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Tactics in UWF-ZeekData22



Malicious vs. Non-malicious traffic in UWF-
ZeekData22

Non-Malicious Traffic 9,281,599

Malicious Traffic 9,280,869



Reconnaissance and Discovery 
Tactics

• Reconnaissance tactic 
• Carried out with the goal of gathering information, to 

plan future attacks 
• 9,278,722 instances

• Discovery tactic 
• Used to learn specifics of network infrastructure 
• 2086 instances



Features in Zeek Conn Log File



Experimentation…



Preprocessing



Preprocessing Using Binning
• Zeek Conn logs contain: continuous 

valued attributes, nominal attributes, IP 
addresses and port numbers. 

• Continuous Attributes
• The trimmed mean and standard 

deviation was calculated for each 
column

• To address the skewness caused by 
lengthy and low-lying tails, a 10% trim 
on the data was used to generate the 
bins



Binning IP Addresses and Port Numbers

The commonly recognized 
network classifications of A, 

B, C, D, and E were used, 
each of which pertain to 

specific ranges of the first 
octet in the IP address

Port Numbers were binned 
based on IANA rules



Information Gain
• Used to assess the relevance of the 18 features in the Zeek Conn Logs

Attribute no. attribute info_gain
1 history 0.827
2 protocol 0.77
3 service 0.726
4 orig_bytes 0.724
5 dest_ip 0.674
6 orig_pkts 0.655
7 orig_ip_bytes 0.572
8 local_resp 0.524
9 dest_port 0.486

10 duration 0.386
11 conn_state 0.166
12 resp_pkts 0.085
13 resp_ip_bytes 0.065
14 src_port 0.008
15 resp_bytes 0.008
16 src_ip 0.007
17 local_orig 0.002
18 missed_bytes 0



Computing 
Environment

University of West Florida’s 
Hadoop cluster was used
• Cluster has 6 worker nodes. 
• Spark 3.2.1 and Hadoop 3.3.1. 



Determining Spark’s 
Optimum 

Parameters



Testing Spark’s Configuration Parameters 
Configuration Spark Property Description

Driver Cores spark.driver.cores
Number of cores used for the driver process, 
only in cluster mode.

Driver Memory spark.driver.memory
Amount of memory used for the driver 
process, i.e. where SparkContext is initialized.

Executor Cores spark.executor.cores Number of cores used on each executor.

Executor 
Memory

spark.executor.memory
Amount of memory used per executor 
process.

Executor 
Instances

spark.executor.instances
spark.dynamicAllocation.
minExecutors

Initial number of executors to run if dynamic 
allocation is enabled, with upper and lower 
bounds for the number of executors 
established.spark.dynamicAllocation.

maxExecutors

Shuffle 
Partitions

spark.sql.shuffle.partition
s

Default number of partitions used when 
shuffling data for joins or aggregations.



Performance Results with various 
Spark Executor Parameters



Process Times vs Memory Per Executor 
• Executor memory -- amount of memory (in 

GBs) assigned to each executor. There does 
not appear to be a strong correlation between 
the total executor memory and processing 
time



Process Times vs Number of Executor 
Cores

• Increasing the number of cores available 
from 10 to 50 had a significant impact on 
performance, with diminishing returns 
apparent after a total core count of 100. 



Processing Times as a Function of 
Executor Count and Shuffle partitions

• 6 and 12 executors show that using 
fewer shuffle partitions improves 
performance



Spark’s best Config Settings 

Config Setting Value

Driver Cores 2

Driver Memory 10g

Executor Instances 6

Executor Cores 6

Executor Memory 6

Shuffle Partitions 6



Spark’s Resources and Total Allocations

Resources Total Allocation

Driver Cores 2

Driver Memory 10g

Executor Total Cores 96

Executor Total 
Memory

120g



Number of Attributes vs Training Times 
for all Algorithms



Machine Learning Algorithms

• Binary Classification
• Decision Tree
• Gradient Boosting Tree
• Random Forest
• Naïve Bayes
• Logistic Regression
• SVM



