is
something, when fully implemented,
this user will accept your system as
being acceptable. When those
requirements are absent, as shown
where the arrow begins, the user will
find your system unacceptable. So,
these are must haves. These are
things that are barriers to entry if you
don't have them.

In contrast, the green arrow shows
things that wow, this is new. This is
going to offer me something I didn't
realize I would need. These are
things that really delight users. And

Feature
Fully Implemented

[DISTRIBUTION STATEMENT A] This material has been 24
approved for public release and unlimited distribution.

Page 41 of 94

so, investing in having those has a
different impact on the utility and the
perception of the system you're
implementing and deploying.

And in addition to those two, we
have some depicted in the blue arrow
going diagonally that are nice to
haves. We would like more of these.
We would like more bandwidth. We
would like faster speed. But at this
point, where the floor is on-- well, |
probably should not exaggerate that.
In some settings, we have enough.
And more is better. But it's not the
same as adding a brand-new thing
that really changes the utility of the
system. And then there are, as
depicted in the gray line that grows
horizontally, there are things people
don't tend to express a lot of concern
one way or another about that are
just there, maybe ho-hum.

With an Agile approach, you have the
opportunity, on the government side,
to evaluate what you're asking of the
development organization in light of
these kinds of differentiations. You
might be able to invest in running
focus groups or have access to a user
community where you can
understand the differences among
the thirty requirements here in terms
of what their role is in the
perceptions of the system's users.
And perhaps more obviously, as you
do demos at the end of iterations,
these kinds of differentiations of the
work being done could be very
powerful in helping you, as a
government person, a person playing
arole in a government program

Page 42 of 94

office. It would help you to
differentiate where your priorities
ought to be.

So, make sure that you have the
must haves in place before you start
to say that you're done. Make sure
that you leave budget for these really
innovative things that are going to
dramatically change the mission
capability of the force that you're
supporting. Okay, so those are three
examples where we've tried to weave
the same picture of thirty things. And
['m going to come back to thatin a
minute.

But once again, we're going to
collect some data from you.

Polling Question #3

Polling Question #3

Which of the examples is the best match for your context?
1. IT Modernization

Sustaining Embedded Systems

R&D Pathfinder Projects

More than one of the above

SRR

None of the above

[DISTRIBUTION STATEMENT A] This material has been 25
approved for public release and unlimited distribution.

lrl'lrl

Software Engineering Institute | Carnegie Mellon University

**025 And so, a polling question, which
example best matches your context? This
helps us understand how to tune the

Page 43 of 94

message, perhaps. And so, we'll see
if Shane's got a question to ask us.

Presenter: So, you are doing such a
good job explaining everything, we
don't have any current questions. So,
we're going to give the people some
time to file in this information to us.
And we'll just keep running with you.

Presenter: Okay. So--

Flow Metrics Examples Cumulative Flow Diagram

Flow Metrics Examples

Cumulative Flow Diagram

Software Engineering Institute Carnegie Mellon University

**#026 Now, [want to switch gears
and tie to that pie chart. But [want
to talk to you about what a
cumulative flow diagram is. And this
is something, if you've got a lot of
experience in Agile, this is something
you've no doubt seen.

Page 44 of 94

Constructing a Cumulative Flow Diagram1

Constructing a Cumulative Flow Diagram,

Here we have a Pie Chart
showing the status of
30 ‘work packages’

W Waiting
Working
W Testing
4 H Done
This is a snapshot
for a single point in time.
_ | [DISTRIBUTION STATEMENT A] This material has been
i Software Engineering Institute | Carnegie Mellon University approved for public release and unlimited distribution. 27

**027 So, I'm going to build to it
though. So, here's that pie chart
again with thirty items showing
different status, a single point in
time. And we're going to stay on the
screen here.

Page 45 of 94

Constructing a Cumulative Flow Diagram:

Constructing a Cumulative Flow Diagram,

Same data, but *
presented in a
stacked column
chart

25 -

20 -

For a single
point in time.

10 ~

=& Software Engineering Institute | Carnesie Mellon University

**028 If we take that same data

and present it as a stacked column
chart-- again, a single point in time,
same numbers. We're going from
waiting to be done-- waiting to be
started to done, from eighteen down
to three.

W Waiting
Working
= Testing

m Done

[DISTRIBUTION STATEMENT A] This material has been

approved for public release and unlimited distribution.

28

Page 46 of 94

Constructing a Cumulative Flow Diagrams

Constructing a Cumulative Flow Diagramj

... adding the next 7 times

H Waiting
Working
= Testing

H Done

imeml ing Institute | (T i-[\"lt’.l.lonlhiwrail)‘ [DISTRIBUTION STATEMENT A] This material has been 29

approved for public release and unlimited distribution.

**#029 If we add now a number of
other points in time, perhaps this is
eight different status reports that
we've gotten, and we can start to see
a pattern moving from upper left in
red to bottom right in blue.

Page 47 of 94

Constructing a Cumulative Flow Diagramas

Constructing a Cumulative Flow Diagram,

... now we are looking at the flow from “Waiting” to “Done”...
This view starts to show patterns a little easier...

M Waiting

10

=& Software Engineering Institute | Carnesie Mellon University

**¥030 Now, we have a cumulative
flow diagram. The cumulative flow
diagram allows us to focus in on this
band depicted here in yellow and
green in the middle where work is
being done, and understanding the
flow of work over time. And there's a
whole host of metrics that are
associated with flow. And some of
you in the audience may know about
that. Let me check to see how we're
doing.

Presenter: So, it looks like, Will, the
majority are putting in number four,
more than one of the above.

Presenter: Oh great, okay. So, I'll
have to talk to more than one

example as we go.

Presenter: Yes.

W Waiting
Working
 Testing

B Done

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.

30

Page 48 of 94

Presenter: Terrific. So, this
cumulative flow diagram has some
really nice features.

Theoretical Basis Little’s Law

Theoretical Basis

Little’s Law L — }\ W

..the long-term average number L of
customers in a stationary system is equal
to the long-term average effective arrival
rate A multiplied by the average time W
that a customer spends in the system...

Software Engineering Institute

**031 And they derive from
something that may be familiar to
many of you, out of queuing theory
this law called Little's Law. And this
photograph is from Dr. Little's staff
page at MIT. And you see the URL
there. Dr. Little is credited with being
the first one to concisely and
precisely define this law that people
believe has existed. It's not
necessarily a discovery, depending on
who you ask. But he is the one
credited with showing concrete proof
that this law in a queuing system is
something we can rely on.

