
Performance of Machine Learning
Algorithms on UWF-ZeekData22

Sikha Bagui, Dustin Mink & Subhash Bagui
University of West Florida, USA

Tactics in UWF-ZeekData22

Malicious vs. Non-malicious traffic in UWF-
ZeekData22

Non-Malicious Traffic 9,281,599

Malicious Traffic 9,280,869

Reconnaissance and Discovery
Tactics

• Reconnaissance tactic
• Carried out with the goal of gathering information, to

plan future attacks
• 9,278,722 instances

• Discovery tactic
• Used to learn specifics of network infrastructure
• 2086 instances

Features in Zeek Conn Log File

Experimentation…

Preprocessing

Preprocessing Using Binning
• Zeek Conn logs contain: continuous

valued attributes, nominal attributes, IP
addresses and port numbers.

• Continuous Attributes
• The trimmed mean and standard

deviation was calculated for each
column

• To address the skewness caused by
lengthy and low-lying tails, a 10% trim
on the data was used to generate the
bins

Binning IP Addresses and Port Numbers

The commonly recognized
network classifications of A,

B, C, D, and E were used,
each of which pertain to

specific ranges of the first
octet in the IP address

Port Numbers were binned
based on IANA rules

Information Gain
• Used to assess the relevance of the 18 features in the Zeek Conn Logs

Attribute no. attribute info_gain
1 history 0.827
2 protocol 0.77
3 service 0.726
4 orig_bytes 0.724
5 dest_ip 0.674
6 orig_pkts 0.655
7 orig_ip_bytes 0.572
8 local_resp 0.524
9 dest_port 0.486

10 duration 0.386
11 conn_state 0.166
12 resp_pkts 0.085
13 resp_ip_bytes 0.065
14 src_port 0.008
15 resp_bytes 0.008
16 src_ip 0.007
17 local_orig 0.002
18 missed_bytes 0

Computing
Environment

University of West Florida’s
Hadoop cluster was used
• Cluster has 6 worker nodes.
• Spark 3.2.1 and Hadoop 3.3.1.

Determining Spark’s
Optimum

Parameters

Testing Spark’s Configuration Parameters
Configuration Spark Property Description

Driver Cores spark.driver.cores
Number of cores used for the driver process,
only in cluster mode.

Driver Memory spark.driver.memory
Amount of memory used for the driver
process, i.e. where SparkContext is initialized.

Executor Cores spark.executor.cores Number of cores used on each executor.

Executor
Memory

spark.executor.memory
Amount of memory used per executor
process.

Executor
Instances

spark.executor.instances
spark.dynamicAllocation.
minExecutors

Initial number of executors to run if dynamic
allocation is enabled, with upper and lower
bounds for the number of executors
established.spark.dynamicAllocation.

maxExecutors

Shuffle
Partitions

spark.sql.shuffle.partition
s

Default number of partitions used when
shuffling data for joins or aggregations.

Performance Results with various
Spark Executor Parameters

Process Times vs Memory Per Executor
• Executor memory -- amount of memory (in

GBs) assigned to each executor. There does
not appear to be a strong correlation between
the total executor memory and processing
time

Process Times vs Number of Executor
Cores

• Increasing the number of cores available
from 10 to 50 had a significant impact on
performance, with diminishing returns
apparent after a total core count of 100.

Processing Times as a Function of
Executor Count and Shuffle partitions

• 6 and 12 executors show that using
fewer shuffle partitions improves
performance

Spark’s best Config Settings

Config Setting Value

Driver Cores 2

Driver Memory 10g

Executor Instances 6

Executor Cores 6

Executor Memory 6

Shuffle Partitions 6

Spark’s Resources and Total Allocations

Resources Total Allocation

Driver Cores 2

Driver Memory 10g

Executor Total Cores 96

Executor Total
Memory

120g

Number of Attributes vs Training Times
for all Algorithms

Machine Learning Algorithms

• Binary Classification
• Decision Tree
• Gradient Boosting Tree
• Random Forest
• Naïve Bayes
• Logistic Regression
• SVM

Experimentation
>

6, 9, 12 and 18 features are
compared

For the two Tactics,
Reconnaissance and Discovery

Using Spark’s optimum
Parameters

Spark’s Parameters Used
Machine Learning
Algorithm

Parameters used

Logistic Regression featuresCol: str = 'features', labelCol: str = 'label', predictionCol: str = 'prediction', maxIter: int
= 10, regParam: float = 0.3, elasticNetParam: float = 0.8, tol: float = 1e-06, fitIntercept: bool =
True, threshold: float = 0.5, thresholds: Optional[List[float]] = None, probabilityCol: str =
'probability', rawPredictionCol: str = 'rawPrediction', standardization: bool = True, weightCol:
Optional[str] = None, aggregationDepth: int = 2, family: str = 'auto',
lowerBoundsOnCoefficients: Optional[pyspark.ml.linalg.Matrix] = None,
upperBoundsOnCoefficients: Optional[pyspark.ml.linalg.Matrix] = None,
lowerBoundsOnIntercepts: Optional[pyspark.ml.linalg.Vector] = None,
upperBoundsOnIntercepts: Optional[pyspark.ml.linalg.Vector] = None, maxBlockSizeInMB:
float = 0.0

