
User’s Guide
CMU/SEI-90-UG-1
ESD-90-TR-5

Hartstone Benchmark User’s
Guide, Version 1.0

Patrick Donohoe
Ruth Shapiro

Nelson Weiderman
March 1990

User’s Guide
CMU/SEI-90-UG-1

ESD-90-TR-5
March 1990

Hartstone Benchmark User’s Guide,
Version 1.0

��
Patrick Donohoe

Ruth Shapiro
Nelson Weiderman

Real-Time Embedded Systems Testbed Project

Approved for public release.
Distribution unlimited.

Software Engineering Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

This technical report was prepared for the

SEI Joint Program Office
ESD/AVS
Hanscom AFB, MA 01731

The ideas and findings in this report should not be construed as an official DoD
position. It is published in the interest of scientific and technical information
exchange.

Review and Approval

This report has been reviewed and is approved for publication.

FOR THE COMMANDER

Karl Shingler
SEI Joint Program Office

This work is sponsored by the U.S. Department of Defense.

Copyright © 1990 by Carnegie Mellon University

This document is available through the Defense Technical Information Center. DTIC provides access to and transfer of
scientific and technical information for DoD personnel, DoD contractors and potential contractors, and other U.S.
Government agency personnel and their contractors. To obtain a copy, please contact DTIC directly: Defense Technical
Information Center, Attn: FDRA, Cameron Station, Alexandria, VA 22304-6145.

Copies of this document are also available through the National Technical Information Service. For information on
ordering, please contact NTIS directly: National Technical Information Service, U.S. Department of Commerce,
Springfield, VA 22161.

Use of any other trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Hartstone Benchmark User’s Guide, Version 1.0

Abstract: The Hartstone benchmark is a set of timing requirements for testing a
system’s ability to handle hard real-time applications. It is specified as a set of proc-
esses with well-defined workloads and timing constraints. The name Hartstone derives
from HArd Real Time and the fact that the workloads are presently based on the well-
known Whetstone benchmark. This report describes the structure and behavior of an
implementation in the Ada programming language of one category of Hartstone require-
ments, the Periodic Harmonic (PH) Test Series. The Ada implementation of the PH
series is aimed primarily at real-time embedded processors where the only executing
code is the benchmark and the Ada runtime system. Guidelines for performing various
Hartstone experiments and interpreting the results are provided. Also included are the
source code listings of the benchmark, information on how to obtain the source code in
machine-readable form, and some sample results for Version 1.0 of the Systems
Designers XD Ada VAX/VMS - MC68020 cross-compiler.

1. Introduction

The Hartstone benchmark comprises a series of requirements to be used for testing the ability of
a system to handle hard real-time applications. Its name derives from Hard Real Time and the
fact that the computational workload of the benchmark is provided by a variant of the Whetstone
benchmark [Curnow 76], [Harbaugh 84], [Wichmann 88]. "Hard" real-time applications must meet
their deadlines to satisfy system requirements; this contrasts with "soft" real-time applications
where a statistical distribution of response times is acceptable [Liu 73]. The rationale and opera-
tional concept of the Hartstone benchmark are described in [Weiderman 89]; in particular, five
test series of increasing complexity are defined and one of these, the Periodic Harmonic (PH)

1Test Series, is described in detail.

This user’s guide describes the design and implementation of the PH series in the Ada program-
ming language [LRM 83]. The overall structure and behavior of the benchmark programs are
described, implementation-dependent aspects of the design are noted, and guidelines for per-
forming the experiments described in [Weiderman 89] and interpreting their results are provided.
Source code for the benchmark and sample results for the Systems Designers XD Ada VAX/VMS
to Motorola MC68020 cross-compiler, Version 1.0, are included as appendices, as well as infor-
mation on how to obtain machine-readable copies of the Hartstone source code and supporting
documentation.

This Ada implementation of the Hartstone PH test series is aimed primarily at real-time em-
bedded or "bare-board" target systems. It is assumed that on such systems the only executing
code is the Hartstone code and the Ada runtime system. Hartstone can be used to gauge the
performance of the Ada runtime system and its ability to handle multiple real-time tasks efficiently.
As this guide explains, Hartstone is not a simple benchmark that produces just one number

1This document is recommended reading for people wishing to gain a broader understanding of the issues that
motivated the concept of the Hartstone benchmark.

CMU/SEI-90-UG-1 1

representing the "score" of the runtime system. The output from all Hartstone experiments must
be considered, as well as the characteristics of the target processor, when drawing conclusions
based on Hartstone results.

2 CMU/SEI-90-UG-1

2. Periodic Harmonic Test Series

2.1. Periodic Tasks

The Periodic Harmonic (PH) Test Series is the simplest of the five test series defined
in [Weiderman 89] for the Hartstone benchmark. The Ada implementation (the "Delay/ND" de-
sign discussed in [Weiderman 89]) consists of a set of five periodic Ada tasks that are inde-
pendent in the sense that their execution need not be synchronized; they do not communicate
with each other. Each periodic task has a frequency, a workload, and a priority. Task fre-
quencies are harmonic: the frequency of a task is an integral multiple of the frequency of any
lower-frequency task. Frequencies are expressed in Hertz; the reciprocal of the frequency is a
task’s period, in seconds.

A task workload is a fixed amount of work, which must be completed within a task’s period. The
workload of a Hartstone periodic task is provided by a variant of the well-known composite syn-
thetic Whetstone benchmark [Curnow 76] called Small_Whetstone [Wichmann 88].
Small_Whetstone has a main loop which executes one thousand Whetstone instructions, or one
Kilo-Whetstone. A Hartstone task is required to execute a specific number of Kilo-Whetstones
within its period. The rate at which it does this amount of work is measured in Kilo-Whetstone
instructions per second, or KWIPS. This workload rate, or speed, of a task is equal to its per-
period workload multiplied by the task’s frequency. The deadline for completion of the workload
is the next scheduled activation time of the task. Successful completion on time is defined as a
met deadline. Failure to complete the workload on time results in a missed deadline for the task.
Missing a deadline in a hard real-time application is normally considered a system failure. In the
Hartstone benchmark, however, processing continues in order to gather additional information
about the nature of the failure and the behavior of the benchmark after deadlines have begun to
be missed. Therefore, in the Ada implementation of the PH series, if a task misses a deadline it
attempts to compensate by not doing any more work until the start of a new period. This process,
called load-shedding, means that if a deadline is missed by a large amount (more than one
period, say) several work assignments may be cancelled. Deadlines ignored during load-
shedding are known as skipped deadlines. The reason for load-shedding is that "resetting" of-
fending tasks and letting the test series continue allows more useful information to be gathered
about the failure pattern of the task set. The conditions under which the test series eventually
completes are discussed in Section 2.2.

Task priorities are assigned to tasks according to a rate-monotonic scheduling discipline [Liu
73], [Sha 89]. This means that higher-frequency tasks are assigned a higher priority than lower-
frequency tasks. The priorities are fixed and distinct. The rate-monotonic priority assignment is
optimal in the sense that no other fixed-priority assignment scheme can schedule a task set that
cannot be scheduled by the rate-monotonic scheme [Liu 73]. In the Hartstone task set, priorities
are statically assigned at compile time via the Priority pragma. Task 1 has the lowest priority and
task 5 has the highest. The main program which starts these tasks is assigned a priority higher
than any task so that it can activate all tasks via an Ada rendezvous.

CMU/SEI-90-UG-1 3

A task implements periodicity by successively adding its period to a predetermined starting time
to compute its next activation time. Within a period, it does its workload and then suspends itself
until its next activation time. This paradigm, based on the one shown in Section 9.6 of the Ada
Language Reference Manual [LRM 83], was adopted because of its portability, portability being
one of the major objectives of the Hartstone benchmark. The implications of using this paradigm
are discussed in Section 5.4.

2.2. Hartstone Experiments

Four experiments have been defined for the PH series, each consisting of a number of tests. A
test will either succeed by meeting all its deadlines, or fail by not meeting at least one deadline.
The Hartstone main program initiates a test by activating the set of Hartstone tasks; these per-
form the actual test by executing their assigned workloads, periodically, for the duration of the
test. A test will always run for its predefined test duration. When a test finishes, the results are
collected by the main program and a check is made to see if the test results satisfy a user-defined
completion criterion for the entire experiment. If they do, the experiment is over and a summary
of the entire experiment is generated; if not, a new test is initiated and the experiment continues.
Experiment completion criteria are defined later in this section.