And so, the law is shown there. |
toyed with the idea of trying to quote
unquote teach Little's Law in a

Page 49 of 94

ninety-minute webinar where I had
other topics to cover and thought
better of it based on feedback from
colleagues. But we're going to talk
through some of it and reserve the
rest for a more complete coverage in
the context of a course.

So, one of the places you'll

see Little's Law come into play for
Agile metrics is a book by this
gentleman, Dan Vacanti.

Little’s Law in Agile Metrics

Little’s Law in Agile Metrics

Three Metrics Emphasized*:

1. Work In Progress (the number of items that
we are working on at any given time),

2. Cycle Time (how long it takes each of those
items to get through our process), and

3. Throughput (how many of those items
complete per unit of time).

* Excerpted from page 13 of the book depicted on the right.
<= Software Engineering Institute | Carnegie Mellon University

**032 Really accessible book. Little's
Law and queuing theory may appear
intimidating to some. But the way it's
addressed in the Agile community,
it's really much more approachable.

Fundamentally, what we're saying is
that the average cycle time is equal
to the average amount of work in
progress divided by the average

Actionable Agile
Metrics for Predictability

[DISTRIBUTION STATEMENT A] This material has been 32
approved for public release and unlimited distribution.

Page 50 of 94

throughput in that system. And so, if
this law holds-- and there are a set of
assumptions that are necessary in
order for us to say that this law does
hold. And there's a lot to cover in
discussing what those mean for our
setting. But if this law holds, what
this is saying is because we know the
relationship between these three
things, if we know two of them, we
can use that information to do the
forecasting for the average value of
the third one going forward. But
that's only if we have evidence that
Little's Law holds in the queuing
system we're working with.

This is the kind of understanding of
queuing theory that we use when we
go to the grocery store. You all know
there's a line where, if you have nine
items or less, you can get through
that line. And the folks that are
shopping for the scout troop, and
two carts full of s'mores ingredients
don't go in that line. And so, the work
in process there, and therefore the
cycle time, that's going to be
different. And so, how long does the
nine items or less line need to be
before you're willing to go stand in
the other line with the scoutmasters?
That's based on your understanding
intuitively of Little's Law. Lots more
to be said, but we'll leave it at that.

Okay. So, with work in process, cycle
time, and throughput it turns out
there's a lot you can do.

Page 51 of 94

Utility of Little’s Law

Utility of Little’s Law

Work In Process

Cycle Time

m Waiting
®In Process
mDone

Throughput

i Software Enslnoofhw Institute | G i Mellon Uni ity [DISTRIBUTION STATEMENT A] This material has been

**033 So, let me tie this back to the
cumulative flow diagram. It turns out
those are things we can see rather
readily in a flow diagram of this type.
['ve got an overly simplified one here
where we just have one work in
process state. So, the average height
of that green band, that's the amount
of work in process, or WIP as we call
it. The average width of that green
band measured horizontally is the
cycle time, how long things stay in
that queue. And then the slope of the
line that leads us into the done state,
that gives us the throughput, the

number of items being completed per

unit of time.

There are a number of other
assumptions that we need to make
before we take these values now and
apply Little's Law. Some of them
relate to the age of the items in work

approved for public release and unlimited distribution.

33

Page 52 of 94

in process. It's presumed that they
are neither inc-- the average age is
neither increasing nor decreasing. It's
presumed that everything that enters
the work in process state exits. And
those are things we can't see from
the chart.

What we can see from the chart is
that the rate at which things enter in
process and the rate at which things
exit in process are the same. And the
amount of work in process at the
beginning and the amount of work in
process at the end is relatively
similar, or in this case, I know it's
identical because I created the chart.
But the average WIP is the same at
the beginning at the end. Those are
presumptions.

If those things hold, then these
values that you see on the screen
turn out to be very, very powerful.
And really the diagnostic use of this
methodology comes about from
observing violations in the
assumptions that underlie Little's
Law.

Page 53 of 94

Exercise: What is Going on Here?

Exercise: What is Going on Here?

m Waiting ® Waiting
mIn Process = In Process
mDone = Done
[DISTRIBUTION STATEMENT A] This material has been
i Software Emlm Institute | (hmegieMdlmUniwmity approved for public release and unlimited distribution. 34

**034 So, let's show you a couple.

So, on the left and right, we see two
different examples of potentially non-
predictable systems. And we would
conclude that in both of these
settings, it's obvious that Little's Law
does not hold at least for the time
period depicted here. So, what might
be happening?

Page 54 of 94

Exercise: What MIGHT BE Happening:

Exercise: What MIGHT BE Happening,

m Waiting
mIn Process
= Done

=& Software Engineering Institute | Carnesie Mellon University

**¥035 The one on the left, the work
in process goes to zero at two
different points. And from an
operational perspective does that
mean that we've lost resources that
are pushing stuff into in process? Or
does that mean we have planned for
work to go to zero at those two
points because this is an activity that
fills a gap and takes advantage of
people's availability? In any case, we
would conclude that using those
parameters associated with Little's
Law wouldn't be a basis for making
forecasts for average future
performance in that area. And it's
pretty obvious why.

At time 2, and then again at
time 4, the number of items “In

Process” goes to zero.

¢ Have we lost the resource(s)
performing the work due to rework
demands from elsewhere?

¢ Is this intentional scheduling of work
to occur only during time periods 1,
3,and 5?

[DISTRIBUTION STATEMENT A] This material has been

approved for public release and unlimited distribution.

35

Page 55 of 94

Exercise: What MIGHT BE Happening:

Exercise: What MIGHT BE Happening,

The number of items that are “In
Process” is growing over time.

is greater than the rate at which things
leave “In Process.”

completing their work?
new work at each time period?

* Are things moving into the “Done” state
quickly enough?

¢ The rate at which things enter “In Process”

* Are people moving onto new items without

* Are new resources being added, who start

=& Software Engineering Institute | Carnesie Mellon University

**036 Similarly in this case-- and
this one might be more typical of
what you'd see in terms of violations
of Little's Law. Here we have the
amount of work in process growing
over time. The rate at which things
enter in process and the rate at
which things exit in process are not
the same. Is this because we're
growing the number of staff that are
working in this activity over time,
which is perhaps a good thing? Or is
this because people were pulling
tasks off the Kanban board, getting
stuck, not able to find help, putting
them aside, and starting new ones? |
think that's pretty commonly thought
of as an anti-pattern. That once you
pull something and start on it, you
really want to push it all the way
through the end. And it's an
exception when you have to stop.

