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- — ZeekData22

Non-Malicious Traffic 9,281,599

Malicious Traffic 9,280,869
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Tactics

» Reconnaissance tactic

 Carried out with the goal of gathering information, to
plan future attacks

« 9,278,722 instances

 Discovery tactic
» Used to learn specifics of network infrastructure
« 2086 instances
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>>> df_conn.printSchema()
root

| -- resp _pkts: integer (nullable = true)

| -- mitre_attack: string (nullable = true)
- service: string (nullable = true)
- orig _ip bytes: integer (nullable = true)
- local resp: boolean (nullable = true)
- missed bytes: integer (nullable = true)
- proto: string (nullable = true)
- duration: double (nullable = true)
- conn_state: string (nullable = true)
- dest_ip_zeek: string (nullable = true)
- orig pkts: integer (nullable = true)
- community id: string (nullable = true)
- resp_ip bytes: integer (nullable = true)
- dest_port_zeek: integer (nullable = true)
- orig bytes: integer (nullable = true)
- local orig: boolean (nullable true)
- datetime: timestamp (nullable true)
- history: string (nullable = true)
- resp_bytes: integer (nullable = true)
- uid: string (nullable = true)
- src_port_zeek: integer (nullable = true)
- ts: double (nullable = true)
- src_ip zeek: string (nullable = true)
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Experimentation...

Raw Network
Data

Attribute

reduction by
Information Gain

6 attributes

Preprocessing

Continuous

9 attributes

IP r
addresses 12 attributes

il
i

Port numbers 18 attributes

Binary classification
Data frames

To%
Benign

Reconnaissance tactic

Tok
Benign

Discovery tactic

Test/train split on dataset

30%
Test

ML algorithms

[ Malve Bayes ]

[ Loglistic Regression |

[ Random Forest ]
[ Gradient Boosted

Decision Tree

[ Decision Tree ]

l Support Vector l
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« Zeek Conn logs contain: continuous
valued attributes, nominal attributes, IP
addresses and port numbers.

e Continuous Attributes

 The trimmed mean and standard
deviation was calculated for each
column

» To address the skewness caused by
lengthy and low-lying tails, a 10% trim
on the data was used to generate the
bins
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The commonly recognized
network classifications of A,
B, C, D, and E were used,
each of which pertain to
specific ranges of the first
octet in the IP address

J

Port Numbers were binned
based on IANA rules
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» Used to assess the relevance of the 18 features in the Zeek Conn Logs

| Atributeno. | attribute | __info_gain
_ history 0.827
“ protocol 0.77
“ service 0.726
“ orig_bytes 0.724
05 dest_ip 0.674
— orig_pkts 0.655
orig_ip_bytes 0.572
“ local_resp 0.524
— dest_port 0.486
10 duration 0.386
“ conn_state 0.166
“ resp_pkts 0.085
“ resp_ip_bytes 0.065
“ src_port 0.008
“ resp_bytes 0.008
sre_ip 0.007
local_orig 0.002
“ missed_bytes 0
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Computing
Environment

University of West Florida’s
Hadoop cluster was used

» Cluster has 6 worker nodes.
* Spark 3.2.1 and Hadoop 3.3.1.



A\ UNIVERSITY of

[ Ny
:::.9 WEST FLORIDA

Determining Spark’s
Optimum
Parameters
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Testing Spark’s Configuration Parameters

Configuration _|spark Property

Driver Cores spark.driver.cores

Driver Memory

spark.driver.memory

3l e spark.executor.cores

Executor
spark.executor.memory
Memory

spark.executor.instances
spark.dynamicAllocation.

Executor minExecutors

Instances
spark.dynamicAllocation.
maxExecutors

Shuffle spark.sql.shuffle.partition
Partitions S

Number of cores used for the driver process,
only in cluster mode.

Amount of memory used for the driver
process, i.e. where SparkContext is initialized.

Number of cores used on each executor.

Amount of memory used per executor
process.

Initial number of executors to run if dynamic
allocation is enabled, with upper and lower
bounds for the number of executors
established.

Default number of partitions used when
shuffling data for joins or aggregations.
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» Executor memory -- amount of memory (in
GBs) assigned to each executor. There does
not appear to be a strong correlation between
the total executor memory and processing
time

Exec Total Memory (GB) and Process Time (seconds)
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Cores

* Increasing the number of cores available
from 10 to 50 had a significant impact on
performance, with diminishing returns
apparent after a total core count of 100.