Each new test in an experiment is derived from the characteristics of the preceding test. The first
test, called the baseline test, is the same for all experiments: activate the initial set of Hartstone
tasks (called the baseline task set) and collect the results from them. As an example, the base-

2line test below has a total workload rate of 320 Kilo-Whetstone instructions per second (KWIPS)
allocated as follows:

Task Frequency Kilo-Whets Kilo-Whets
No. (Hertz) per period per second

1 2.00 32 64.00
2 4.00 16 64.00
3 8.00 8 64.00
4 16.00 4 64.00
5 32.00 2 64.00

320.00

2This baseline test is different from that of [Weiderman 89]; the frequencies and workloads have been doubled. This
doubling was done initially to cause deadlines to be missed after fewer iterations, so that experiments would complete in a
shorter time. The original task set proved to be too low a starting point for the cross-compiler and target used in Hartstone
prototype testing, the Systems Designers XD Ada compiler, and a 12.5 MHz Motorola MC68020 target processor. During
subsequent testing on a number of different cross-compilers, stronger reasons for increasing or decreasing the fre-
quencies and workloads of the baseline task set emerged. A more detailed discussion of desirable properties of the
baseline task set appears in Section 5.2.

4 CMU/SEI-90-UG-1

The four experiments are:

Experiment 1: Starting with the baseline task set, the frequency of the highest frequency task
(task 5) is increased for each new test until a task misses a deadline. The frequencies of the
other tasks and the per-period workloads of all tasks do not change. The amount by which the
frequency increases must preserve the harmonic nature of the task set frequencies: this means a
minimum increase by an amount equal to the frequency of task 4. For the previous example, this
sequence increases the task set’s total workload rate by 32 KWIPS (16 Hertz, the frequency
increment, times task 5’s per-period workload) at a time and tests the system’s ability to handle a
fine granularity of time (the decreasing period of the highest-frequency task) and to switch rapidly
between processes.

Experiment 2: Starting with the baseline task set, all the frequencies are scaled by 1.1, then 1.2,
then 1.3, and so on for each new test until a deadline is missed. The per-period workloads of all
tasks do not change. The scaling preserves the harmonic frequencies; it is equivalent to multiply-
ing the frequencies of the current test by 0.1 to derive those of the next test. As with experiment
1, this sequence increases the total workload rate in the above example by 32 KWIPS. By
contrast with experiment 1, the increasing rates of doing work affect all tasks, not just one.

Experiment 3: Starting with the baseline task set, the workload of each task is increased by 1
Kilo-Whetstone per period for each new test, continuing until a deadline is missed. The fre-
quencies of all tasks do not change. This sequence increases the total workload rate in the
example by 62 KWIPS at a time, without increasing the system overhead in the same way as in
the preceding experiments.

Experiment 4: Starting with the baseline task set, new tasks with the same frequency and work-
load as the "middle" task, task 3, of the baseline set are added until a deadline is missed. The
frequencies and workloads of the baseline task set do not change. This sequence increases the
total workload rate in the example by 64 KWIPS at a time and tests the system’s ability to handle
a large number of tasks.

When the computational load, plus the overhead, required of the periodic tasks eventually ex-
ceeds the capability of the target system, they will start to miss their deadlines. An experiment is
essentially over when a test misses at least one deadline. For the purpose of analysis, it may be
useful to continue beyond that point; therefore, tests attempt to compensate for missed deadlines
by shedding load, as described previously. A Hartstone user has the choice of stopping the
experiment at the point where deadlines are first missed or at some later point. The completion
criteria for an experiment are largely defined in terms of missed and skipped deadlines. An
experiment completes when a test satisfies one of the following user-selected criteria:

• Any task in the task set misses at least one deadline in the current test.

• The cumulative number of missed and skipped deadlines for the task set, in the
current test, reaches a pre-set limit.

• The cumulative number of missed and skipped deadlines for the task set, in the
current test, reaches a pre-set percentage of the total number of deadlines. This
criterion is an alternative to specifying an absolute number of missed and skipped
deadlines.

CMU/SEI-90-UG-1 5

• The workload required of the task set is greater than the workload achievable by the
benchmark in the absence of tasking. This is a default completion criterion for all
experiments.

• The default maximum number of extra tasks has been added to the task set and
deadlines still have not been missed or skipped. This is a default completion crite-
rion for experiment 4. If this happens, the user must increase the value of the
parameter representing the maximum number of tasks to be added.

2.3. Overall Benchmark Structure and Behavior

The Ada implementation of the PH series consists of three Ada packages and a main program. A
Booch-style diagram illustrating dependencies between these Hartstone units is shown in Figure
2-1. The arrows represent with clauses. The Workload package contains the Small_Whetstone
procedure that provides the synthetic workload for Hartstone periodic tasks. The Periodic_Tasks
package defines the baseline set of tasks, and a task type to be used in the experiment where
new tasks are added to the baseline set. The Experiment package provides procedures to initial-
ize experiments, get the characteristics of a new test, check for experiment completion, and store
and output results. It also defines the frequencies and workloads to be assigned to the baseline
task set, as well as the experiment completion criteria. Initialization of an experiment includes a
"calibration" call to Small_Whetstone to measure the procedure’s raw speed; this is why the
dependency diagram shows a dependency of package Experiment on package Workload. The
main Hartstone program controls the starting and stopping of tasks, and uses procedures pro-
vided by the Experiment package to output results of individual tests and a summary of the entire
experiment.

The compilation order of the packages and main program is as follows:

package Workload
package Periodic_Tasks
package Experiment
procedure Hartstone

Tasks obtain the starting time, duration, frequency, and workloads of the test from a rendezvous
with the main Hartstone program and then proceed independently. On completion of a test, the
results are collected by the main program in a second rendezvous, and may optionally be written
at that point. The main program then starts the next test in the experiment and the experiment
continues until it satisfies the user-defined completion criterion. On completion of the experiment,
a summary of the entire experiment is generated. Details of the output produced by Hartstone
tests are given in Section 5.1.

6 CMU/SEI-90-UG-1

E
x

p
e

ri
m

e
n

t

C
o

n
s

ta
n

ts
,

ty
p

e
s

,
s

u
b

ty
p

e
s

In
it

ia
li

ze

G
e

t_
T

e
s

t

Is
_

C
o

m
p

le
te

S
to

re
_

T
e

s
t_

R
e

s
u

lt
s

O
u

tp
u

t_
T

e
s

t_
R

e
s

u
lt

s

O
u

tp
u

t_
S

u
m

m
a

ry
_

R
e

s
u

lt
s

P
e

ri
o

d
ic

_
T

a
s

k
s

e
x

c
e

p
ti

o
n

T
1

T
2

T
3

T
4

T
5

T
1

..
T

5

S
ta

rt

S
to

p

ta
sk

ty

p
e

N
ew

_T
as

k

S
m

a
ll

_
W

h
e

ts
to

n
e

W
o

rk
lo

a
d

e
x

c
e

p
ti

o
n

H
a

rt
s

to
n

e

(M
a

in
p

ro
g

ra
m

)

Figure 2-1: Hartstone Dependency Diagram

CMU/SEI-90-UG-1 7

8 CMU/SEI-90-UG-1

3. Hartstone Portability

The Ada version of the Hartstone benchmark for the PH series is written entirely in Ada and is
intended to be portable over a wide range of Ada compilation systems. However, it does have
certain implementation-dependent features which can be classified in two broad categories: fea-
tures affecting the portability of the source code and features affecting the runtime performance of
Hartstone executable code. The principal portability issues are Hartstone’s use of mathematical
library functions and predefined types. These also influence the performance, of course, but a
discussion of performance factors will be deferred until Section 5.4.

Mathematical Libraries. The Small_Whetstone benchmark (and the full Whetsone benchmark,
from which it is derived) performs computations involving transcendental functions; these func-
tions are typically provided by a mathematical library package supplied with the Ada compilation
system. The names used by vendors for mathematical libraries vary greatly, so a user will need
to ensure that the correct library name for the system is being used in the with and use clauses
in the body of package Workload wherein Small_Whetstone is encapsulated. Also, the names of
some of the functions in these libraries may vary: for example, in some libraries, the natural
logarithm function is named "Log," while for others it is named "Ln." An additional problem is
caused by the fact that "Log" is used, in some libraries, to designate the base 10 logarithm
function. The Small_Whetstone procedure requires the natural logarithm function for its calcula-
tions to be correct, so inadvertent use of a base 10 function will cause a runtime exception. This
exception is typically either a Constraint_Error or an exception defined within Small_Whetstone
that is raised when Small_Whetstone’s internal self-check fails. The Hartstone package Work-
load is commented with guidelines for dealing with several vendors’ mathematical library names
and function names. By default, it renames the natural logarithm function as "Log," the name

3proposed by the WG9 Numerics Rapporteur Group [WG9 89].

Pre-Defined Types. The predefined types Integer and Float are used within Hartstone on the
assumption that most implementations of these types provide sufficient range and accuracy for
Hartstone needs. The counts of met and missed deadlines computed by Hartstone, for example,
are expected to be much less than the maximum integer value of a 16-bit machine, and a
floating-point type with 6 digits of accuracy provides one-microsecond accuracy for Hartstone
timing calculations performed in floating-point. However, before running the Hartstone, the user
should check the Digits attribute of the integer and floating-point types to ensure that they meet
these range and accuracy assumptions.

3The WG9 (Working Group 9) proposal defines the specification of a generic package of elementary functions and a
package of related exceptions. Its content derives from a joint proposal of the association for Computing Machinery
(ACM) SIGAda Numerics Working Group and the Ada-Europe Numerics Working Group. Draft 1.1 (October 1989) of the
proposal has been submitted for consideration as an international standard.