® Waiting
= In Process
® Done

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.

36

Page 56 of 94

And so, these are ways that we might
use cumulative flow diagrams, overly
simplified examples to be sure. But
we've got clients who are finding
ways to use this in understanding the
influence of different events along
the timeline shown in the horizon.

So, we have a polling question relating
to flow metrics and cumulative flow diagrams.

Polling Question #4

Polling Question #4

Cumulative Flow Diagrams and Little’s Law — Your Opinion
1. Interested and would like to learn more

2. That's enough information for me, thanks

3. Not sure how to answer right now...

é Software Engineering Institute | Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been

**¥037 And basically, we're trying to

gauge the audience's appetite for these things.
And so, as people type in their

response to that, any questions

queued up?

Presenter: We do. From Roland
wanting to know, "Should we develop
measurement systems for our
programs that measure business
outcome achievements versus purely
internal delivery metrics?

approved for public release and unlimited distribution.

37

Page 57 of 94

Presenter: So, I would think you
would want both. [think the
perspective you have in terms of your
role in the enterprise governs what
your keenest interest is. But
understanding that you're able to
operate in a consistently positive
pattern, that is you've got delivery
happening at a pace that the
business needs, and you're not
flooding the business beyond what
they can tolerate in terms of delivery
rate. So, we can tolerate much more
in terms of updates on our phones
than we can tolerate in terms of
updates in our automobiles. We really
would not wish to have our
automobile software updated very
frequently. It might cause us some
concern, whereas we seem to be
happy with it on our phones. And so,
understanding that from the
perspective of matching what's
happening in the internal cadence
with what the market appetite is,
those are I think important to
balance. We got anything more?

Presenter: We're looking at about
eighty-five percent, if I had to guess,
that are putting in number one. So,
they're interested.

Presenter: Marvelous.

Presenter: Yeah.

Presenter: Okay. So, by popular
demand--

Page 58 of 94

Cumulative Flow Diagrams - Beyond Basics

Cumulative Flow Diagrams — Beyond Basics

Vacanti elaborates on Little’s Law and “Flow Debt*” using CFDs.

Hyman Minski popularized these terms for types of debtors:
+ Hedge,

+ Speculative, and

« Ponzi.

Patterns of flow can help you identify which category best describes the prevalent
decision making style in your project.

Ever been on a project that was trying to do so many things that none of them ever got
finished? Is that a Ponzi project?

* Page 144

[DISTRIBUTION STATEMENT A] This material has been 38
approved for public release and unlimited distribution.

——é— Software Engineering Institute | Carnegie Mellon University

**038 I have just one more. And
Vacanti's book really does a nice job
of pulling in some clever reference to
this bit of work in the finance
industry from Hyman Minsky, who
talk about different kinds of debtors.
So, hedge debtors are people who
can make payments that cover the
principle they owe as well as the
interest on that principle. And so,
those are folks who diligently pay
their mortgage like many of you out
there. Then we have speculative
borrowers who will maintain and pay
the interest but hold off paying the
principle because they're waiting for
a payoff. And then finally we have
Ponzi debtors who have to keep
borrowing and really don't make

progress on working down their debt.

Their debt grows more and more.

Page 59 of 94

As we think about debt, Vacanti's
approach to talking about this is in
terms of flow debt. And so, some of
you may have friends who work on
projects where the management
regularly comes to you and says,
"You had three projects you were
splitting your time across last week.
Well, we just had a big win in the
market. We've got a new project that
is going to take our company into the
next century. Now, you've got five
projects to split your time among."
And the more of those visits you
have, the larger the number of things
you have to split your time across.

And pretty soon, nothing can ever
escape that factory because we're
too busy trying to serve all of the
demands. We're trying to get so
many things done. We're trying to
work on so many things. None of
them can ever be finished. And is
that a Ponzi project?

Well, it turns out that if we have a
system that we can analyze for flow,
and we have a way of evaluating the
feasibility of Little's Law in our
setting, we can differentiate the kind
of flow we have along these lines.
And so, much more to cover in this,
but I'm just going to tease at it a bit
so we can make sure that we cover a
number of other things. So, see if we
got any comments from that.

Presenter: Just a comment from

John saying, "Although Tesla updates
their auto software at the same rate,
more often than buying a new car."
Just a quick comment.

Page 60 of 94

Presenter: Yeah, so Tesla really is
pushing boundaries here. And some
of my customers in the DoD realm
would like to go to Tesla and
understand how they manage,
especially with hardware, how they
can manage such quick turns. That's
a really big challenge. And so, you
can imagine the business decision
that went into Tesla's choice to push
updates out in real time like that.
That was a very careful and frankly
very aggressive choice they made.
And so far, it seems to be doing well
for them. We're probably not going
to do that with our fighter jets
though, huh?

Presenter: Another one from
Barbara asking, "Little's Law would
only apply with a large pool of
workers to smooth out absences. Do
we need uniform Scrum practices
across teams?"

Presenter: Yeah, so Vacanti has a
nice video that addresses some of
the misconceptions, not that you've
misunderstood. There are things that
you would think naturally follow from
the pattern we've shown. And one of
them that ['ve had a healthy debate
with one of my colleagues is the size
of the work items must all be the
same size in order for this to work.
It's a similar kind of concern as the
staff available must be the same. You
would imagine that when such
conditions are met, it may be easier
to judge that Little's Law does apply
in our queuing system. But from a
mathematical perspective, we need
the assumptions to be met. And

Page 61 of 94

however they're met is immaterial
because my scale doesn't care. It's
going to tell me how much [weigh.

It is an objective fact. And so, as long
as the entry rate and the exit rate are
the same, and the work in process at
the beginning-- the average work in
process at the beginning and the end
are the same-- [am ending up
teaching Little's Law despite my
decision not to. These things-- this
law is robust to a variety of settings.
But you could see that if you have a
great deal of fluctuation in staffing
levels and other things that are really
unpredictable, it could certainly
threaten the feasibility of saying
Little's Law applies.

Presenter: And then from Roland
chiming in, "Portfolio WIP," I'm
assuming work in practice, "Is the
biggest issue that I see in my clients,
way too many simultaneous projects
all competing for the same
resources."

