A UNIVERSITY of
:3 WEST FLORIDA

Performance of Machine Learning
Algorithms on UWF-ZeekData22

Sikha Bagui, Dustin Mink & Subhash Bagui
University of West Florida, USA

9usiine Tactics in UWF-ZeekData22

label tactac count

Discovery

| ateral Movement

Privilege Escalation
Reconnalssance | 9278722
Persistence |

bk

Initial Access
Exfiltration

Defense Ewvasion
Faenrne

Resource Dewvelopment
Credenti1al Access

A D e

L
-

% UWNEISVTEELS(;H;{ Malicious vs. Non-malicious traffic in UWF-
- — ZeekData22

Non-Malicious Traffic 9,281,599

Malicious Traffic 9,280,869

& uveesirr Reconnaissance and Discovery

[N
:@ WEST FLORIDA

Tactics

» Reconnaissance tactic

 Carried out with the goal of gathering information, to
plan future attacks

« 9,278,722 instances

 Discovery tactic
» Used to learn specifics of network infrastructure
« 2086 instances

' UNIVERSITY of

% WEST FLORIDA Features in Zeek Conn Log File

>>> df_conn.printSchema()
root

| -- resp _pkts: integer (nullable = true)

| -- mitre_attack: string (nullable = true)
- service: string (nullable = true)
- orig _ip bytes: integer (nullable = true)
- local resp: boolean (nullable = true)
- missed bytes: integer (nullable = true)
- proto: string (nullable = true)
- duration: double (nullable = true)
- conn_state: string (nullable = true)
- dest_ip_zeek: string (nullable = true)
- orig pkts: integer (nullable = true)
- community id: string (nullable = true)
- resp_ip bytes: integer (nullable = true)
- dest_port_zeek: integer (nullable = true)
- orig bytes: integer (nullable = true)
- local orig: boolean (nullable true)
- datetime: timestamp (nullable true)
- history: string (nullable = true)
- resp_bytes: integer (nullable = true)
- uid: string (nullable = true)
- src_port_zeek: integer (nullable = true)
- ts: double (nullable = true)
- src_ip zeek: string (nullable = true)

-
-
-
B
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

\\‘

o
_—
v

UNIVERSITY of

3 WEST FLORIDA

Experimentation...

Raw Network
Data

Attribute

reduction by
Information Gain

6 attributes

Preprocessing

Continuous

9 attributes

IP r
addresses 12 attributes

il
i

Port numbers 18 attributes

Binary classification
Data frames

To%
Benign

Reconnaissance tactic

Tok
Benign

Discovery tactic

Test/train split on dataset

30%
Test

ML algorithms

[Malve Bayes]

[Loglistic Regression |

[Random Forest]
[Gradient Boosted

Decision Tree

[Decision Tree]

l Support Vector l

Hurni Preprocessing

S9usihons Preprocessing Using Binning

« Zeek Conn logs contain: continuous
valued attributes, nominal attributes, IP
addresses and port numbers.

e Continuous Attributes

 The trimmed mean and standard
deviation was calculated for each
column

» To address the skewness caused by
lengthy and low-lying tails, a 10% trim
on the data was used to generate the
bins

A UNIVERSITY of

9 vsiriorne Binning IP Addresses and Port Numbers

The commonly recognized
network classifications of A,
B, C, D, and E were used,
each of which pertain to
specific ranges of the first
octet in the IP address

J

Port Numbers were binned
based on IANA rules

' UNIVERSITY of

9 wsiiend [nformation Gain

» Used to assess the relevance of the 18 features in the Zeek Conn Logs

| Atributeno. | attribute | __info_gain
_ history 0.827
“ protocol 0.77
“ service 0.726
“ orig_bytes 0.724
05 dest_ip 0.674
— orig_pkts 0.655
orig_ip_bytes 0.572
“ local_resp 0.524
— dest_port 0.486
10 duration 0.386
“ conn_state 0.166
“ resp_pkts 0.085
“ resp_ip_bytes 0.065
“ src_port 0.008
“ resp_bytes 0.008
sre_ip 0.007
local_orig 0.002
“ missed_bytes 0

A\ UNIVERSITY of

'::.9 WEST FLORIDA

Computing
Environment

University of West Florida’s
Hadoop cluster was used

» Cluster has 6 worker nodes.
* Spark 3.2.1 and Hadoop 3.3.1.