CMU/SEI-90-UG-1 9

10 CMU/SEI-90-UG-1

4. Running Hartstone Experiments

The Hartstone benchmark is primarily for embedded real-time target processors that are con-
nected to a host system from which the executable Hartstone code is downloaded. Because of
this, and for portability, it is assumed that the only code executing on the target system is the
Hartstone code and the Ada runtime system. The Hartstone benchmark makes no explicit calls
to Ada runtime system functions or to any kernel operating system layer interposed between it
and the Ada runtime system. Additionally, and in particular, no assumptions are made about the
Ada runtime system support of host-target file I/O or interactive screen I/O. Therefore, all exper-
iment characteristics (e.g., test duration, task set characteristics, experiment number, experiment
completion criterion, etc.) must be known at compile time: in this implementation they cannot be
entered interactively or read from a host file. Similarly, the benchmark does not attempt to open
any file on the host for output of results. At a minimum, it is expected that the output procedures
of the Text_IO package will be capable of writing output to a terminal connected to the target
processor. In the SEI host-target environment, the serial ports of the various targets are con-
nected to corresponding serial ports on the VMS host. Output from the targets is displayed in a
window on the host console as it arrives at the host serial port. Some cross-compilers provide
the capability to capture such host input automatically in a file; for those that do not, the /LOG
qualifier of the VMS DCL command SET HOST/DTE/LOG <port_ID> will create a log file of all
input arriving at the host serial port.

A user of Hartstone performs one experiment per download. The benchmark is not set up to do
multiple experiments per download; the idea is that each separately downloaded experiment
begins with the runtime system in the same initial state. To choose an experiment to perform, a
user modifies one line in the body of the Experiment package. The criterion for stopping the
experiment (for example, stop after a total of 50 deadlines have been missed) may also be set in
the next line. By default, the experiment outputs the results of each test in an experiment as the
test completes. This is useful for monitoring the progress of an experiment. The user may
disable this "full output" option in favor of simply producing a summary of the entire experiment
when the experiment completes. Instructions for making these changes are provided as com-
ments in the body of the Experiment package in a section clearly marked as the user-modifiable
section. This section also defines two string variables that should be initialized by a user to
provide a brief description (e.g., name, version number, target CPU type) of the compiler and
target processor. Following these modifications, the package body must then be re-compiled,
and the Hartstone benchmark re-linked to produce a new executable module for the chosen
experiment.

The default duration of a Hartstone test is 10 seconds, with a 5-second lag before the first test of
an experiment begins. If full output is enabled (i.e., if complete test results are to be output as
soon as the test completes) and nothing has happened 20 seconds, say, after the start of an
experiment, then either Hartstone is broken or there is a host-target communication problem. Of
course, if full output is disabled (i.e., no output is produced until the experiment finishes), a user
should be prepared to wait a relatively long time to see the summary results.

CMU/SEI-90-UG-1 11

12 CMU/SEI-90-UG-1

5. Understanding Hartstone Results

5.1. Format of Results

By default, the Hartstone benchmark outputs the results of every test of an experiment as each
test completes. It then prints a summary of the results of the entire experiment. The two-part
output from a single test, including the characteristics of a test and its results, is shown below.
==

Experiment: EXPERIMENT_1
Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 1122.19

Test 21 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload
No. (Hertz) per period per second Utilization
1 2.00 32 64.00 5.70 %
2 4.00 16 64.00 5.70 %
3 8.00 8 64.00 5.70 %
4 16.00 4 64.00 5.70 %
5 352.00 2 704.00 62.73 %

------- --------
960.00 85.55 %

Experiment step size: 2.85 %

--

Test 21 results:

Test duration (seconds): 10.0

Task Period Met Missed Skipped Average
No. in msecs Deadlines Deadlines Deadlines Late (msec)
1 500.000 0 7 13 626.683
2 250.000 40 0 0 0.000
3 125.000 80 0 0 0.000
4 62.500 160 0 0 0.000
5 2.841 3520 0 0 0.000

==

The raw speed of the benchmark is the number of Kilo-Whetstone instructions per second
(KWIPS) achieved by the Small_Whetstone procedure. This calibration test is performed by the
Experiment package when an experiment is initialized. The resultant non-tasking workload rate
will always be better than that achievable by splitting the same workload among the five
Hartstone tasks; it provides a metric against which the performance of the Hartstone task set can
be measured. Both the raw speed calibration test and a Hartstone task include the overhead of
calling the Small_Whetstone procedure. The performance requested of Hartstone tasks is ex-
pressed as a percentage workload utilization, which is computed as the ratio of the requested

CMU/SEI-90-UG-1 13

task speed (in KWIPS) and the raw benchmark speed. The raw speed is assumed to represent
100% utilization. The utilization required of the entire task set is the sum of the individual task
utilizations. Successive tests in an experiment increase the requested utilization to the point
where deadlines are not met.

The step size of an experiment is an indication of the extra work required of the task set when the
next test in an experiment is derived from the current test. Like the workload utilization, it is
expressed as a percentage of the raw speed. As an example, for experiment 1 the extra work for
the task set comes from increasing the frequency of the highest-frequency task, task 5. The
additional work required of task 5 is its workload multiplied by the frequency increment defined for
task 5 in experiment 1 (in the above example, it is 2 Kilo-Whetstones times 16 Hertz, giving 32
KWIPS). This KWIPS figure, expressed as a percentage of the raw speed KWIPS figure, is the
step size for the experiment. It varies from experiment to experiment but remains constant for a
specific experiment. The sum of the total requested utilization and the step size for the current
test is equal to the next test’s total requested utilization. The step size is the granularity, or
resolution, of an experiment.

The sum of the met, missed, and skipped deadlines for a task should, in general, be equal to the
task’s frequency multiplied by the test duration (i.e., the expected number of activations for that
task). The case where they do not add up will be discussed later. The average late figure for a
task is the average amount by which the task missed its deadlines during the test. It is the sum of
the amounts by which individual deadlines were missed, divided by the number of missed dead-
lines. For lower-priority tasks, it is an indication of the amount of preemption by higher-priority
tasks. Skipped deadlines do not influence this figure; they are simply part of the process of
"resetting" a task whose lateness is already known.

The summary output produced at the end of an experiment consists of four test results similar to
those shown above. The four tests are: the first test in the experiment (the baseline test), the
test with the highest utilization and no missed/skipped deadlines (the "best" test), the test which
first experienced missed/skipped deadlines, and the final test performed. Example summary
results for all four experiments are given in Appendix A.

5.2. The Baseline Test

To get meaningful results from the Hartstone benchmark it is important to define an appropriate
starting point for Hartstone experiments. This starting point is the baseline task set and it must
first be "tuned" for a user’s cross-compiler and target before Hartstone can be used effectively.
At a very basic level, "tuning" ensures that the baseline workloads and frequencies are such that
an experiment neither runs hundreds of tests before completing, nor completes after running just
a few tests. More importantly, a badly-chosen baseline test can lead to unexpected results
(discussed later) that undermine the usefulness of the benchmark. This section will provide some
guidelines for choosing an appropriate baseline test.

To determine if the characteristics of the baseline task set need to be modified, a user must run a
Hartstone experiment "as is" and examine the output of the baseline test. The numbers to check

14 CMU/SEI-90-UG-1

are the total workload utilization and the experiment step size. Every experiment first runs the
baseline test, so the total utilization of the baseline test is the same for all experiments. The total
utilization should be in the range of 10 percent to 30 percent, so that an experiment commences
with a workload rate that is neither too low nor too high (a 50% utilization for the task set in the
very first test, for example, would be considered too high). In the example shown in Section 5.1,
the total workload utilization of the baseline task set is 28.50 percent (5 times 5.70%). If utili-
zation falls outside the recommended range, the user must edit the task frequencies and/or
workloads in the body of package Experiment to bring them into line. If total utilization falls below
the range, the task set frequencies and/or workloads must be increased; if it falls above, they
must be reduced.

The experiment step size, which represents the resolution of the total utilization, should also be
within a range that ensures that the transition from one test to another does not cause either a
very large or a very tiny increase in the total resolution. A step size of around 2 or 3 percent
seems to be adequate. Step size depends on the parameters controlling the transition from one
test to the next. It remains constant for a specific experiment, but varies among different experi-
ments. For experiment 1, it depends on the frequency increment for the highest-frequency task;
for experiment 2, it depends on the scale factor applied to all frequencies; for experiment 3, on
the workload increment; and for experiment 4, on the frequency and workload of the extra task
added for each new test. In the example, the step size is 2.85 percent (task 5’s frequency
increment times task 5’s workload is 16 times 2, which is 32 KWIPS; this is divided by the raw
speed, 1122.19 KWIPS, and multiplied by 100 to give 2.85). In general, adjusting the total utili-
zation of the task set will also yield a reasonable step size, so the user should not need to modify
the step size parameters.