Presenter: Yeah, and so we're

seeing some influences in the
government settings where Agile is
applied. People from a commercial
background are coming in to help
break log jams. And one of the things
that's really a problem is the needs
that we have for software driven
capabilities are not diminishing. They
are very rapidly and very broadly
expanding. And so, it is a real
struggle for us to rely on providers
who already are doing beyond their
intended capacity. We have very
compelling needs for them to meet.
If you think about the software

Page 62 of 94

systems that are supporting the
people who are experiencing severe
weather issues right now, they rely
on communication channels. They
rely on distribution channels. These
are really, really essential. And

government personnel responsible for

making those robust and more
powerful have no end of appetite for
serving their constituents better.
Prioritizing, a government product
manager's role in prioritizing is
perhaps the hardest and harshest at
times. You've really got to manage
that flow and not overwhelm the
system with demands. A really
important point, thank you for
bringing it up.

Presenter: We are caught up in the
queue.

Presenter: Okay, great. So, let's
move into a deeper coverage of lean
economics.

Page 63 of 94

Influence on Modern Agile Practice Lean Economics

Influence on Modern Agile Practice

Lean Economics

Mellon University

**039 And this is a really neat topic
as applied to software intensive
systems. There's a lot of work in lean
manufacturing. Much has been
learned there. There are some
authors that are bringing these into
the knowledge work domain.

Page 64 of 94

Economies of Batch Size

Economies of Batch Size

Specify, build

test & ship a

SINGLE

requirement
|

Total Cost

Cost

|
|
| .
IHoldmg
Cost

Transaction Cost |

Specify, then implement,
then test & then ship
ALL requirements

U-Curve optimization
problem as described in
Principles of Product
Development Flow, by
Don Reinertsen

Batch Size

<= Software Engineering Institute | Carnegie Mellon University

**040 And so, this is a graphic

that's really influenced my thinking a
lot in considering how Agile methods
work in the settings where we're
familiar, government settings,
ecosystems with a great deal of
complexity and a lot of different
players. This U-curve optimization
problem as depicted here posits that
the total cost of the work you're
doing is a composite of two different
kinds of cost. One is called holding
cost, and the other is called
transaction costs. So, transaction
costs are, for us, much easier to
understand. That's the cost of getting
the work out the door, the people
who need to do the work, the test
frames, the test cases, the
environments that need to be used,
what it takes to do the work.

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.

40

Page 65 of 94

And if we think about doing work in
larger and smaller batches, we tend
to favor doing work in larger batches
because the infrastructure that we
want to use can be amortized more
effectively if we take that approach.
And so, if this test frame can be
shared by a larger number of people
or can be used for a larger number of
tests, then we're really doing well to
define a robust capability that has a
broader use.

The really tricky part for us is the
holding costs. Holding costs, for us,
are the fact that software
requirements are a perishable
opportunity to satisfy a user's need.
need you to think about that carefully
because it's fairly profound in our
setting.

If you think about automobile
manufacturers or people who
produce hardware, holding costs are
the warehouse you need to store the
parts and the sub-assemblies into.
And so, you need to pay for the
warehouse. You need perhaps hire
security to watch over it. But even
more, you have to make sure that
you don't put too much in there for
fear that the sub-assembly that you
use now will be obsolete in next
year's model. And you will have a lot
of excess parts sitting there in a
warehouse offering no value. That
analogy brings us a little closer to the
software domain.

The problem for us is it's hard for us
to see holding costs. In fact, we've
grown accustomed to, we've

Page 66 of 94

habituated to, the reality that
requirements change. And we often
say, "We need to develop and deliver
software faster than the user has an
opportunity to change their minds."
And that's because we tend to work
in very large batches. And so, we
don't see holding costs because those
are carried around in the minds of
the engineers who think they have a
solution to a requirement not
realizing that technological evolution
is conspiring against them rendering
that requirement obsolete before
they have a chance to implement it.
And so, as we think about the size of
the batches we're working on, we're
really relating that to the amount of
time, the delay that occurs.

So, to make the point a little more
clearly, let's show a couple of
contrasting examples. If we decided
to implement, that is specify, build,
test, and ship, a single requirement,
well the chances are much better
with a single requirement that it
wouldn't be overcome by
technological evolution. And if we
could get it done in a week or two,
we might be able to even keep up
with the fickle preferences of a user
base. But the amount of investment
we would need to make in creating
the infrastructure in which we could
do such a thing, to simulate the rest
of the system without building it, is
actually quite infeasible in most
settings. We wouldn't choose to do
that.

In contrast, if we specify, then
implement, then test, and then ship,

Page 67 of 94

all requirements, well we've done the
best job of amortizing our costs
across the infrastructure. We perhaps
could make the argument that that's
a more efficient approach to take.
But we've also increased the
likelihood that some of those
requirements are no longer germane
to the operating environment where
we want to ship the capability. In
fact, this timeline reflected as a batch
size for a proxy here, this timeline is
measured in government settings in
years, not weeks and months. It may
be five or even ten years before

some capability is realized. And to
cause people to wait for that
capability that long, we're inviting
change in the demand as we do that.

And so, the argument from leading
economics here is that we need to
move toward smaller batch sizes. And
this is certainly resonant with what
we see for a team level processes like
Scrum, XP. People are focused on
doing things in smaller batches.

The author that many of us go to for
this kind of coverage is Don
Reinertsen, who-- two of his books
are depicted here. "Managing the
Design Factory," the one on the right
is perhaps where you want to start.
But please don't hold back. Go into
the "Product Development FLOW
book." Some of my friends make fun
of me for having read that multiple
times. It is a very rigorous treatment
of issues of the type we are only
alluding to with the graph on the left.
And it covers things in a scientifically
sound way and really gives a

Page 68 of 94

methodological foundation for many
of the choices we make in designing
Agile processes and therefore the
metrics that we'd want to have.

Metrics for Flow-based Product Development

Metrics for Flow-based Product Development

Queues Capacity Utilization

« Design-in-Process Inventory » Capacity Utilization Rate
* Queue Size Feedback

« Trends in Queue Size » Feedback Speed

» Cost of Queues + Decision Cycle Time

¢ Aging of ltems in Queues « Aging of Problems
Batch Size Flexibility

* Batch Size « Breadth of Skill Sets

* Trends in Batch Size « Number of Multipurpose Resources

* Transaction Cost per Batch * Number of Processes with Alternate Routes

¢ Trends in Transaction Cost
Flow

Cad
adence » Efficiency of Flow

« Processes Using Cadence
e DIP Turns

¢ Trends in Cadence

Page 235: Principles of Product Development Flow: Don Reinertsen

[DISTRIBUTION STATEMENT A] This material has been 41
approved for public release and unlimited distribution.