Naive Bayes featuresCol: str = 'features', labelCol: str = 'label', predictionCol: str = 'prediction',
probabilityCol: str = 'probability', rawPredictionCol: str = 'rawPrediction', smoothing: float =
1.0, modelType: str = 'multinomial', thresholds: Optional[List[float]] = None, weightCol:
Optional[str] = None

Random Forest featuresCol: str = 'features', labelCol: str = 'label', predictionCol: str = 'prediction',
probabilityCol: str = 'probability', rawPredictionCol: str = 'rawPrediction', maxDepth: int = 5,
maxBins: int = 32, minInstancesPerNode: int = 1, minInfoGain: float = 0.0, maxMemoryInMB:
int = 256, cacheNodeIds: bool = False, checkpointInterval: int = 10, impurity: str = 'gini',
numTrees: int = 20, featureSubsetStrategy: str = 'auto', seed: Optional[int] = None,
subsamplingRate: float = 1.0, leafCol: str = '', minWeightFractionPerNode: float = 0.0,
weightCol: Optional[str] = None, bootstrap: Optional[bool] = True

https://spark.apache.org/docs/latest/api/python/reference/api/pyspark.ml.linalg.Matrix.html#pyspark.ml.linalg.Matrix
https://spark.apache.org/docs/latest/api/python/reference/api/pyspark.ml.linalg.Matrix.html#pyspark.ml.linalg.Matrix
https://spark.apache.org/docs/latest/api/python/reference/api/pyspark.ml.linalg.Vector.html#pyspark.ml.linalg.Vector
https://spark.apache.org/docs/latest/api/python/reference/api/pyspark.ml.linalg.Vector.html#pyspark.ml.linalg.Vector

Spark’s Parameters Used
Machine Learning
Algorithm

Parameters used

Gradient Boosted
Decision Tree

featuresCol: str = 'features', labelCol: str = 'label', predictionCol: str = 'prediction', maxDepth: int
= 5, maxBins: int = 32, minInstancesPerNode: int = 1, minInfoGain: float = 0.0,
maxMemoryInMB: int = 256, cacheNodeIds: bool = False, checkpointInterval: int = 10, lossType:
str = 'logistic', maxIter: int = 20, stepSize: float = 0.1, seed: Optional[int] = None,
subsamplingRate: float = 1.0, impurity: str = 'variance', featureSubsetStrategy: str = 'all',
validationTol: float = 0.01, validationIndicatorCol: Optional[str] = None, leafCol: str = '',
minWeightFractionPerNode: float = 0.0, weightCol: Optional[str] = None

Decision Tree featuresCol: str = 'features', labelCol: str = "label_bin", predictionCol: str = 'prediction',
probabilityCol: str = 'probability', rawPredictionCol: str = 'rawPrediction', maxDepth: int = 30,
maxBins: int = 100, minInstancesPerNode: int = 1, minInfoGain: float = 0.0, maxMemoryInMB:
int = 256, cacheNodeIds: bool = False, checkpointInterval: int = 10, impurity: str = 'gini', seed:
Optional[int] = None, weightCol: Optional[str] = None, leafCol: str = '',
minWeightFractionPerNode: float = 0.0

SVM featuresCol: str = 'features', labelCol: str = 'label_bin', predictionCol: str = 'prediction', maxIter:
int = 100, regParam: float = 0.0, tol: float = 1e-06, rawPredictionCol: str = 'rawPrediction',
fitIntercept: bool = True, standardization: bool = True, threshold: float = 0.0, weightCol:
Optional[str] = None, aggregationDepth: int = 2, maxBlockSizeInMB: float = 0.0

The
Reconnaissance

Tactic

Reconnaissance: Accuracy - by
Algorithms by Number of Features

• DT, GBT and RF had the highest averages for all
sets of attributes. NB had the lowest accuracy, and
LR was only slightly higher than NB.

Reconnaissance: Recall by
Algorithms by Number of Features

• GBT and RF had the highest recall, followed by
DT. NB, SVM and LR.

Reconnaissance: FPR by Algorithms
by Number of Features

• DT had the lowest FPRs, and SVM and GBT
seemed to have the second lowest FPRs. NB
had the highest FPR rates

Reconnaissance: Training Time by
Algorithms by Number of Features Used

• RF had the lowest training time, followed by
DT, for all attribute combinations. GBT had the
highest training times.