When making adjustments to the baseline test, the user must be careful to keep the task fre-
quencies harmonic, and must ensure, for example, that the frequency increment of experiment 1
also preserves the harmonic nature of the task set. Workloads must be integral values (the
Small_Whetstone benchmark does not permit fractional workloads), so a task cannot be assigned
a workload lower than one Kilo-Whetstone per period. By convention, workloads are such that
the workload rate (in Kilo-Whetstones per second) of each task in the baseline set is the same.

It is possible for a baseline task set to be within the guidelines just described and yet still fail to
run the baseline test successfully. Sections 5.4 and 5.5 provide some answers to this problem.

5.3. What the Results Mean

For any experiment there is no single number which best represents the result of the experiment.
The nature of the experiment and the performance of the various Hartstone tasks must be taken
into account when formulating a conclusion about the outcome of an experiment. Additionally,
the results from all four experiments must be considered when the benchmark is used to evaluate
the performance of an Ada runtime system.

The test result of most interest to a user of the Hartstone benchmark is the one representing the
highest achieved utilization for an experiment, with no missed or skipped deadlines. In the cases

CMU/SEI-90-UG-1 15

where the experiment is allowed to continue until a predefined number of deadlines have been
missed or skipped, the result of the final test run is also of interest because it will show whether or
not tasks missed their deadlines in the expected manner for harmonic tasks: the lowest-priority
(lowest-frequency) task missing deadlines first, then the next-lowest-priority task, and so on up to
the highest-priority (highest-frequency) task.

In each experiment, the step size for that experiment is very significant. The maximum achiev-
able total utilization is represented with a granularity equal to the the experiment step size. Ex-
periments 2 and 3, which affect all 5 tasks, tend to have larger step sizes than experiments 1 and
4, which affect only 1 task.

Once the effect of the step size on the experiment results is understood, the three most important
numbers for a test are the total number of task activations, the raw speed, and the total utilization.
The total number of activations (equal to the sum of the met plus missed plus skipped deadlines
for the task set) is an indication of the amount of task switching overhead required of the runtime
system. The total utilization is a measure of the useful work performed, while the raw speed is an
upper bound on the amount of useful work capable of being performed.

For experiment 1, the utilization achieved by the highest-frequency task is important since it
dominates the overall result (the utilization of the other tasks remains constant throughout the
experiment). The maximum frequency achieved by task 5 is of considerable interest since it is
the primary indication of the amount of overhead required of the runtime system. As task 5’s
period decreases, runtime overhead consumes an increasing percentage of the task’s period. It
is expected that the total utilization for experiment 1 will be lower than that of experiments 2 and 3
because task switching is the predominant factor.

For experiment 2, the utilization of each task is the same for a given test and increases uniformly
from one test to the next as all the task frequencies are scaled up. The scaling has the effect of
also increasing all task workload rates (as measured in Kilo-Whetstones per second).

For experiment 3, the highest-frequency task’s utilization is again of interest because increasing
the actual workload, while keeping the frequency constant, means that the workload consumes
an increasingly large percentage of this task’s period. This, of course, is true for all tasks in this
experiment, but the effect is greatest for the highest-frequency task. Experiment 3 should, in
general, have better total utilization than the other experiments, since only the workloads increase
while the tasks’ switching overhead remains the same. A large step size, however, may cause
experiment 3’s best test result to occur at a lower utilization level: the increase in requested
utilization, in the transition from success to missed deadlines, may hide the fact that a smaller
increase could have resulted in success at a higher level.

For experiment 4, the utilization of each task remains constant throughout the experiment, but the
number of tasks, and hence the total utilization, increases. Of primary interest is the count of
extra tasks added to the baseline set. This provides an indication of the runtime system’s ability
to handle a large number of tasks efficiently.

16 CMU/SEI-90-UG-1

5.4. Factors Affecting Hartstone Performance

The principal factors affecting the performance of Hartstone PH tests are

• The implementation of task periodicity

• The resolution of the delay statement

• The resolution of Calendar.Clock

• The accuracy of the fixed-point type Duration

• The implementation of mathematical library functions

• Floating-point precision

• Miscellaneous overhead factors

Task Periodicity. The implementation of task periodicity in the Hartstone benchmark is based
on the paradigm exhibited in Section 9.6 of the Ada Language Reference Manual [LRM 83], a
version of which is shown below.

declare
use Calendar;
-- Period is a global constant of type Duration
Next_Start : Time := Clock + Period;

begin
loop
Next_Delay := Next_Start - Clock;
delay Next_Delay;
-- do some work
Next_Start := Next_Start + Period;

end loop;
end;

This is a highly portable method of implementing periodic tasks in Ada. It is, of course, very
dependent on how well the Ada runtime system implements Calendar.Clock and the delay state-
ment. At a basic level, the performance of the Hartstone benchmark is a reflection of the perfor-
mance of these two features of the Ada language. The issues arising from the implementation of
these two features are discussed separately below. The other major issue associated with the
above paradigm is the possibility of preemption of the task between the reading of the Clock and
the start of the delay statement, resulting in an actual delay that is longer than the requested
delay. It can be shown that this is not a problem for the periodic harmonic task sets used in the
Hartstone benchmark.

Delay Statement Resolution. The resolution of the delay statement is how closely an actual
delay matches a requested delay. A requested delay of one millisecond that is actually imple-
mented as a ten or twenty millisecond delay will cause periodic tasks to start missing deadlines
earlier than expected. It has also been implicitly assumed that the expiry of the delay statement
is preemptive, i.e., that a lower-priority task currently executing will be preempted by a higher-
priority task whose delay has expired. A non-preemptive delay statement will likely cause results
that are at least as poor as, and probably worse than, those for a coarse delay statement resolu-
tion. Implementations using non-preemptive delays are technically non-conforming, but the cur-
rent Ada Compiler Validation Capability (ACVC, Version 1.10) does not adequately test this.

CMU/SEI-90-UG-1 17

Calendar.Clock Resolution. The resolution of Calendar.Clock is the time period between suc-
cessive ticks of the clock. A Hartstone task performs arithmetic involving Calendar.Clock to
determine the time remaining in its period upon completion of its workload. It then suspends itself
by delaying until its computed "wakeup" time—the next scheduled activation time. A coarse
Calendar.Clock resolution means that a coarse value will be used as the expression in the delay
statement, thereby resulting in a flawed implementation of task periodicity. Also, a coarse clock
resolution may cause variations in the calibrated raw speed of the Small_Whetstone procedure.
There are large differences in the resolution of Calendar.Clock in current Ada cross-compilers,
ranging, in those tested at the SEI, from 61 microseconds to 100 milliseconds. The ACM SIGAda

4Performance Issues Working Group (PIWG) benchmark suite contains tests to measure the
resolution of Calendar.Clock and the delay statement. These resolutions should always be
checked by users of Hartstone. (Note that, in general, the value of System.Tick is not the same
as the resolution of Calendar.Clock; a test should always be performed to determine the actual
resolution.) Sample results of these two tests, for the XD Ada MC68020 cross-compiler, are
included in Appendix B.

Type Duration. The accuracy of type Duration can be determined by examining the value of
-14Duration’Small. For many implementations, this value is 2 seconds, or approximately 61

microseconds. For some implementations, however, the value is 1 millisecond. In an attempt to
minimize the cumulative errors possible in fixed-point Duration arithmetic, a Hartstone periodic
task actually performs all arithmetic involving the types Time and Duration in floating-point. This
is done by using floating-point variables to compute Next_Start and Next_Delay and converting
Next_Delay to type Duration in the actual delay statement. The value returned by
Calendar.Clock is of the private type Time and so cannot be converted directly. Instead the
Calendar.Seconds function is used to extract the seconds portion of the Time value; this value is

5of the non-private type Day_Duration and so is amenable to direct conversion.

Mathematical Library. The raw non-tasking speed measurement of the Small_Whetstone pro-
cedure is another important factor since it is the basis for the utilization figures and the exper-
iment step size. The raw speed will depend on how efficiently the Small_Whetstone computa-
tions are performed. For example, the computations involve trigonometric, logarithmic, and ex-
ponential functions whose efficiency depends on whether they are implemented wholly in soft-
ware on the main processor, or by special instructions on a co-processor, if one is present on the
target board. Testing at SEI has shown that most mathematical libraries do take advantage of an
on-board co-processor, but that even when they do, the differences in the performance of
Hartstone’s Small_Whetstone (and the PIWG full Whetstone benchmark) on the same target
board are striking.

4The name, address, and telephone number of the current PIWG chairperson and other officers may be found in Ada
Letters, a bimonthly publication of the ACM Special Interest Group on Ada (SIGAda)

5Because the seconds portion of the time value becomes zero after twenty-four hours, you should not run Hartstone
through a midnight boundary. Depending on how Calendar.Clock is initialized, "midnight" for the target system may bear
no relation to midnight as measured by a wall clock (which in turn may be different from time as measured by the host
system).