——é— Software Engineering Institute | Carnegie Mellon University

**041 And Reinertsen offers a
number of other examples. And ['ve
got the page number referenced
here. If you want to pursue this
further, I really encourage you to
pick up those books and Vacanti's as
well.

Page 69 of 94

Polling Question #5

Polling Question #5

Experience with flow-based metrics?

1. Never heard of it before

2. Yes, I've read about it or seen it before
3. Yes, | have used them in my own work

[DISTRIBUTION STATEMENT A] This material has been 42
approved for public release and unlimited distribution.

lrl'lrl

Software Engineering Institute | Carnegie Mellon University

**042 Now, we've got one more
polling question. And this is your last
opportunity to type in a response to a
poll. So, flow-based metrics, heard of
them? Read about them? How many
of you are using them? We'd really
be keen to know how popular they
are out there.

Presenter: And while you're doing
that, folks, just a reminder that we
ask that you do fill out the survey
upon exiting today's webinar. I will
add that URL back into the chat. We
appreciate your feedback on the new
platform and how we can improve
things. Also, some people asking for
the location of the slides, if you scroll
to the top of the chat, you'll see a
link that will open a new tab on the
SEI website where you can download
a copy of the presentation slides.

Page 70 of 94

So, itlooks like we're getting
responses all across the board so far,
Will. But it looks like number one is
our--

Presenter: Okay.

Presenter: Most prominent answer,
but there is quite a mix of two and
three as well. But one looks like the
prominent answer, never heard of it.

Presenter: Great, great. So, we've

got an audience that perhaps can
consume some of the information
we're preparing. In the Agile in
government team, we try to maintain
our own backlog, try to use
community input as a way of
prioritizing. And so, your responses to
polls like this really do help us. So,
any questions queued up?

Presenter: No questions. But again,
now I'm seeing lots of twos coming

in as well. So, we're getting a mix

with the poll question. But we'll kick it
back to you.

Page 71 of 94

Clash of Mind-Sets Deterministic Plans for an Uncertain World

Clash of Mind-Sets

Deterministic Plans for
an Uncertain World

— Software Engineering Institute Carnegie Mellon University

**043 Presenter: Great. So, let's

now turn to a conversation about
mindset. And a deeper exploration of
what determinism is. And even the
term stochastic is one we're sparing
you from. But that's something we'd
certainly like to cover in more detail
in a course. And so, let's start with
this picture.

Page 72 of 94

Value Flow: Utilization is the Wrong Goal

Value Flow: Utilization is the Wrong Goal

100% Utilization:
* Magnifies the impact of variation

* Maximizes task-switching
overhead

» Assures slower overall progress

Mon Tue Wed Th Fri

Multi-tasking is a myth we don't
accurately comprehend

. Change is inevitable, plan to learn

[DISTRIBUTION STATEMENT A] This material has been 44
approved for public release and unlimited distribution.

=&= Software Engineering Institute | Carnegie Mellon University

**044 So, many of you, if you open
your Outlook calendar or whatever
calendar you prefer to use and
looked at your week, it might look
like this, that each of these colored
objects is a meeting or a working
session you're obliged to attend. And
you are scheduled wall-to-wall,
morning, noon, and night, each day
of the week, and perhaps into the
weekend for many of you. And what
happens if the first meeting Monday
morning runs late? Do you end up
paying for it all week? And so, when
we schedule our work to this level of
finality, this level of fidelity, we're
really setting ourselves up for a
difficult situation to manage.

One of the realities that we see in
very large-scale government
programs is when things start to go
wrong, we turn up the volume on

Page 73 of 94

and we turn up the resolution on
what we're looking at. And so, we
have these very large programs that
are estimated with millions and
billions of dollars and months and
years at least. And so, we rely on
estimation algorithms that recognize
the variation that occurs at the
lowest level. And some things take
longer. Some things take shorter. But
we don't expect there to be a strictly
algebraic relationship between the
fifteen-minute tasks individual
engineers do and the total budget
measured in millions.

However, when that total budget that
runs in millions starts to be a
concern, we turn our attention to
making sure the fifteen-minute tasks
are managed and that we have no
gaps between the fifteen-minute
tasks. We're trying to fill in to make
sure we're utilizing to the maximum
extent. And we don't really know, [
would argue, whether or not we're
overcorrecting, whether or not our
tinkering with those variable
processes at the lowest level is really
causing the system overall to go out
of balance. It's as if we are standing
by the side of a very busy highway
observing that there are thirty-five
extra feet of pavement between two
cars and insisting that we insert
another car there.

Page 74 of 94

Maximum Utilization is Counterproductive

Maximum Utilization is Counterproductive

=&= Software Engineering Institute | Carnegie Mellon University

**045 None of us looks

at this picture and says, "This is a
way to help everyone get home
faster."

Each of us has the

experience of sitting there in one of
these. Well, some of you in Los
Angeles more so than others
perhaps. The possibility of being able
to have a smooth ride home when
you're constantly moving your foot
between the gas pedal and the brake
pedal, between one project and
another that you have to do, we
know that things go slower. They
necessarily go slower when we make
them this crowded on the road. It's
the same with the way we manage
our time.

And so, if the contracts that we let,
the metrics that we ask for, reinforce

|]

[DISTRIBUTION STATEMENT A] This material has been 45
approved for public release and unlimited distribution.

Page 75 of 94

this view, we may in fact be working
against ourselves. And this is an
insight that comes about from a lot of
good Agile thinking and the authors
that we have out there. Something
we could have always known but
we'd not really thought about it this
way because many of our metrics
focus on planned versus actual, not
planned in the context in which we
need to work. When we ask an
individual engineer to estimate the
size or the duration of a piece of
work, they're not considering how
busy the highway is, how much other
work they're doing as they're doing
that estimation.

And some of us try to compensate for
that by padding their estimates or by
having some sort of informal
transformation that tries to account
for this. But this phenomenon, this
things that slow flow, this is not
actually measured. And so, the
reason we emphasize cumulative flow
diagram and the reason we talk
about Little's Law in the context of
Agile metrics is because that is a very
good way for us to access, in
concrete fashion, this phenomenon.
Having that lens as well as the lens

of individual objects that we're
working on, how big are they, how
long do they take, the confluence of
those gives us a much richer view of
what it is we're working.