A\ UNIVERSITY of

[Ny
:::.9 WEST FLORIDA

Determining Spark’s
Optimum
Parameters

A UNIVERSITY of
':3 WEST FLORIDA

Testing Spark’s Configuration Parameters

Configuration _|spark Property

Driver Cores spark.driver.cores

Driver Memory

spark.driver.memory

3l e spark.executor.cores

Executor
spark.executor.memory
Memory

spark.executor.instances
spark.dynamicAllocation.

Executor minExecutors

Instances
spark.dynamicAllocation.
maxExecutors

Shuffle spark.sql.shuffle.partition
Partitions S

Number of cores used for the driver process,
only in cluster mode.

Amount of memory used for the driver
process, i.e. where SparkContext is initialized.

Number of cores used on each executor.

Amount of memory used per executor
process.

Initial number of executors to run if dynamic
allocation is enabled, with upper and lower
bounds for the number of executors
established.

Default number of partitions used when
shuffling data for joins or aggregations.

A wversiver Performance Results with various

) WEST FLORIDA
Spark Executor Parameters

— - P— =
= 5 = s 5 |E £8 |z |. 2 -t b=
= S5° |e&s |EE |=° |6 |E&E [& | £ A

= = = = = =
i =1 2 =1 10 2= 20 2 1
2 =1 2 10 10 S0 Z245.Z30 200 pr.d 1
3 =1 2 20 10 1D I=ZTF.A945 20 2 1
e =1 4 =1 20 25 Z283=3.a0 200 pr.d 1
=1 =] 4 10 20 SO 2TF5.Z21 210 2 1
(=1 o= 4 20 20 1D 2TFTF.EE 210 prd 1
7 10 2 =] 20 SO 2823218 210 2 1
=1 10 2 10 20 1D 27620 210 prd 1
= 10 4 > 40 >0 210.99 210 e 1
1 10 4 10 4.0 1D 199.78 20 2 1
11 20 e = A0 100 214.43 200 2 10r
i1z 20 4 o= a0 1D 18a.02 20 2 1
i= 10 = 10 S0 100 17F5.559 200 2 10r
14 12 a8 10 p=N = 120 172.91 20 2 1
i1 1= = 10 p=4 =1 120 171.49 F2 2 10r
17 12 a8 10 p=N = 120 164.325 12 2 1
1= 24 4 =1 j=1= 120 1822.51 24 pe.d 1y
19 (=] 1& 20 p=N = 120 1s52.02 L=] 2 acr
20 12 a8 10 p=1 = 120 17018 24 pr.d 1
21 = @2 40 p=1 = 120 1e3.58 = 2 1
22 1 1a 20 1a 20 24432 .16 1 pr.d 1
23 g 1& 20 322 40 210,13 2 2 1
24 (=] 32 a0 192 2440 155.39 L=] pr.d 1
25 = 1& 20 4= a0 183.75 = 2 1
26 10 a8 10 a0 1D 1732.59 200 pr.d 1
27 (=] @2 40 1922 2490 1568 L=] 2 1
25 (=] 32 a0 192 2440 151.84 12 pr.d 1
29 [=] =2 40 192 2490 159,12 249 2 1
30 (=] 32 a0 192 2440 159.21 a8 pr.d 1
=21 [=] =2 40 192 2490 159.91 p=1 =] 2 1
32 (=] =2 40 192 240 151.1= 192 ped 1
== L= =2 40 192 290 1cl1.o =849 s 1
34 (=] 32 40 192 24940 159.2 L=] 4 1
= b= L= 32 0 192 240 AS7F. 7o L=] 4 20
36 =] 32 40 192 240 15852 L= 4 Eln)