18 CMU/SEI-90-UG-1

Floating-Point Precision. The current implementation of Hartstone uses the type Float for all
floating-point computations. Of the 8 Ada cross-compilers at the SEI, 7 implement type Float with
6 decimal digits of precision (Float’Digits = 6) while 1 implements it with 15. Rather than defining
a machine-dependent package that simply contains a type Hart_Float, say, Hartstone uses the
type Float on the assumption that it will always provide at least 6 digits of precision. Doing the
computational workload of Hartstone (the Small_Whetstone procedure) in a higher-precision
floating-point type may, of course, take longer. The user must be aware of this when comparing
Hartstone results from different Ada implementations. For consistency, a floating-point type with
6 digits of precision should be used; this will usually be the predefined type Float, but, for some
cross-compilers, may be Short_Float.

Miscellaneous Overhead Factors. Calling the Small_Whetstone procedure from within a
Hartstone task is another factor affecting performance; the overhead of the call may be zero if
in-lining is used and non-zero otherwise. Again, the PIWG suite provides tests to measure this
overhead. Hartstone contains an inline pragma for Small_Whetstone; the user should check the
compilation listings to see if the compiler is accepting or rejecting it. Even when the pragma is
accepted there may still be a performance factor attributable to the location and the even/odd
word alignment of the copies of the code in different areas of memory.

There are other sources of overhead which undoubtedly influence Hartstone but are difficult for
users to measure. These include, but are not limited to, the tasks’ switching time, time spent in
the clock interrupt handler, time spent managing delay and ready queues upon expiry of a delay,
cache hit/miss rates, time to switch between the processor and co-processor, and, possibly, peri-
odic garbage collection. Highly-specific, fine-grained benchmark tests, or hardware timing capa-
bilities such as those provided by a logic analyzer, are needed to detect and measure the effect
of such items on Hartstone’s performance.

5.5. Unexpected Results

In normal circumstances, a Hartstone experiment proceeds from the baseline test through a num-
ber of intermediate tests to a point where a test meets the predefined completion criterion for the
experiment. The results of the experiment can then be examined to determine the overall utili-
zation and the failure pattern when tasks began to miss their deadlines. Sometimes the results
can be quite different from what the user expected. This section attempts to characterize a
sample set of such results; it is based on actual results encountered during testing of Hartstone
on various Ada cross-compilers and target processors.

Baseline Test Failure. As discussed earlier, one reason for this may be the fact that the baseline
task set utilization is outside the recommended range. However, even when it is within range,
other factors may cause missed deadlines in the baseline set. A non-preemptive delay state-
ment, or one with poor resolution, means that the actual implemented frequency of a task is much
less than the requested frequency. Since a task’s period and activation times are computed as a
function of the requested frequency, an implemented frequency that is lower will cause a task to
delay needlessly and miss its scheduled activation times. Even a reasonable delay statement

CMU/SEI-90-UG-1 19

resolution can still be overwhelmed when used in combination with a Calendar.Clock with poor
resolution to implement task periodicity. The user’s only recourse is to scale back the fre-
quencies of the baseline task set (keeping them harmonic) and re-run the experiment. A rule of
thumb: the benchmark is already in trouble if the period of the highest-frequency baseline task is
less than the period between successive ticks of Calendar.Clock. For example, if the highest-
frequency baseline task’s frequency is 32 Hertz and the resolution of Calendar.Clock is 100
milliseconds, the task’s requested 31.25-millisecond period will never be realized. The outcome
may well be that Hartstone cannot manage a successful run of even the first test without scaling
back the baseline task set. One possible, but highly machine-dependent solution to the problem
is to use a high-resolution programmable timer (if one is available on the target system) as a
source of periodic interrupts. A dispatcher program could field these interrupts and dispatch
tasks at their assigned frequencies in the manner described in [Borger 89].

Excess Task Activations. When a periodic task runs at a fixed frequency, measured in task
activations per unit time, in a test whose duration is a multiple of the unit time, then the number of
times the task can be expected to activate is the product of the task frequency and the test
duration. In the Hartstone benchmark, the outcome of any one run of a Hartstone periodic task
will be a met, missed, or skipped deadline; therefore the sum of all such met, missed, and
skipped deadlines reported by the task in a single test will equal the actual count of activations for
that task. Testing has shown that, for the highest-frequency task of experiment 1, the actual
activation count sometimes exceeds the expected activation count. The reason has to do with
the way periodic tasks, in this implementation, keep track of time. A task starts at its assigned
starting time, performs its assigned workload, and determines its next activation time by adding
its period to the starting time. Each time around the task’s main loop, the new activation time is
compared with the test’s finishing time (pre-computed by adding the test duration to the starting
time) and the task executes for another cycle if the finishing time has not been reached. If the
successive additions of the task’s period to the starting time eventually yield a value exactly equal
to the finishing time then the test finishes without extra activations. Because of rounding effects,
however, the task may complete its "expected" number of activations and still manage one or
more runs before the finishing time occurs. It is also possible that a coarse Calendar.Clock
resolution will allow extra activations; since there is no external timing source in this version of
Hartstone (e.g., periodic interrupts from a programmable interval timer, a highly implementation-
dependent, non-portable solution), there is no way to cut tasks off at exactly the end of a test.

Inverted Task Set Breakdown Pattern. Because of the priority structure of the task set
(highest-frequency task has highest priority, lowest-frequency task has lowest) one expects the
lower-frequency tasks to be preempted by the higher-frequency tasks. Thus the expected break-
down pattern for the task set is that task 1 (lowest priority) will miss deadlines first, then task 2,
and so on. Tests have shown that this is not always the case. In experiment 1, the frequency of
the highest-frequency task is incremented for each new test, with the result that the task-
switching overhead becomes an increasingly significant percentage of the task’s period. Even-
tually, the rapid switching required of the task leaves no time for useful work, and the highest-
frequency task starts missing deadlines before any of the other tasks start missing theirs. The
effect of this breakdown pattern is that the total workload utilization for the task set may be poor,
despite the fact that the highest-frequency task may have been driven to a very high frequency

20 CMU/SEI-90-UG-1

before it started to miss deadlines. Tests have shown that the inverted breakdown pattern
usually occurs if the total utilization of the baseline task set is less than 10 percent. The user
should scale up the baseline characteristics (remembering to keep the task set frequencies
harmonic) to overcome the problem.

Inverted Summary Results. During testing of Hartstone, the highest-frequency task of exper-
iment 1 would sometimes miss a single deadline, but then meet all its deadlines in the next
several tests. The experiment would continue normally until the task set began missing deadlines
in the expected fashion, at which point the experiment would terminate. This situation can be
detected by examining the summary reports produced at the end of an experiment. One of the
summaries is the output of the "best" test—the one achieving the highest utilization with no
missed deadlines. Another summary is the output of the test where deadlines were first missed.
The test number of the "best" test normally precedes that of the "first missed" test; however, in
the case where a test with missed deadlines is followed by one or more tests that do not miss
deadlines, the test number of the "best" test is consequently higher than that of the "first missed"
test. This phenomenon is still under investigation; preliminary testing with a logic analyzer in-
dicates that the highest-frequency task may be blocked for varying amounts of time by runtime
system activities such as delay queue management and Calendar.Clock updating. Depending on
the amount of queue re-organization required, and whether or not the clock also needs servicing,
the highest-frequency task may occasionally be blocked just long enough to miss a deadline.

Exceptions. The Small_Whetstone procedure raises an exception if it fails an internal check on
the result of its computation. Two reasons for such a failure have been encountered during
testing. The first was when the link-time memory layout parameters did not allow enough stack
and heap space in the target board’s memory for Hartstone. A simple readjustment of the
parameters took care of the problem. The second reason was more subtle, involving different
interpretations of the name "Log" as used in vendor mathematical libraries to denote a logarithm
function. The logarithm function used within the Small_Whetstone procedure is intended to be
the natural logarithm function (base e), not the base 10 function. Some vendors denote the
former by "Ln" and the latter by "Log"; others use "Log" for natural logarithms and a name such
as "Log10" for base 10 logarithms. If base 10 logs are used inadvertently (i.e., the user did not
modify the Small_Whetstone procedure correctly for the mathematical library being used) the
compilation will succeed but the computation performed by Small_Whetstone will produce a run-
time exception.

Other exceptions, such as Storage_Error, can arise if not enough code space has been allocated
for Hartstone (again, modifying the file that describes the target memory layout solves the
problem), or if the runtime system provides support only for a default number of tasks (possibly
defined by a user-modifiable link parameter) and this default is exceeded by the extra tasks
created in experiment 4.

CMU/SEI-90-UG-1 21

22 CMU/SEI-90-UG-1

6. Future Work

It is expected that this report will be sufficient to enable a Hartstone user to run a series of
experiments against a particular Ada compiler on a particular architecture. The sample outputs
show what experiment results look like and some initial guidance on interpretation of results has
been provided. However, in order to be a truly useful tool, it is necessary to be able to compare
different implementations and provide a deeper analysis of results. Work is under way at the SEI
to do just that. The Hartstone benchmark will be used to generate results for several different
embedded systems cross-compilers. A subsequent report will describe these results and the
analysis required to draw from them conclusions about the usability of the cross-compilers for
hard real-time applications. The purpose of the report will not be to "rate" the various cross-
compilers, but to show Hartstone users how to draw their own conclusions when evaluating the
hard real-time characteristics of their own Ada compilers.