Exec Total Core Count and Process Time (seconds)
400

300
O

O .
200
o 0 0 .

25 50 75 100 125 150 175

Process Time (seconds)

100

Total Executor Cores
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Executor Count and Shuffle partitions

* 6 and 12 executors show that using
fewer shuffle partitions improves
performance

25 -

Total. Time. seconds._
350
250

200

Exacutor Count

5—(: 6
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Config Setting

Driver Cores 2
Driver Memory 10g
Executor Instances 6
Executor Cores 6
Executor Memory 6

Shuffle Partitions 6
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Resources Total Allocation

Driver Cores 2
Driver Memory 10g

Executor Total Cores 96

Executor Total 120g
Memory
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for all Algorithms
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S9 s Machine Learning Algorithms

 Binary Classification
* Decision Tree
» Gradient Boosting Tree
 Random Forest
* Nalve Bayes
* Logistic Regression
*« SVM
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6,9, 12 and 18 features are
compared

. _ For the two Tactics,
Experimentation , ,
> Reconnaissance and Discovery

Using Spark’s optimum
Parameters
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Machine Learning  Parameters used
Algorithm

Logistic Regression featuresCol: str = 'features’, labelCol: str = 'label’, predictionCol: str = 'prediction’, maxlter: int
= 10, regParam: float = 0.3, elasticNetParam: float = 0.8, tol: float = 1e-06, fitIntercept: bool =
True, threshold: float = 0.5, thresholds: Optional[List[float]] = None, probabilityCol: str =
'‘probability’, rawPredictionCol: str = ‘'rawPrediction’, standardization: bool = True, weightCol:
Optional[str] = None, aggregationDepth: int = 2, family: str = 'auto’,
lowerBoundsOnCoefficients: Optional[pyspark.ml.linalg.Matrix] = None,
upperBoundsOnCoefficients: Optional[pyspark.ml.linalg.Matrix] = None,
lowerBoundsOnlintercepts: Optional[pyspark.ml.linalg.Vector] = None,
upperBoundsOnlintercepts: Optional[pyspark.ml.linalg.Vector] = None, maxBlockSizeInMB:
float = 0.0

Naive Bayes featuresCol: str = 'features’, labelCol: str = 'label’, predictionCol: str = 'prediction’,
probabilityCol: str = 'probability’, rawPredictionCol: str = 'rawPrediction', smoothing: float =
1.0, modelType: str = 'multinomial’, thresholds: Optional[List[float]] = None, weightCol:
Optional[str] = None

Random Forest featuresCol: str = 'features’, labelCol: str = 'label’, predictionCol: str = 'prediction’,
probabilityCol: str = 'probability’, rawPredictionCol: str = 'rawPrediction’, maxDepth: int =5,
maxBins: int = 32, mininstancesPerNode: int = 1, minIinfoGain: float = 0.0, maxMemorylnMB:
int = 256, cacheNodelds: bool = False, checkpointinterval: int = 10, impurity: str = 'gini’,
numTrees: int = 20, featureSubsetStrategy: str = 'auto’, seed: Optional[int] = None,
subsamplingRate: float = 1.0, leafCol: str =", minWeightFractionPerNode: float = 0.0,
weightCol: Optional[str] = None, bootstrap: Optional[bool] = True


https://spark.apache.org/docs/latest/api/python/reference/api/pyspark.ml.linalg.Matrix.html#pyspark.ml.linalg.Matrix
https://spark.apache.org/docs/latest/api/python/reference/api/pyspark.ml.linalg.Matrix.html#pyspark.ml.linalg.Matrix
https://spark.apache.org/docs/latest/api/python/reference/api/pyspark.ml.linalg.Vector.html#pyspark.ml.linalg.Vector
https://spark.apache.org/docs/latest/api/python/reference/api/pyspark.ml.linalg.Vector.html#pyspark.ml.linalg.Vector
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Machine Learning  Parameters used
Algorithm

Gradient Boosted featuresCol: str = 'features’, labelCol: str = 'label’, predictionCol: str = 'prediction’', maxDepth: int