Experimentation
>

6, 9, 12 and 18 features are 
compared

For the two Tactics, 
Reconnaissance and Discovery

Using Spark’s optimum 
Parameters



Spark’s Parameters Used
Machine Learning 
Algorithm

Parameters used

Logistic Regression featuresCol: str = 'features', labelCol: str = 'label', predictionCol: str = 'prediction', maxIter: int 
= 10, regParam: float = 0.3, elasticNetParam: float = 0.8, tol: float = 1e-06, fitIntercept: bool = 
True, threshold: float = 0.5, thresholds: Optional[List[float]] = None, probabilityCol: str = 
'probability', rawPredictionCol: str = 'rawPrediction', standardization: bool = True, weightCol: 
Optional[str] = None, aggregationDepth: int = 2, family: str = 'auto', 
lowerBoundsOnCoefficients: Optional[pyspark.ml.linalg.Matrix] = None, 
upperBoundsOnCoefficients: Optional[pyspark.ml.linalg.Matrix] = None, 
lowerBoundsOnIntercepts: Optional[pyspark.ml.linalg.Vector] = None, 
upperBoundsOnIntercepts: Optional[pyspark.ml.linalg.Vector] = None, maxBlockSizeInMB: 
float = 0.0

Naive Bayes featuresCol: str = 'features', labelCol: str = 'label', predictionCol: str = 'prediction', 
probabilityCol: str = 'probability', rawPredictionCol: str = 'rawPrediction', smoothing: float = 
1.0, modelType: str = 'multinomial', thresholds: Optional[List[float]] = None, weightCol: 
Optional[str] = None

Random Forest featuresCol: str = 'features', labelCol: str = 'label', predictionCol: str = 'prediction', 
probabilityCol: str = 'probability', rawPredictionCol: str = 'rawPrediction', maxDepth: int = 5, 
maxBins: int = 32, minInstancesPerNode: int = 1, minInfoGain: float = 0.0, maxMemoryInMB: 
int = 256, cacheNodeIds: bool = False, checkpointInterval: int = 10, impurity: str = 'gini', 
numTrees: int = 20, featureSubsetStrategy: str = 'auto', seed: Optional[int] = None, 
subsamplingRate: float = 1.0, leafCol: str = '', minWeightFractionPerNode: float = 0.0, 
weightCol: Optional[str] = None, bootstrap: Optional[bool] = True

https://spark.apache.org/docs/latest/api/python/reference/api/pyspark.ml.linalg.Matrix.html#pyspark.ml.linalg.Matrix
https://spark.apache.org/docs/latest/api/python/reference/api/pyspark.ml.linalg.Matrix.html#pyspark.ml.linalg.Matrix
https://spark.apache.org/docs/latest/api/python/reference/api/pyspark.ml.linalg.Vector.html#pyspark.ml.linalg.Vector
https://spark.apache.org/docs/latest/api/python/reference/api/pyspark.ml.linalg.Vector.html#pyspark.ml.linalg.Vector


Spark’s Parameters Used
Machine Learning 
Algorithm

Parameters used

Gradient Boosted 
Decision Tree

featuresCol: str = 'features', labelCol: str = 'label', predictionCol: str = 'prediction', maxDepth: int 
= 5, maxBins: int = 32, minInstancesPerNode: int = 1, minInfoGain: float = 0.0, 
maxMemoryInMB: int = 256, cacheNodeIds: bool = False, checkpointInterval: int = 10, lossType: 
str = 'logistic', maxIter: int = 20, stepSize: float = 0.1, seed: Optional[int] = None, 
subsamplingRate: float = 1.0, impurity: str = 'variance', featureSubsetStrategy: str = 'all', 
validationTol: float = 0.01, validationIndicatorCol: Optional[str] = None, leafCol: str = '', 
minWeightFractionPerNode: float = 0.0, weightCol: Optional[str] = None