The
Discovery

Tactic

Discovery: Accuracy by Algorithms
by Number of Features

• DT, GBT and RF had higher accuracy for all sets
of attributes than the other three algorithms,
SVM, NB and LR.

Discovery: Recall by Algorithms
by Number of Features

• GBT, NB and LR had higher recall for all sets
of attributes, and DT was close behind. SVM
performed poorly in terms of recall.

Discovery: FPR by Algorithms by
Number of Features

• DT, GBT and RF all had lower FPRs for all
combination of attributes, though DT
appeared to perform the best.

Discovery: Training Time by
Algorithms by Number of Features

• DT, NB, and LR had low training times. SVM
and GBT had higher training times

Conclusions

Optimizing Classifier Performance on
Spark

• More total cores for spark application makes ML
algorithms run faster, but there are diminishing returns
after a certain point

• Classifiers run fastest when the number of shuffle
partitions is the same as the total number of executors

• There was no significant correlation between runtimes
and the total amount of memory allocated (though
allocating too little memory can cause executors to
crash).

Machine Learning Results
• Tree-based methods (DT, GBT, RF) performed better on

most metrics than the other three algorithms in classifying
this dataset, for both the Renaissance and Discovery
tactics.

• These three algorithms all showed 99%+ accuracy for both attack tactics,
with similarly higher scores in precision, recall, f-measure, and AUROC.

• GBT and RF performed a little better than DT in terms of recall for both the
tactics but in terms of the FPR

• DT had the lowest FPRs for both Reconnaissance and Discovery

Machine Learning Results Cont’.

• Training times -- RF performed the best for
Reconnaissance, followed by DT; for Discovery, DT
performed the best.

• Best number of features -- the top 6 features from
information gain -- history, protocol, service,
orig_bytes, dest_ip, orig_pkts

References
• Huong, T. T., Bac, T. P., Long, D. M., Thang, B. D., Binh, N. T., Luong, T. D., & Phuc, T. K. (2021). LocKedge: Low-

Complexity Cyberattack Detection in IoT Edge Computing. IEEE Access, 9, 29696–29710.
https://doi.org/10.1109/access.2021.3058528

• Zeek: About. (2020). The Zeek Project. https://zeek.org/about/ (accessed February 2022)

• University of West Florida (2022) https://datasets.uwf.edu/

• What Is the MITRE ATT&CK Framework? | Get the 101 Guide. (2022). Trellix. https://www.trellix.com/en-us/security-
awareness/cybersecurity/what-is-mitre-attack-framework.html (accessed February 2022)

• MITRE ATT&CK (2022) Reconnaissance, Tactic TA0043 - Enterprise | MITRE ATT&CK®.
https://attack.mitre.org/tactics/TA0043/ (accessed February 2022)

• MITRE ATT&CK (2022) Discovery, Tactic TA0007 - Enterprise | MITRE ATT&CK®.
https://attack.mitre.org/tactics/TA0007/ (accessed February 2022)

• The Zeek Project. (2022). base/protocols/conn/main.zeek — Book of Zeek (v5.0.0). Zeek.
https://docs.zeek.org/en/v5.0.0/scripts/base/protocols/conn/main.zeek.html (accessed February 2022)

• Kala Karun, A., & Chitharanjan, K. (2013). A review on hadoop; HDFS infrastructure extensions. 2013 IEEE
Conference on Information and Communication Technologies. https://doi.org/10.1109/cict.2013.6558077

• Belouch, M., el Hadaj, S., & Idhammad, M. (2018). Performance evaluation of intrusion detection based on machine
learning using Apache Spark. Procedia Computer Science, 127, 1–6. https://doi.org/10.1016/j.procs.2018.01.091

• Gupta, G. P., & Kulariya, M. (2016). A Framework for Fast and Efficient Cyber Security Network Intrusion Detection
Using Apache Spark. Procedia Computer Science, 93, 824–831. https://doi.org/10.1016/j.procs.2016.07.238

https://doi.org/10.1109/access.2021.3058528
https://zeek.org/about/
https://datasets.uwf.edu/
https://www.trellix.com/en-us/security-awareness/cybersecurity/what-is-mitre-attack-framework.html
https://attack.mitre.org/tactics/TA0043/
https://attack.mitre.org/tactics/TA0007/
https://docs.zeek.org/en/v5.0.0/scripts/base/protocols/conn/main.zeek.html
https://doi.org/10.1109/cict.2013.6558077
https://doi.org/10.1016/j.procs.2018.01.091