Decision Tree =5, maxBins: int = 32, minInstancesPerNode: int = 1, minInfoGain: float = 0.0,
maxMemorylnMB: int = 256, cacheNodelds: bool = False, checkpointinterval: int = 10, lossType:
str = 'logistic', maxlter: int = 20, stepSize: float = 0.1, seed: Optional[int] = None,
subsamplingRate: float = 1.0, impurity: str = 'variance', featureSubsetStrategy: str = ‘all’,
validationTol: float = 0.01, validationIndicatorCol: Optional[str] = None, leafCol: str =",
minWeightFractionPerNode: float = 0.0, weightCol: Optional[str] = None

Decision Tree featuresCol: str = 'features’, labelCol: str = "label_bin", predictionCol: str = 'prediction’,
probabilityCol: str = 'probability’, rawPredictionCol: str = 'rawPrediction’, maxDepth: int = 30,
maxBins: int = 100, mininstancesPerNode: int =1, minInfoGain: float = 0.0, maxMemorylnMB:
int = 256, cacheNodelds: bool = False, checkpointinterval: int = 10, impurity: str = 'gini', seed:
Optional[int] = None, weightCol: Optional[str] = None, leafCol: str =",
minWeightFractionPerNode: float = 0.0

SVMM featuresCol: str = 'features’, labelCol: str = 'label_bin', predictionCol: str = 'prediction’, maxiter:
int = 100, regParam: float = 0.0, tol: float = 1e-06, rawPredictionCol: str = 'rawPrediction’,
fitintercept: bool = True, standardization: bool = True, threshold: float = 0.0, weightCol:
Optional[str] = None, aggregationDepth: int = 2, maxBlockSizeInMB: float = 0.0
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« DT, GBT and RF had the highest averages for all
sets of attributes. NB had the lowest accuracy, and
LR was only slightly higher than NB.

Reconnaisance -- Accuracy

1.000

0.975

Accuracy

0.925

0.900

Algorithm, number of features used
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Algorithms by Number of Features

« GBT and RF had the highest recall, followed by
DT. NB, SVM and LR.

Reconnaissance -- Recall

1.000
0.975

0.950

0.944
0.944
0.942
0.942
0.942
0.000

Recall

0.925
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DT had the lowest FPRs, and SVM and GBT
seemed to have the second lowest FPRs. NB
had the highest FPR rates

Reconnaissance -- False Positive Rates

0.040

FPR

Algorithm, number of features used
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* RF had the lowest training time, followed by

DT, for all attribute combinations. GBT had the
highest training times.

Reconnaissance -- Training time
100.000

75.000
50.000

25.000

Training time

0.000
& &

Algorithm, number of features used
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The
Discovery
Tactic
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by Number of Features

« DT, GBT and RF had higher accuracy for all sets

of attributes than the other three algorithms,
SVM, NB and LR.

Discovery -- Accuracy
1.000

0.975

0.950

Accuracy

0.925

0.900

Algorithm, number of features used
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by Number of Features

« GBT, NB and LR had higher recall for all sets
of attributes, and DT was close behind. SVM
performed poorly in terms of recall.

Discovery -- Recall
1.000

0.975

Recall

Algorithm, number of features used
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Number of Features

DT, GBT and RF all had lower FPRs for all
combination of attributes, though DT
appeared to perform the best.

Discovery -- False Positive Rate

0.100
0.075

0.050

FPR

0.025

0.000

Algorithm, number of features used
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Algorithms by Number of Features

* DT, NB, and LR had low training times. SVM
and GBT had higher training times

Discovery -- Training time

40.000

30.000

Training time

Algorithm, number of features used
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Spark

» More total cores for spark application makes ML
algorithms run faster, but there are diminishing returns
after a certain point

 Classifiers run fastest when the number of shuffle
partitions is the same as the total number of executors

* There was no significant correlation between runtimes
and the total amount of memory allocated (though
allocating too little memory can cause executors to
crash).
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* Tree-based methods (DT, GBT, RF) performed better on
most metrics than the other three algorithms in classifying
this dataset, for both the Renaissance and Discovery
tactics.

* These three algorithms all showed 99%+ accuracy for both attack tactics,
with similarly higher scores in precision, recall, f-measure, and AUROC.

 GBT and RF performed a little better than DT in terms of recall for both the
tactics but in terms of the FPR

« DT had the lowest FPRs for both Reconnaissance and Discovery
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 Training times -- RF performed the best for
Reconnaissance, followed by DT; for Discovery, DT
performed the best.

« Best number of features -- the top 6 features from
information gain -- history, protocol, service,
orig_bytes, dest_ip, orig_pkts
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