Decision Tree featuresCol: str = 'features', labelCol: str = "label_bin", predictionCol: str = 'prediction', 
probabilityCol: str = 'probability', rawPredictionCol: str = 'rawPrediction', maxDepth: int = 30, 
maxBins: int = 100,  minInstancesPerNode: int = 1,  minInfoGain: float = 0.0,  maxMemoryInMB: 
int = 256,  cacheNodeIds: bool = False,  checkpointInterval: int = 10,  impurity: str = 'gini',  seed: 
Optional[int] = None,  weightCol: Optional[str] = None,  leafCol: str = '',  
minWeightFractionPerNode: float = 0.0

SVM featuresCol: str = 'features', labelCol: str = 'label_bin', predictionCol: str = 'prediction', maxIter: 
int = 100, regParam: float = 0.0, tol: float = 1e-06, rawPredictionCol: str = 'rawPrediction', 
fitIntercept: bool = True, standardization: bool = True, threshold: float = 0.0, weightCol: 
Optional[str] = None, aggregationDepth: int = 2, maxBlockSizeInMB: float = 0.0



The 
Reconnaissance 

Tactic



Reconnaissance: Accuracy - by 
Algorithms by Number of Features

• DT, GBT and RF had the highest averages for all 
sets of attributes. NB had the lowest accuracy, and 
LR was only slightly higher than NB. 



Reconnaissance: Recall by 
Algorithms by Number of Features

• GBT and RF had the highest recall, followed by 
DT. NB, SVM and LR.



Reconnaissance: FPR by Algorithms 
by Number of Features

• DT had the lowest FPRs, and SVM and GBT 
seemed to have the second lowest FPRs. NB 
had the highest FPR rates



Reconnaissance: Training Time by 
Algorithms by Number of Features Used

• RF had the lowest training time, followed by 
DT, for all attribute combinations. GBT had the 
highest training times.



The 
Discovery 

Tactic



Discovery: Accuracy by Algorithms 
by Number of Features

• DT, GBT and RF had higher accuracy for all sets 
of attributes than the other three algorithms, 
SVM, NB and LR.



Discovery: Recall by Algorithms 
by Number of Features

• GBT, NB and LR had higher recall for all sets 
of attributes, and DT was close behind. SVM 
performed poorly in terms of recall.



Discovery: FPR by Algorithms by 
Number of Features

• DT, GBT and RF all had lower FPRs for all 
combination of attributes, though DT 
appeared to perform the best.



Discovery: Training Time by 
Algorithms by Number of Features

• DT, NB, and LR had low training times. SVM 
and GBT had higher training times



Conclusions



Optimizing Classifier Performance on 
Spark

• More total cores for spark application makes ML 
algorithms run faster, but there are diminishing returns 
after a certain point

• Classifiers run fastest when the number of shuffle 
partitions is the same as the total number of executors

• There was no significant correlation between runtimes 
and the total amount of memory allocated (though 
allocating too little memory can cause executors to 
crash).



Machine Learning Results
• Tree-based methods (DT, GBT, RF) performed better on 

most metrics than the other three algorithms in classifying 
this dataset, for both the Renaissance and Discovery 
tactics.

• These three algorithms all showed 99%+ accuracy for both attack tactics, 
with similarly higher scores in precision, recall, f-measure, and AUROC. 

• GBT and RF performed a little better than DT in terms of recall for both the 
tactics but in terms of the FPR

• DT had the lowest FPRs for both Reconnaissance and Discovery



Machine Learning Results Cont’.

• Training times -- RF performed the best for 
Reconnaissance, followed by DT; for Discovery, DT 
performed the best.

• Best number of features -- the top 6 features from 
information gain -- history, protocol, service, 
orig_bytes, dest_ip, orig_pkts
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