References
• Morfino, V., & Rampone, S. (2020). Towards Near-Real-Time Intrusion Detection for IoT Devices using Supervised Learning

and Apache Spark. Electronics, 9(3), 444. https://doi.org/10.3390/electronics9030444

• Malik, A.J., Khan, F.A. A (2018) hybrid technique using binary particle swarm optimization and decision tree pruning for
network intrusion detection. Cluster Computing 21, 667–680. https://doi.org/10.1007/s10586-017-0971-8

• Kevric, J., Jukic, S. & Subasi, A. (2017) An effective combining classifier approach using tree algorithms for network intrusion
detection. Neural Computing & Applications 28, 1051–1058. https://doi.org/10.1007/s00521-016-2418-1

• Zhang, J., Sun, J. & He, H. (2021) Clustering Detection Method of Network Intrusion Feature Based on Support Vector
Machine and LCA Block Algorithm. Wireless Personal Communications. https://doi.org/10.1007/s11277-021-08353-y

• Du, R., Li, Y., Liang, X. et al. (2022) Support Vector Machine Intrusion Detection Scheme Based on Cloud-Fog Collaboration.
Mobile Networks and Applications. https://doi.org/10.1007/s11036-021-01838-x

• Leevy, J. L., Hancock, J., Zuech, R., & Khoshgoftaar, T. M. (2021). Detecting cybersecurity attacks across different network
features and learners. Journal of Big Data, 8(1). https://doi.org/10.1186/s40537-021-00426-w

• Sharafaldin, I., Habibi Lashkari, A., & Ghorbani, A. A. (2018). Toward Generating a New Intrusion Detection Dataset and
Intrusion Traffic Characterization. Proceedings of the 4th International Conference on Information Systems Security and
Privacy. https://doi.org/10.5220/0006639801080116

• Microsoft. (2012, July 18). Address Classes. Microsoft Docs. https://docs.microsoft.com/en-us/previous-versions/windows/it-
pro/windows-2000-server/cc940018(v=technet.10)?redirectedfrom=MSDN (accessed April 2022)

• Bagui, S., Simonds, J., Plenkers, R., Bennett, T. A., & Bagui, S. (2021). Classifying UNSW-NB15 network traffic in the Big Data
Framework using random forest in Spark. International Journal of Big Data Intelligence and Applications, 2(1), 39–61.
https://doi.org/10.4018/ijbdia.287617

• Rostami, S., Kleszcz, A., Dimanov, D., & Katos, V. (2020). A machine learning approach to dataset imputation for software
vulnerabilities. Communications in Computer and Information Science, 25–36. https://doi.org/10.1007/978-3-030-59000-0_3

https://doi.org/10.5220/0006639801080116
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-2000-server/cc940018(v=technet.10)?redirectedfrom=MSDN
https://doi.org/10.4018/ijbdia.287617
https://doi.org/10.1007/978-3-030-59000-0_3

• The research was supported by 2021 NCAE-C-
002: Cyber Research Innovation Grant
Program, Grant Number: H98230-21-1-0170

Acknowledgements

Thank you!

Questions ?
Data Available at: datasets.uwf.edu

	Performance of Machine Learning Algorithms on UWF-ZeekData22
	Tactics in UWF-ZeekData22
	Malicious vs. Non-malicious traffic in UWF-ZeekData22
	Reconnaissance and Discovery Tactics
	Features in Zeek Conn Log File
	Experimentation…
	Preprocessing
	Preprocessing Using Binning
	Binning IP Addresses and Port Numbers
	Information Gain
	Computing Environment
	Determining Spark’s �Optimum Parameters
	Testing Spark’s Configuration Parameters
	Performance Results with various Spark Executor Parameters
	Process Times vs Memory Per Executor
	Process Times vs Number of Executor Cores
	Processing Times as a Function of Executor Count and Shuffle partitions
	Spark’s best Config Settings
	Spark’s Resources and Total Allocations
	Number of Attributes vs Training Times for all Algorithms
	Machine Learning Algorithms
	Experimentation>
	Spark’s Parameters Used
	Spark’s Parameters Used
	The Reconnaissance Tactic
	Reconnaissance: Accuracy - by Algorithms by Number of Features
	Reconnaissance: Recall by Algorithms by Number of Features
	Reconnaissance: FPR by Algorithms by Number of Features
	Reconnaissance: Training Time by Algorithms by Number of Features Used
	The �Discovery Tactic
	Discovery: Accuracy by Algorithms by Number of Features
	Discovery: Recall by Algorithms by Number of Features
	Discovery: FPR by Algorithms by Number of Features
	Discovery: Training Time by Algorithms by Number of Features
	Conclusions
	Optimizing Classifier Performance on Spark
	Machine Learning Results
	Machine Learning Results Cont’.
	References
	References
	Acknowledgements
	Thank you!
	Questions ?