Page 76 of 94

Diagnostic Metrics Helping Teams Deliver

Diagnostic Metrics

Helping Teams Deliver

Software Engineering Institute i Hon University

**046 So, let's think about
diagnostic metrics that we might use
to help teams think about how
they're delivering.

Page 77 of 94

Batch Size Analysis - Story Size Focus

Batch Size Analysis — Story Size Focus

Splitting stories requires engineering judgment

[DISTRIBUTION STATEMENT A] This material has been 47
approved for public release and unlimited distribution.

lrl'lrl

Software Engineering Institute | Carnegie Mellon University

**047 As | said earlier, batch size is

a primary consideration in software
development, in Agile software
development. So, we're trying to get
from this picture on the left more like
the picture on the right, working a
large number of small things as
opposed to a small number of large
things. But it's not so simple as to rip
the specification, and you take pages
one through three. Shane takes

pages four the seven. And I'll take
eight through ten. We can't arbitrarily
split things up. This is an engineering
consideration. This is not just about
who writes which lines of code. This
is about what is the minimum viable
version of this. What do we need to
have in place in order to show that
this is working? And what is a
reasonable boundary that allows us
to rely on interfaces as opposed to
having to have a tightly coupled

Page 78 of 94

product that we're looking at. And so,
as we think about a story-sized focus,
there may be ways to diagnose.

Potential Story Granularity Indicator?

Potential Story Granularity Indicator?

Story Counts and Total Points in Sprint

Sprints with _____ E L LD 3
many small ok :
stories _ i :
B H
=]
] R — ! .
£ . .
g, | Il L [e, Sprints with
2, a few large
e : : .
2 . H ' stories
o fassssssssss=sas’®
20 n 24 26 28 30 32 34 36 38 &0
Total Points in Sprint
% Software Engi ing Institute | ﬂ;ll'lll*gi?r\ll'."llrl L."Ili\?l'ﬁil)' [DISTRIBUTION STATEMENT A] This material has been 48

approved for public release and unlimited distribution.

**048 And so, this graphicis
intended to show many different
sprints. So, each dot inside the
scatter plot is a particular sprint that
a team completed. Along the
horizontal axis, we have the total
number of story points. And it doesn't
matter what scale, same team, same
rough period of time. On the vertical
axis, we have the number of stories
that are in the sprint. And so, we
might be able to identify, hey, here's
a sprint where we had a few large
stories. In contrast, in the upper left,
here are sprints where we had a
large number of small stories.

[don't propose to create a particular
threshold for you to abide. That may

Page 79 of 94

be something a team decides to do. I
don't propose that you should have
this is the maximum story point size
recommended, although teams do
choose that. There are many
implications for how you could get to
a smaller or why you must stay to a
larger depiction of the capability. But
understanding which extreme you are
in on any given sprint, especially if
we have data of this type, and then
we can go and look at well the

results from that sprint depicted in
the lower right, are there undesirable
outcomes that have occurred. And
can we trace that cause back to the
fact that the stories weren't
decomposed to a lower level? And so,
we were relying on a smaller number
of people doing a longer piece of
work versus people who could finish
rapidly and get feedback and pivot to
address work differently the next
time. And so, this sort of diagnostic
look at how work is flowing through
your system could be beneficial.

Page 80 of 94

Coefficient of Variation - Analysis of Velocity

Coefficient of Variation — Analysis of Velocity

Story Points 20
Delivered by
theTeam 15

Sprint Number

EH

30 1

25

Story Points 20
Delivered by

theTeam 15

10

1 2 3 4 s 3 7 8
Sprint Number

Average = 30

Average =30

Standard Deviation=4.84

Standard Deviation = 3.38

Coefficient of Variation = 16.13

Coefficient of Variation=11.27

=& Software Engineering Institute | Carnesie Mellon University

**#049 Similarly, we might look at
the performance of maybe the same
team across two different periods of
time, or maybe this is a comparison
of two teams. It is a fictitious
example. So, it needn't be one or the
other. But what we're depicting here
is a series of eight sprints by two
teams, or the same team on two
occasions, where the same number
of story points were delivered. But
the experience of the team from
sprint to sprint was different.

On the left, we see a rise and fall of
velocity, that is the story points
delivered per sprint. And there is
something that occurred in the third
sprint that led that bar to be much
lower than what occurs on the next
sprint in sprint four. Whereas, on the
right, we see a much more consistent
pattern compared to the left of velocity.

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.

49

Page 81 of 94

And so, the teams or the team
having these experiences might feel
that the experience on the right is a
much more predictable, much more
steady reliable pace of work that |
can count on. Whereas, the depiction
on the left, there are things that
occurred at different times that
caused us to deliver less. Maybe it
was intentional. Maybe people were
absent. Maybe there was more
challenging work. But in any case, as
a diagnostic measure, we might say
that a team would aspire or prefer to
have the pattern on the right because
it's a much more predictable way of
working.

Much more needs to be understood
before we can make conclusive
statements from this type of thing.
But this view into performance could
be a valuable view.

Let me see if any questions, can you?

Page 82 of 94

Diagnostic Metrics Understanding Program Performance

Diagnostic Metrics

Understanding Program Performance

— Software Engineering Institute Carnegie Mellon University

**050 Presenter: Just a comment
from Roland earlier asking-- saying,
"DevOps automation can help drive
down marginal costs of deployment
toward zero, but of course there are
substantial investment required.”

Presenter: That's a really keen point.
And I should have made it when I was
talking about the U-curve optimization
because with DevOps, you're really
changing that transaction cost curve.
You're making it less expensive to
quickly deploy. And so, you can actually
entertain increasing batch size. Certainly,
you can more frequently push code to
commit. And so, very strong point,
thank you for bringing it up.

Okay so, understanding now at a
program level some ways of doing
diagnostics. And I have a scattershot
of examples here.

Page 83 of 94

Indicator Examples1

Indicator Examples;

Number of Improvements
Identified for Implementation

Essential Process Attributes I

+ Cadence e H
+ Synchronization - - .
 Short Learning Cycles Y Bttt

* Reduction in Batch Size
« lterative and Incremental Delivery

Distribution of Story Sizes
Per 1
Distribution of Stories §
" Demo'ed per Feature 15
I 510
g * 1 : u
o @ I .
I e o =
1 2 3 4 5 6 7 8 9 3 1 2 3 5 B8 13 n
Stories Demo'ed per Feature Size (in Story Points)
= | [DISTRIBUTION STATEMENT A] This material has been
i Software Engineering Institute | Carnegie Mellon University approved for public release and unlimited distribution.