' UNIVERSITY of

9 vsirron Process Times vs Memory Per Executor

» Executor memory -- amount of memory (in
GBs) assigned to each executor. There does
not appear to be a strong correlation between
the total executor memory and processing
time

Exec Total Memory (GB) and Process Time (seconds)
400

S
S ® o
S 300
2 0 ®
E o
= 200 oo '
" [.
¢ o
(W]
E 100
50 100 150 200

Total Executor Memory (GB)

& unveesiyr Process Times vs Number of Executor

:@ WEST FLORIDA

Cores

* Increasing the number of cores available
from 10 to 50 had a significant impact on
performance, with diminishing returns
apparent after a total core count of 100.

Exec Total Core Count and Process Time (seconds)
400

300
O

O .
200
o 0 0 .

25 50 75 100 125 150 175

Process Time (seconds)

100

Total Executor Cores

S wiersis - Processing Times as a Function of

:@ WEST FLORIDA

Executor Count and Shuffle partitions

* 6 and 12 executors show that using
fewer shuffle partitions improves
performance

25 -

Total. Time. seconds._
350
250

200

Exacutor Count

5—(: 6

Z00
Shuffle_ partitions

&' UNIVERSITY of

Qs Spark’s best Config Settings

Config Setting

Driver Cores 2
Driver Memory 10g
Executor Instances 6
Executor Cores 6
Executor Memory 6

Shuffle Partitions 6

9 s oo Spark’s Resources and Total Allocations

Resources Total Allocation

Driver Cores 2
Driver Memory 10g

Executor Total Cores 96

Executor Total 120g
Memory

S9uisiionss Number of Attributes vs Training Times

for all Algorithms

me B9
n 90
J2
0 40
O
o
2 30
()
E X
|_
: . HETm
.% 0
- Discovery Reconnaissance
Attack Type

S9 s Machine Learning Algorithms

 Binary Classification
* Decision Tree
» Gradient Boosting Tree
 Random Forest
* Nalve Bayes
* Logistic Regression
*« SVM

&' UNIVERSITY of
:3 WEST FLORIDA

6,9, 12 and 18 features are
compared

. _ For the two Tactics,
Experimentation , ,
> Reconnaissance and Discovery

Using Spark’s optimum
Parameters

v

o ummas Spark’s Parameters Used

Machine Learning Parameters used
Algorithm

Logistic Regression featuresCol: str = 'features’, labelCol: str = 'label’, predictionCol: str = 'prediction’, maxlter: int
= 10, regParam: float = 0.3, elasticNetParam: float = 0.8, tol: float = 1e-06, fitIntercept: bool =
True, threshold: float = 0.5, thresholds: Optional[List[float]] = None, probabilityCol: str =
'‘probability’, rawPredictionCol: str = ‘'rawPrediction’, standardization: bool = True, weightCol:
Optional[str] = None, aggregationDepth: int = 2, family: str = 'auto’,
lowerBoundsOnCoefficients: Optional[pyspark.ml.linalg.Matrix] = None,
upperBoundsOnCoefficients: Optional[pyspark.ml.linalg.Matrix] = None,
lowerBoundsOnlintercepts: Optional[pyspark.ml.linalg.Vector] = None,
upperBoundsOnlintercepts: Optional[pyspark.ml.linalg.Vector] = None, maxBlockSizeInMB:
float = 0.0

Naive Bayes featuresCol: str = 'features’, labelCol: str = 'label’, predictionCol: str = 'prediction’,
probabilityCol: str = 'probability’, rawPredictionCol: str = 'rawPrediction', smoothing: float =
1.0, modelType: str = 'multinomial’, thresholds: Optional[List[float]] = None, weightCol:
Optional[str] = None