CMU/SEI-90-UG-1 23

24 CMU/SEI-90-UG-1

Bibliography

[Borger 89] Borger, M., Klein, M., Veltre, R.
Real-Time Software Engineering in Ada: Observations and Guidelines.
Technical Report CMU/SEI-89-TR-22, Software Engineering Institute, Carne-

gie Mellon University, Pittsburgh, PA 15213, September, 1989.

[Curnow 76] Curnow, H.J. and Wichmann, B.A.
A Synthetic Benchmark.
Computer Journal 19(1):43-49, January, 1976.

[Harbaugh 84] Harbaugh, S. and Forakis, J.
Timing Studies using a Synthetic Whetstone Benchmark.
Ada Letters 4(2):23-34, 1984.

[Liu 73] Liu, C.L. and Layland, J.W.
Scheduling Algorithms for Multiprogramming in a Hard-Real-Time Environ-

ment.
Journal of the Association of Computing Machinery 20(1):46-61, January,

1973.

[LRM 83] United States Department of Defense.
Reference Manual for the Ada Programming Language
American National Standards Institute, New York, 1983.

[Sha 89] Sha, L. and Goodenough, J.B.
Real-Time Scheduling Theory and Ada.
Technical Report CMU/SEI-89-TR-14, Software Engineering Institute, Carne-

gie Mellon University, Pittsburgh, PA 15213, April, 1989.

[Weiderman 89] Weiderman, Nelson.
Hartstone: Synthetic Benchmark Requirements for Hard Real-Time

Applications.
Technical Report CMU/SEI-89-TR-23, Software Engineering Institute, Carne-

gie Mellon University, Pittsburgh, PA 15213, June, 1989.

[WG9 89] ISO-IEC/JTC1/SC22/WG9 (Ada) Numerics Rapporteur Group.
Proposed Standard for a Generic Package of Elementary Functions for Ada
WG9 Numerics Rapporteur Group, 1989.

[Wichmann 88] Wichmann, B.A.
Validation Code for the Whetstone Benchmark.
Technical Report DITC 107/88, National Physical Laboratory, Teddington, Mid-

dlesex, UK, March, 1988.

CMU/SEI-90-UG-1 25

26 CMU/SEI-90-UG-1

Appendix A: Sample Results for XD Ada VAX/VMS ->
MC68020

A.1. Host-Target Configuration

The following is the host-target configuration used for generating the results reported here:

HOST: DEC MicroVAX II running VAX/VMS, Release 5.1-1

CROSS-COMPILER: Systems Designers XD Ada, Version 1.0, ACVC 1.10

TARGET: Motorola MVME133: 12.5 MHz MC68020 CPU with 12.5
MHz MC68881 Floating-Point Co-processor; one wait
state; 1Mb RAM; 256-byte on-chip instruction cache

Full optimization (the default) was specified for all compilations. No checks were suppressed.
The summary output for the four Hartstone experiments is shown in the next four sections.

CMU/SEI-90-UG-1 27

A.2. Experiment 1: Summary of Results

HARTSTONE BENCHMARK SUMMARY RESULTS

Baseline test:

==

Experiment: EXPERIMENT_1
Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 1122.19

Test 1 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload
No. (Hertz) per period per second Utilization
1 2.00 32 64.00 5.70 %
2 4.00 16 64.00 5.70 %
3 8.00 8 64.00 5.70 %
4 16.00 4 64.00 5.70 %
5 32.00 2 64.00 5.70 %

------- --------
320.00 28.52 %

Experiment step size: 2.85 %

--

Test 1 results:

Test duration (seconds): 10.0

Task Period Met Missed Skipped Average
No. in msecs Deadlines Deadlines Deadlines Late (msec)
1 500.000 20 0 0 0.000
2 250.000 40 0 0 0.000
3 125.000 80 0 0 0.000
4 62.500 160 0 0 0.000
5 31.250 320 0 0 0.000

==

28 CMU/SEI-90-UG-1

Last test with no missed/skipped deadlines:

==

Experiment: EXPERIMENT_1
Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 1122.19

Test 20 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload
No. (Hertz) per period per second Utilization
1 2.00 32 64.00 5.70 %
2 4.00 16 64.00 5.70 %
3 8.00 8 64.00 5.70 %
4 16.00 4 64.00 5.70 %
5 336.00 2 672.00 59.88 %

------- --------
928.00 82.70 %

Experiment step size: 2.85 %

--

Test 20 results:

Test duration (seconds): 10.0

Task Period Met Missed Skipped Average
No. in msecs Deadlines Deadlines Deadlines Late (msec)
1 500.000 20 0 0 0.000
2 250.000 40 0 0 0.000
3 125.000 80 0 0 0.000
4 62.500 160 0 0 0.000
5 2.976 3360 0 0 0.000

==

CMU/SEI-90-UG-1 29

Test when deadlines first missed/skipped:

==

Experiment: EXPERIMENT_1
Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 1122.19

Test 21 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload
No. (Hertz) per period per second Utilization
1 2.00 32 64.00 5.70 %
2 4.00 16 64.00 5.70 %
3 8.00 8 64.00 5.70 %
4 16.00 4 64.00 5.70 %
5 352.00 2 704.00 62.73 %

------- --------
960.00 85.55 %

Experiment step size: 2.85 %

--

Test 21 results:

Test duration (seconds): 10.0

Task Period Met Missed Skipped Average
No. in msecs Deadlines Deadlines Deadlines Late (msec)
1 500.000 0 7 13 626.683
2 250.000 40 0 0 0.000
3 125.000 80 0 0 0.000
4 62.500 160 0 0 0.000
5 2.841 3520 0 0 0.000

==

30 CMU/SEI-90-UG-1

Final test performed:

==

Experiment: EXPERIMENT_1
Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 1122.19

Test 22 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload
No. (Hertz) per period per second Utilization
1 2.00 32 64.00 5.70 %
2 4.00 16 64.00 5.70 %
3 8.00 8 64.00 5.70 %
4 16.00 4 64.00 5.70 %
5 368.00 2 736.00 65.59 %

------- --------
992.00 88.40 %

Experiment step size: 2.85 %

--

Test 22 results:

Test duration (seconds): 10.0

Task Period Met Missed Skipped Average
No. in msecs Deadlines Deadlines Deadlines Late (msec)
1 500.000 0 6 14 1095.724
2 250.000 0 20 20 103.137
3 125.000 80 0 0 0.000
4 62.500 160 0 0 0.000
5 2.717 3680 0 0 0.000

==

CMU/SEI-90-UG-1 31

==

Benchmark : Hartstone Benchmark, Version 1.0
Compiler : Systems Designers XD Ada 1.0 VAX/VMS -> MC68020
Target : Motorola MVME133 (12.5 MHz MC68020 & 12.5 MHz MC68881)

Characteristics of best test for this experiment:
(no missed/skipped deadlines)

Test 20 of Experiment 1

Raw (non-tasking) benchmark speed in KWIPS: 1122.19

Full task set:

Total Deadlines Task Set Total
Tasks Per Second Utilization KWIPS

5 366.00 82.70 % 928.00

Highest-frequency task:

Period Deadlines Task Task
(msec) Per Second Utilization KWIPS
2.976 336.00 59.88 % 672.00

Experiment step size: 2.85 %

==

END OF HARTSTONE BENCHMARK SUMMARY RESULTS

32 CMU/SEI-90-UG-1

A.3. Experiment 2: Summary of Results

HARTSTONE BENCHMARK SUMMARY RESULTS

Baseline test:

==

Experiment: EXPERIMENT_2
Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 1122.10

Test 1 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload
No. (Hertz) per period per second Utilization
1 2.00 32 64.00 5.70 %
2 4.00 16 64.00 5.70 %
3 8.00 8 64.00 5.70 %
4 16.00 4 64.00 5.70 %
5 32.00 2 64.00 5.70 %

------- --------
320.00 28.52 %

Experiment step size: 2.85 %

--

Test 1 results:

Test duration (seconds): 10.0

Task Period Met Missed Skipped Average
No. in msecs Deadlines Deadlines Deadlines Late (msec)
1 500.000 20 0 0 0.000
2 250.000 40 0 0 0.000
3 125.000 80 0 0 0.000
4 62.500 160 0 0 0.000
5 31.250 320 0 0 0.000

==

CMU/SEI-90-UG-1 33

Last test with no missed/skipped deadlines:

==

Experiment: EXPERIMENT_2
Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 1122.10

Test 23 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload
No. (Hertz) per period per second Utilization
1 6.40 32 204.80 18.25 %
2 12.80 16 204.80 18.25 %
3 25.60 8 204.80 18.25 %
4 51.20 4 204.80 18.25 %
5 102.40 2 204.80 18.25 %

------- --------
1024.00 91.26 %

Experiment step size: 2.85 %

--

Test 23 results:

Test duration (seconds): 10.0

Task Period Met Missed Skipped Average
No. in msecs Deadlines Deadlines Deadlines Late (msec)
1 156.250 64 0 0 0.000
2 78.125 128 0 0 0.000
3 39.063 256 0 0 0.000
4 19.531 512 0 0 0.000
5 9.766 1024 0 0 0.000

==

34 CMU/SEI-90-UG-1

Test when deadlines first missed/skipped:

==

Experiment: EXPERIMENT_2
Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 1122.10

Test 24 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload
No. (Hertz) per period per second Utilization
1 6.60 32 211.20 18.82 %
2 13.20 16 211.20 18.82 %
3 26.40 8 211.20 18.82 %
4 52.80 4 211.20 18.82 %
5 105.60 2 211.20 18.82 %

------- --------
1056.00 94.11 %

Experiment step size: 2.85 %

--

Test 24 results:

Test duration (seconds): 10.0

Task Period Met Missed Skipped Average
No. in msecs Deadlines Deadlines Deadlines Late (msec)
1 151.515 0 33 33 55.840
2 75.758 132 0 0 0.000
3 37.879 264 0 0 0.000
4 18.939 528 0 0 0.000
5 9.470 1056 0 0 0.000

==

CMU/SEI-90-UG-1 35

Final test performed:
See preceding summary of test 24

==

Benchmark : Hartstone Benchmark, Version 1.0
Compiler : Systems Designers XD Ada 1.0 VAX/VMS -> MC68020
Target : Motorola MVME133 (12.5 MHz MC68020 & 12.5 MHz MC68881)

Characteristics of best test for this experiment:
(no missed/skipped deadlines)

Test 23 of Experiment 2

Raw (non-tasking) benchmark speed in KWIPS: 1122.10

Full task set:

Total Deadlines Task Set Total
Tasks Per Second Utilization KWIPS

5 198.40 91.26 % 1024.00

Highest-frequency task:

Period Deadlines Task Task
(msec) Per Second Utilization KWIPS
9.766 102.40 18.25 % 204.80

Experiment step size: 2.85 %

==

END OF HARTSTONE BENCHMARK SUMMARY RESULTS

36 CMU/SEI-90-UG-1

A.4. Experiment 3: Summary of Results

HARTSTONE BENCHMARK SUMMARY RESULTS

Baseline test:

==

Experiment: EXPERIMENT_3
Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 1121.88

Test 1 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload
No. (Hertz) per period per second Utilization
1 2.00 32 64.00 5.70 %
2 4.00 16 64.00 5.70 %
3 8.00 8 64.00 5.70 %
4 16.00 4 64.00 5.70 %
5 32.00 2 64.00 5.70 %

------- --------
320.00 28.52 %

Experiment step size: 5.53 %

--

Test 1 results:

Test duration (seconds): 10.0

Task Period Met Missed Skipped Average
No. in msecs Deadlines Deadlines Deadlines Late (msec)
1 500.000 20 0 0 0.000
2 250.000 40 0 0 0.000
3 125.000 80 0 0 0.000
4 62.500 160 0 0 0.000
5 31.250 320 0 0 0.000

==

CMU/SEI-90-UG-1 37

Last test with no missed/skipped deadlines:

==

Experiment: EXPERIMENT_3
Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 1121.88

Test 13 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload
No. (Hertz) per period per second Utilization
1 2.00 44 88.00 7.84 %
2 4.00 28 112.00 9.98 %
3 8.00 20 160.00 14.26 %
4 16.00 16 256.00 22.82 %
5 32.00 14 448.00 39.93 %

------- --------
1064.00 94.84 %

Experiment step size: 5.53 %

--

Test 13 results:

Test duration (seconds): 10.0

Task Period Met Missed Skipped Average
No. in msecs Deadlines Deadlines Deadlines Late (msec)
1 500.000 20 0 0 0.000
2 250.000 40 0 0 0.000
3 125.000 80 0 0 0.000
4 62.500 160 0 0 0.000
5 31.250 320 0 0 0.000

==

38 CMU/SEI-90-UG-1

Test when deadlines first missed/skipped:

==

Experiment: EXPERIMENT_3
Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 1121.88

Test 14 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload
No. (Hertz) per period per second Utilization
1 2.00 45 90.00 8.02 %
2 4.00 29 116.00 10.34 %
3 8.00 21 168.00 14.97 %
4 16.00 17 272.00 24.24 %
5 32.00 15 480.00 42.79 %

------- --------
1126.00 100.37 %

Experiment step size: 5.53 %

--

Test 14 results:

Test duration (seconds): 10.0

Task Period Met Missed Skipped Average
No. in msecs Deadlines Deadlines Deadlines Late (msec)
1 500.000 0 10 10 248.639
2 250.000 40 0 0 0.000
3 125.000 80 0 0 0.000
4 62.500 160 0 0 0.000
5 31.250 320 0 0 0.000

==

CMU/SEI-90-UG-1 39

Final test performed:
See preceding summary of test 14

==

Benchmark : Hartstone Benchmark, Version 1.0
Compiler : Systems Designers XD Ada 1.0 VAX/VMS -> MC68020
Target : Motorola MVME133 (12.5 MHz MC68020 & 12.5 MHz MC68881)

Characteristics of best test for this experiment:
(no missed/skipped deadlines)

Test 13 of Experiment 3

Raw (non-tasking) benchmark speed in KWIPS: 1121.88

Full task set:

Total Deadlines Task Set Total
Tasks Per Second Utilization KWIPS

5 62.00 94.84 % 1064.00

Highest-frequency task:

Period Deadlines Task Task
(msec) Per Second Utilization KWIPS
31.250 32.00 39.93 % 448.00

Experiment step size: 5.53 %

==

END OF HARTSTONE BENCHMARK SUMMARY RESULTS

40 CMU/SEI-90-UG-1

A.5. Experiment 4: Summary of Results

In the summaries that follow, the characteristics (frequencies, workloads, and utilizations) of the
extra tasks added to the baseline set are all identical; therefore, some have been edited out for
brevity. Similarly, some of the identical results produced by these extra tasks have also been
omitted. Such omissions are indicated by ellipses.

HARTSTONE BENCHMARK SUMMARY RESULTS

Baseline test:

==

Experiment: EXPERIMENT_4
Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 1122.11

Test 1 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload
No. (Hertz) per period per second Utilization
1 2.00 32 64.00 5.70 %
2 4.00 16 64.00 5.70 %
3 8.00 8 64.00 5.70 %
4 16.00 4 64.00 5.70 %
5 32.00 2 64.00 5.70 %

------- --------
320.00 28.52 %

Experiment step size: 5.70 %

--

Test 1 results:

Test duration (seconds): 10.0

Task Period Met Missed Skipped Average
No. in msecs Deadlines Deadlines Deadlines Late (msec)
1 500.000 20 0 0 0.000
2 250.000 40 0 0 0.000
3 125.000 80 0 0 0.000
4 62.500 160 0 0 0.000
5 31.250 320 0 0 0.000

==

CMU/SEI-90-UG-1 41

Last test with no missed/skipped deadlines:
==

Experiment: EXPERIMENT_4
Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 1122.11

Test 12 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload
No. (Hertz) per period per second Utilization
1 2.00 32 64.00 5.70 %
2 4.00 16 64.00 5.70 %
3 8.00 8 64.00 5.70 %
4 16.00 4 64.00 5.70 %
5 32.00 2 64.00 5.70 %
6 8.00 8 64.00 5.70 %
.
.
.

16 8.00 8 64.00 5.70 %
------- --------
1024.00 91.26 %

Experiment step size: 5.70 %

--

Test 12 results:

Test duration (seconds): 10.0

Task Period Met Missed Skipped Average
No. in msecs Deadlines Deadlines Deadlines Late (msec)
1 500.000 20 0 0 0.000
2 250.000 40 0 0 0.000
3 125.000 80 0 0 0.000
4 62.500 160 0 0 0.000
5 31.250 320 0 0 0.000
6 125.000 80 0 0 0.000
.
.
.

16 125.000 80 0 0 0.000

==

42 CMU/SEI-90-UG-1

Test when deadlines first missed/skipped:

==

Experiment: EXPERIMENT_4
Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 1122.11

Test 13 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload
No. (Hertz) per period per second Utilization
1 2.00 32 64.00 5.70 %
2 4.00 16 64.00 5.70 %
3 8.00 8 64.00 5.70 %
4 16.00 4 64.00 5.70 %
5 32.00 2 64.00 5.70 %
6 8.00 8 64.00 5.70 %
.
.
.

17 8.00 8 64.00 5.70 %
------- --------
1088.00 96.96 %

Experiment step size: 5.70 %

--

Test 13 results:

Test duration (seconds): 10.0

Task Period Met Missed Skipped Average
No. in msecs Deadlines Deadlines Deadlines Late (msec)
1 500.000 0 10 10 247.742
2 250.000 40 0 0 0.000
3 125.000 80 0 0 0.000
4 62.500 160 0 0 0.000
5 31.250 320 0 0 0.000
6 125.000 80 0 0 0.000
.
.
.