**051 If we think about the
empirical process control, when |
went to Scrum master school with
Jeff Sutherland, one of the things he
emphasized a lot was we manage
through observation and
experimentation. And so, it's
important that we have feedback
from the work that we do. And some
of the priorities that allow us to rely
on that feedback relate to cadence.
That is a steady pattern of this is the
duration for our iterations, or these
are the periods at which these types
of activities happen. Having that as a
metronome to rely on is very
valuable.

Synchronization, when multiple
teams need to contribute together to
build a product, then having more
frequent synchronization points,
continuous integration being a chief

51

Page 84 of 94

illustration of this, allows us to have a
more predictable outcome, shorter
learning cycles, reduction in batch
size, which we've talked about, and
making sure that we're delivering
incrementally and doing work
iteratively.

So, if we look at the graph on the top
right, that shows, for this program,
how many improvements that come
from our retrospectives have actually
been deployed. So, this is beyond the
lessons learned report. This is the
lessons implemented, things that we
have decided to do. If we don't see a
learning process going on, if we don't
have time to improve on the way
we're working, we're not benefitting
the approaches that we are
espousing to use.

Bottom left, this is kind of an
interesting thing. ['ve not yet seen
this in operation. I'm putting it up
here, perhaps as a trial balloon. If we
think about the way we decompose
features into different user stories,
the more spread out those user
stories are across demos, the more
user input we're getting on the
feature. So, if all of our features are
implemented in a single sprint, then
we have just that one sprint demo to
get feedback on how we did.
Whereas, if we're able-- and there
are many things to consider in
whether or not this is even feasible.
If we're able to demonstrate little
pieces of that feature over time, our
understanding of what the user's true
needs are can grow more readily
than if we only have one shot at it.

Page 85 of 94

And so, stories demoed per feature is
what we're showing there on the
bottom left.

And then the pie chart in the middle
is what percentage of the people
contributing to this program are
operating on the same cadence. And
therefore, how frequently are we able
to synchronize everyone? And how
completely does that synchronization
occur?

And the on the right on the bottom is
the distribution of story point sizes.
So, have we got a program that's
largely composed of very large
stories? Or are these things
decomposed into smaller pieces? And
does that help explain the rate at
which progress occurs? Does that
help explain, perhaps, dramatic or
the absence of dramatic blockers that
keep us from making progress?
These are things worth looking at to
diagnose what's going on.

And three more to show you.

Page 86 of 94

Indicator Examples:

Indicator Examples,

How Often Do We Postpone Planned Stories?

Count of Stories

20

10

Cumulative Defect Count

5
=
=
o
19
[. . =
] 1 2 3 3 5
Mumber of Times Defe

rred

Post-Sprint Defect Open Rate

4 5

—
F]

6 7
Sprint Number

First-Pass Fix Rate for Defects

4

Must Fix

Deferrable

“E= Software Engineering Institute | Carnegic Mellon University

**¥052 And so, top left is how many
times we've deferred something that
we have taken into the work in
process queue. So, the tallest bar on
the left shows stories that were
implemented the first time they were
committed to. That little bit of a
bump out at seven shows three or
four stories that were deferred as
many as seven times. Why is that?
That's worth understanding. Are we
waiting for GFE to come in, and we
keep missing the window for
demoing this because the GFE keeps
slipping? Not to blame the
government.

And then top right, we have the first
pass fix rate. And the on the bottom,
we show defects being discovered
following the close of a sprint, during
subsequent integrations perhaps.
Some of those defects are maybe

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.

52

Page 87 of 94

cosmetic and things that don't
threaten mission. And so, they are
deferrable. And others are must fix
because the next bit of capability we
want to add to the system can't be
demonstrated until this blocker is
fixed. Tracking the growth of that hill
over time as well as the
differentiation between must fix and
deferrable, those could help us
understand program performance.

Adopting New Approaches Assessing Engagement

Adopting New Approaches

Assessing Engagement

Software Engineering Institute Carnegie Mellon University

**053 Finally, as we think about

helping organizations to adopt and

gain benefit from Agile methods,

those of you who are coaches, this is
something we've emphasized a lot.

And we've seen a lot in a literature

that engagement is what we're after.

We want folks to be motivated and
involved in the work we do. Yet, we

don't have readily available metrics for it.

Page 88 of 94

Simple Indicator, Powerful Analysis

Simple Indicator, Powerful Analysis

Ceremony Expected Attended Engaged
1 3 3 3

[CRT-RENEN- BT R TRIN]
[ENREN R R TR - RN
L NIRRT RS-
NOBE W B W N

=
5}

%Attend %Engage

100%
86%
88%
75%
44%
83%
89%
1%
86%
80%

60%
67%
71%
67%
75%
80%
63%
60%
67%
50%

Participation Rate

0%

60%

A0%

0%

0%

Engagement Indicator

20%

40% 60%
Attendence Rate

Subset/aggregate data to look for trends across:
- Particular event types

* Are ‘standups’ not working?

- Pockets of staff

» Have we alienated ‘release managers’?

-‘; Software Engineering Institute | Carnegie Mellon University

**054 So, a very simple one we
proposed and were using with a client
of ours, what we're looking at here

is a spreadsheet [had on my desktop.
And ten different ceremonies, that's
why there's ten rows there. So, those
might be daily standups. They may

be demos, retros, what have you.

The number of people we were
expecting to attend that event is
shown in the next, and then the
number of people who did attend,
and then finally a judgement from
whoever was running that even as to
how many were actively engaged.
And by arraying a scatter plot, as we
see on the right here, with
attendance rate on the horizontal and
engagement on the vertical, what we
want to see is full attendance/full
engagement. And so, we want to be
in the upper right quadrant in the

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.

80%

100%

54

Page 89 of 94

green area. And we want to stay out
of the lower right quadrant-- the
lower left quadrant where we may
have lagging attendance and those
who do attend are not as engaged as
we would like them to be. If we can
use coaches to track this over time
and understand how our attempts to
influence their level of engagement
affect this performance, this could be
a valuable indicator.

In Closing...

In Closing...