Random Forest featuresCol: str = 'features’, labelCol: str = 'label’, predictionCol: str = 'prediction’,
probabilityCol: str = 'probability’, rawPredictionCol: str = 'rawPrediction’, maxDepth: int =5,
maxBins: int = 32, mininstancesPerNode: int = 1, minIinfoGain: float = 0.0, maxMemorylnMB:
int = 256, cacheNodelds: bool = False, checkpointinterval: int = 10, impurity: str = 'gini’,
numTrees: int = 20, featureSubsetStrategy: str = 'auto’, seed: Optional[int] = None,
subsamplingRate: float = 1.0, leafCol: str =", minWeightFractionPerNode: float = 0.0,
weightCol: Optional[str] = None, bootstrap: Optional[bool] = True

https://spark.apache.org/docs/latest/api/python/reference/api/pyspark.ml.linalg.Matrix.html#pyspark.ml.linalg.Matrix
https://spark.apache.org/docs/latest/api/python/reference/api/pyspark.ml.linalg.Matrix.html#pyspark.ml.linalg.Matrix
https://spark.apache.org/docs/latest/api/python/reference/api/pyspark.ml.linalg.Vector.html#pyspark.ml.linalg.Vector
https://spark.apache.org/docs/latest/api/python/reference/api/pyspark.ml.linalg.Vector.html#pyspark.ml.linalg.Vector

A UNIVERSITY of

9w Spark’s Parameters Used

Machine Learning Parameters used
Algorithm

Gradient Boosted featuresCol: str = 'features’, labelCol: str = 'label’, predictionCol: str = 'prediction’', maxDepth: int

Decision Tree =5, maxBins: int = 32, minInstancesPerNode: int = 1, minInfoGain: float = 0.0,
maxMemorylnMB: int = 256, cacheNodelds: bool = False, checkpointinterval: int = 10, lossType:
str = 'logistic', maxlter: int = 20, stepSize: float = 0.1, seed: Optional[int] = None,
subsamplingRate: float = 1.0, impurity: str = 'variance', featureSubsetStrategy: str = ‘all’,
validationTol: float = 0.01, validationIndicatorCol: Optional[str] = None, leafCol: str =",
minWeightFractionPerNode: float = 0.0, weightCol: Optional[str] = None

Decision Tree featuresCol: str = 'features’, labelCol: str = "label_bin", predictionCol: str = 'prediction’,
probabilityCol: str = 'probability’, rawPredictionCol: str = 'rawPrediction’, maxDepth: int = 30,
maxBins: int = 100, mininstancesPerNode: int =1, minInfoGain: float = 0.0, maxMemorylnMB:
int = 256, cacheNodelds: bool = False, checkpointinterval: int = 10, impurity: str = 'gini', seed:
Optional[int] = None, weightCol: Optional[str] = None, leafCol: str =",
minWeightFractionPerNode: float = 0.0

SVMM featuresCol: str = 'features’, labelCol: str = 'label_bin', predictionCol: str = 'prediction’, maxiter:
int = 100, regParam: float = 0.0, tol: float = 1e-06, rawPredictionCol: str = 'rawPrediction’,
fitintercept: bool = True, standardization: bool = True, threshold: float = 0.0, weightCol:
Optional[str] = None, aggregationDepth: int = 2, maxBlockSizeInMB: float = 0.0

UNIVERSITY of
) WEST FLORIDA

The
Reconnaissance
Tactic

A UNIVERSITY of Reconnaissance: Accuracy - by

& USTHORDA Algorithms by Number of Features

« DT, GBT and RF had the highest averages for all
sets of attributes. NB had the lowest accuracy, and
LR was only slightly higher than NB.

Reconnaisance -- Accuracy

1.000

0.975

Accuracy

0.925

0.900

Algorithm, number of features used

S\ UNIVERSITY of Reconnaissance: Recall by

':3 WEST FLORIDA

Algorithms by Number of Features

« GBT and RF had the highest recall, followed by
DT. NB, SVM and LR.