17 125.000 80 0 0 0.000

==

CMU/SEI-90-UG-1 43

Final test performed:

==

Experiment: EXPERIMENT_4
Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 1122.11

Test 14 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload
No. (Hertz) per period per second Utilization
1 2.00 32 64.00 5.70 %
2 4.00 16 64.00 5.70 %
3 8.00 8 64.00 5.70 %
4 16.00 4 64.00 5.70 %
5 32.00 2 64.00 5.70 %
6 8.00 8 64.00 5.70 %
.
.
.

18 8.00 8 64.00 5.70 %
------- --------
1152.00 102.66 %

Experiment step size: 5.70 %

--

Test 14 results:

Test duration (seconds): 10.0

Task Period Met Missed Skipped Average
No. in msecs Deadlines Deadlines Deadlines Late (msec)
1 500.000 0 4 16 2002.884
2 250.000 0 20 20 124.420
3 125.000 80 0 0 0.000
4 62.500 160 0 0 0.000
5 31.250 320 0 0 0.000
6 125.000 80 0 0 0.000
.
.
.

18 125.000 80 0 0 0.000

==

44 CMU/SEI-90-UG-1

==

Benchmark : Hartstone Benchmark, Version 1.0
Compiler : Systems Designers XD Ada 1.0 VAX/VMS -> MC68020
Target : Motorola MVME133 (12.5 MHz MC68020 & 12.5 MHz MC68881)

Characteristics of best test for this experiment:
(no missed/skipped deadlines)

Test 12 of Experiment 4

Raw (non-tasking) benchmark speed in KWIPS: 1122.11

Full task set:

Total Deadlines Task Set Total
Tasks Per Second Utilization KWIPS
16 150.00 91.26 % 1024.00

Highest-frequency task:

Period Deadlines Task Task
(msec) Per Second Utilization KWIPS
31.250 32.00 5.70 % 64.00

Experiment step size: 5.70 %

==

END OF HARTSTONE BENCHMARK SUMMARY RESULTS

CMU/SEI-90-UG-1 45

46 CMU/SEI-90-UG-1

Appendix B: Supporting PIWG Results

The following are the results of some ACM Performance Issues Working Group (PIWG)
benchmarks for XD Ada 1.0 on the Motorola MVME133 board. The tests come from the Decem-
ber 12, 1987 release of the benchmarks. All compilations had full optimization in effect and no
checks were suppressed.

B.1. Calendar.Clock Resolution

Test Name: A000090
Clock resolution measurement running
Test Description:
Determine clock resolution using second differences
of values returned by the function CPU_Time_Clock.

Number of sample values is 12000
Clock Resolution = 0.000122070312500 seconds.
Clock Resolution (average) = 0.000122070312500 seconds.
Clock Resolution (variance) = 0.000000000000000 seconds.

B.2. Delay Statement Resolution

The delay values shown are in seconds.

Y000001 Measure actual delay vs commanded delay
Commanded Actual CPU Iterations
0.0010 0.0013 0.0013 4096
0.0020 0.0023 0.0023 2048
0.0039 0.0042 0.0042 1024
0.0078 0.0081 0.0081 512
0.0156 0.0159 0.0159 256
0.0313 0.0314 0.0314 128
0.0625 0.0626 0.0626 64
0.1250 0.1252 0.1252 32
0.2500 0.2501 0.2501 16
0.5000 0.5000 0.5001 8
1.0000 1.0001 1.0001 4
2.0000 2.0002 2.0002 2
4.0000 4.0001 4.0002 2
8.0000 8.0001 8.0002 2

CMU/SEI-90-UG-1 47

B.3. Procedure Call Overhead

Test Name: P000005 Class Name: Procedure
CPU Time: 1.6 microseconds
Wall Time: 1.6 microseconds. Iteration Count: 1024
Test Description:
Procedure call and return time measurement
The procedure is in a separately compiled package
One parameter, in INTEGER

Test Name: P000006 Class Name: Procedure
CPU Time: 2.8 microseconds
Wall Time: 2.8 microseconds. Iteration Count: 1024
Test Description:
Procedure call and return time measurement
The procedure is in a separately compiled package
One parameter, out INTEGER

Test Name: P000007 Class Name: Procedure
CPU Time: 3.1 microseconds
Wall Time: 3.1 microseconds. Iteration Count: 1024
Test Description:
Procedure call and return time measurement
The procedure is in a separately compiled package
One parameter, in out INTEGER

48 CMU/SEI-90-UG-1

Appendix C: Obtaining Hartstone Source Code and
Information

Hartstone source code and supporting documentation can be obtained from the Real-Time Em-
bedded Systems Testbed (REST) Project at the Software Engineering Institute in a number of
different ways. Full details can be obtained by sending a request for information to the electronic
mail or postal address listed below.

Electronic mail requests should be sent to the following Internet address:

HARTSTONE-INFO@SEI.CMU.EDU

Electronic mail received at this address will automatically return to the sender instructions on all
available distribution mechanisms.

For people who do not have Internet access, the address to send information requests to is:

REST Transition Services
Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213-3890
Phone: (412) 268-7700

CMU/SEI-90-UG-1 49

50 CMU/SEI-90-UG-1

Appendix D: Hartstone Ada Code for PH Series

The code in this appendix is listed in the order shown below.

Main procedure: Hartstone

Package spec: Experiment
Package body: Experiment

Package spec: Periodic_Tasks
Package body: Periodic_Tasks

Package spec: Workload
Package body: Workload

The actual compilation order is

Package spec: Workload
Package body: Workload

Package spec: Periodic_Tasks
Package body: Periodic_Tasks

Package spec: Experiment
Package body: Experiment

Main procedure: Hartstone

CMU/SEI-90-UG-1 51

.

52 CMU/SEI-90-UG-1

.

CMU/SEI-90-UG-1 53

.

54 CMU/SEI-90-UG-1

.

CMU/SEI-90-UG-1 55

.

56 CMU/SEI-90-UG-1

.

CMU/SEI-90-UG-1 57

.

58 CMU/SEI-90-UG-1

.

CMU/SEI-90-UG-1 59

.

60 CMU/SEI-90-UG-1

.

CMU/SEI-90-UG-1 61

.

62 CMU/SEI-90-UG-1

.

CMU/SEI-90-UG-1 63

.

64 CMU/SEI-90-UG-1

.

CMU/SEI-90-UG-1 65

.

66 CMU/SEI-90-UG-1

.

CMU/SEI-90-UG-1 67

.

68 CMU/SEI-90-UG-1

.

CMU/SEI-90-UG-1 69

.

70 CMU/SEI-90-UG-1

.

CMU/SEI-90-UG-1 71

.

72 CMU/SEI-90-UG-1

.

CMU/SEI-90-UG-1 73

.

74 CMU/SEI-90-UG-1

.

CMU/SEI-90-UG-1 75

.

76 CMU/SEI-90-UG-1

.

CMU/SEI-90-UG-1 77

.

78 CMU/SEI-90-UG-1

.

CMU/SEI-90-UG-1 79

.

80 CMU/SEI-90-UG-1

.

CMU/SEI-90-UG-1 81

.

82 CMU/SEI-90-UG-1

.

CMU/SEI-90-UG-1 83

.

84 CMU/SEI-90-UG-1

.

CMU/SEI-90-UG-1 85

.

86 CMU/SEI-90-UG-1

.

CMU/SEI-90-UG-1 87

.

88 CMU/SEI-90-UG-1

.

CMU/SEI-90-UG-1 89

.

90 CMU/SEI-90-UG-1

.

CMU/SEI-90-UG-1 91

92 CMU/SEI-90-UG-1

Table of Contents

1. Introduction 1

2. Periodic Harmonic Test Series 3
2.1. Periodic Tasks 3
2.2. Hartstone Experiments 4
2.3. Overall Benchmark Structure and Behavior 6

3. Hartstone Portability 9

4. Running Hartstone Experiments 11

5. Understanding Hartstone Results 13
5.1. Format of Results 13
5.2. The Baseline Test 14
5.3. What the Results Mean 15
5.4. Factors Affecting Hartstone Performance 17
5.5. Unexpected Results 19

6. Future Work 23

Bibliography 25

Appendix A. Sample Results for XD Ada VAX/VMS -> MC68020 27
A.1. Host-Target Configuration 27
A.2. Experiment 1: Summary of Results 28
A.3. Experiment 2: Summary of Results 33
A.4. Experiment 3: Summary of Results 37
A.5. Experiment 4: Summary of Results 41

Appendix B. Supporting PIWG Results 47
B.1. Calendar.Clock Resolution 47
B.2. Delay Statement Resolution 47
B.3. Procedure Call Overhead 48

Appendix C. Obtaining Hartstone Source Code and Information 49

Appendix D. Hartstone Ada Code for PH Series 51

CMU/SEI-90-UG-1 i

ii CMU/SEI-90-UG-1

List of Figures

Figure 2-1: Hartstone Dependency Diagram 7

CMU/SEI-90-UG-1 iii