Software Engineering Institute Carnegie Mellon University

**#055 So, I think we're doing great
on time. I've got a little bit for
conversations at the end.

Page 90 of 94

Bottom Line

Bottom Line

1. Exercise Due Care

The level of discipline and rigor applied must match the context served by the work
Metrics give voice to things we want to hear about, we are responsible to choose

Some very important things will lack high-resolution measures to inform us

2. Consider Systems’ Perspectives

A scrum team is its own system, and rich metrics to serve the team exist

The enterprise consists of many other systems, which bring different perspectives

Boundaries of generalizability exist among these systems

3. (Ruthlessly) Automate Basic Indicators and Analyses

Wield tools in service of your needs, and do not limit the sphere of focus artificially

Make metrics routine and boring — not episodic and authority-focused
Tool chains and visualization techniques offer new opportunities

——é— Software Engineering Institute | Carnegie Mellon University

**056 So, in closing, the bottom line,
exercise due care. You take on an
affirmative obligation to focus your
metrics in a direction that yields the
information that's needed for the roles
you're serving. We need to match the
information with the right roles and
responsibilities in this system of systems
that we're operating. And finally, we need
to try to remove the drama from metrics.
Metrics should no longer be a defensive.
Can [show these data? And now, go back
to work. Metrics should be just as my
bathroom scale, information that we use
for a mission that we're on.

Presenter: So, Marcella wanted to
know-- I know we can't endorse
tools, but asking, "Is there a tool,
commercial or otherwise, that can
help organizations implement these
metrics?"

[DISTRIBUTION STATEMENT A] This material has been

approved for public release and unlimited distribution.

56

Page 91 of 94

Presenter: So, there's a lot of
conversation about tools. Alex
Yakima had a very nice view on it.
One of the things he suggested was
if the tool seems to reinforce the
notion of hierarchies and seems to
try to match a particular
organizational structure, that tool
may be more limiting to you than it is
enabling. And so, many folks who
have been doing this a while prefer
tools that are much more
customizable.

Having said that, we get a lot of
communication from vendors that are
trying to create an omnibus
development environment. And so,
they offer some very nice features.
And that-- I'm not going to name a
name and endorse a particular tool.
So, forgive me. But in many
organizations, when a new person
comes on board and joins the team,
they don't sit in a conference room
and suffer death by view graph.
They're not given PowerPoint slides.
They're told to go into the application
lifecycle management tool and look
at the chats that the team you're on
have been having, follow the
evolution of this story. And you learn
about the product in that way. And
so, having that information captured
in an easily accessible form that is
intuitive and helpful to the engineers
is a very powerful tool, a very
powerful thing. And having said that,
many of us love putting spreadsheets
together and using macros and
creating kluges that only we can
manage. So, there's the other end of
the extreme.

Page 92 of 94

Presenter: So, we'll wait about
another minute, see if we get any
new questions. In the meantime,
some reminders, our next event is
going to be in October. We don't
have an exact date, yet. I think in the
console, you'll see October 4th. That
data may be in flux. But the topic will
be four valuable data sources for
network security and analysis. And
that will be by Tim Shimeall. And we
will send out an invite for you to
share along.

Once we do conclude today's event,
obviously, the live event will end. We
do encourage you to stay on Virtual
SEI and check out the rest of the
content that is available on the on-
demand content. We hope that you'll
share with colleagues, share within
your social networks and provide
feedback to us that way.

And it looks like you're going to be
off the hook, Will, because I think the
questions have dried up. So, thank
you very much for an excellent
presentation. We appreciate
everybody's time today, joining us
here today. We will send a follow up
email tomorrow. Again, the location
of the slides are in the chat. Please
fill out that survey. We appreciate
your feedback. But the email we send
tomorrow will be, again, the location
of the archive of this, which will live
on this site probably as soon as this
evening. The people that missed the
event, you can share and watch it on
Virtual SEL

Page 93 of 94

So, once again, everyone thanks for
attending. Have a great afternoon.

Presenter: Thank you.

SEI WEBINAR SERIES | Keeping you informed of the latest solutions

(1 SEl WEBINAR SERIES | Keeping you informed of the latest solutions

== Software Engineering Institute | Carnegic Mellon University

**001 Presenter: Great job, Will.

Page 94 of 94

	Agile Metrics: Three Secrets to Success
	Table of Contents Page 1 of 3
	Table of Contents Page 2 of 3
	Table of Contents Page 3 of 3

	SEI WEBINAR SERIES | Keeping you informed of the latest solutions
	Carnegie Mellon University
	Copyright 2016 Carnegie Mellon University
	Agile Metrics: Three Secrets to Success
	Agile In Government
	Bottom Line Up Front
	A Familiar Problem
	Multiple Intersecting Systems
	Barriers to Automation
	Polling Question #2
	Taking a Deterministic View Three Numeric Examples
	Basic Example
	IT Modernization
	IT Modernization Example
	Managing Three Planned Releases
	Understanding Benefit of IT Modernization
	Sustaining Embedded Systems
	Sustaining Embedded Systems Example
	Fixing Fielded Defects
	Enabling Mission Threads with DR Fixes
	R&D Pathfinder Projects
	R&D Pathfinder Projects Example
	Building a Proof of Concept
	Understanding User Value with KANO Analysis*
	Polling Question #3
	Flow Metrics Examples Cumulative Flow Diagram
	Constructing a Cumulative Flow Diagram1
	Constructing a Cumulative Flow Diagram2
	Constructing a Cumulative Flow Diagram3
	Constructing a Cumulative Flow Diagram4
	Theoretical Basis Little’s Law
	Little’s Law in Agile Metrics
	Utility of Little’s Law
	Exercise: What is Going on Here?
	Exercise: What MIGHT BE Happening1
	Exercise: What MIGHT BE Happening2
	Polling Question #4
	Cumulative Flow Diagrams – Beyond Basics
	Influence on Modern Agile Practice Lean Economics
	Economies of Batch Size
	Metrics for Flow-based Product Development
	Polling Question #5
	Clash of Mind-Sets Deterministic Plans for an Uncertain World
	Value Flow: Utilization is the Wrong Goal
	Maximum Utilization is Counterproductive
	Diagnostic Metrics Helping Teams Deliver
	Batch Size Analysis – Story Size Focus
	Potential Story Granularity Indicator?
	Coefficient of Variation – Analysis of Velocity
	Diagnostic Metrics Understanding Program Performance
	Indicator Examples1
	Indicator Examples2
	Adopting New Approaches Assessing Engagement
	Simple Indicator, Powerful Analysis
	In Closing…
	Bottom Line
	SEI WEBINAR SERIES | Keeping you informed of the latest solutions