Reconnaissance -- Recall

1.000
0.975

0.950

0.944
0.944
0.942
0.942
0.942
0.000

Recall

0.925

& & & F S S F S S S S S S S S S
A, > «'{L «'33 Q_QJ Q_Cb '3" “Eb Q,QJ Q,q, '\q’ ’\‘b QQD Q% {(,\'L <<'\':b ‘}F) ‘}Q
© P YV VEE T I EEE ST S

Algorithm, number of features used

& mvesyes R€connaissance: FPR by Algorithms

%P WEST FLORIDA by Number of Features

DT had the lowest FPRs, and SVM and GBT
seemed to have the second lowest FPRs. NB
had the highest FPR rates

Reconnaissance -- False Positive Rates

0.040

FPR

Algorithm, number of features used

O wesiv/Reconnaissance: Training Time by

9 MFLORIMAlgorithms by Number of Features Used
* RF had the lowest training time, followed by

DT, for all attribute combinations. GBT had the
highest training times.

Reconnaissance -- Training time
100.000

75.000
50.000

25.000

Training time

0.000
& &

Algorithm, number of features used

A\ UNIVERSITY of
'::.9 WEST FLORIDA

The
Discovery
Tactic

S wesives - [Discovery: Accuracy by Algorithms

':3 WEST FLORIDA

by Number of Features

« DT, GBT and RF had higher accuracy for all sets

of attributes than the other three algorithms,
SVM, NB and LR.

Discovery -- Accuracy
1.000

0.975

0.950

Accuracy

0.925

0.900

Algorithm, number of features used

& wesy DIScovery: Recall by Algorithms

':3 WEST FLORIDA

by Number of Features

« GBT, NB and LR had higher recall for all sets
of attributes, and DT was close behind. SVM
performed poorly in terms of recall.

Discovery -- Recall
1.000

0.975

Recall

Algorithm, number of features used

' UNIVERSITY of Discovery: FPR by Algorlthms by

[N
':3 WEST FLORIDA

Number of Features

DT, GBT and RF all had lower FPRs for all
combination of attributes, though DT
appeared to perform the best.

Discovery -- False Positive Rate

0.100
0.075

0.050

FPR

0.025

0.000

Algorithm, number of features used

S UNIVERSITY of Discovery: Training Time by

':3 WEST FLORIDA

Algorithms by Number of Features

* DT, NB, and LR had low training times. SVM
and GBT had higher training times

Discovery -- Training time

40.000

30.000

Training time

Algorithm, number of features used

UNIVERSITY of
) WEST FLORIDA

Conclusions

//

& wesivr Optimizing Classifier Performance on

[N
:@ WEST FLORIDA

Spark

» More total cores for spark application makes ML
algorithms run faster, but there are diminishing returns
after a certain point

 Classifiers run fastest when the number of shuffle
partitions is the same as the total number of executors

* There was no significant correlation between runtimes
and the total amount of memory allocated (though
allocating too little memory can cause executors to
crash).

' UNIVERSITY of

st Mlachine Learning Results

* Tree-based methods (DT, GBT, RF) performed better on
most metrics than the other three algorithms in classifying
this dataset, for both the Renaissance and Discovery
tactics.

* These three algorithms all showed 99%+ accuracy for both attack tactics,
with similarly higher scores in precision, recall, f-measure, and AUROC.

 GBT and RF performed a little better than DT in terms of recall for both the
tactics but in terms of the FPR

« DT had the lowest FPRs for both Reconnaissance and Discovery

A UNIVERSITY of

9 wsiremn Machine Learning Results Cont’.

 Training times -- RF performed the best for
Reconnaissance, followed by DT; for Discovery, DT
performed the best.

« Best number of features -- the top 6 features from
information gain -- history, protocol, service,
orig_bytes, dest_ip, orig_pkts

A UNIVERSITY of

O WEST FLORIDA References

* Huong, T. T, Bac, T. P, Long, D. M., Thang, B. D., Binh, N. T., Luong, T. D., & Phuc, T. K. (2021). LocKedge: Low-
Complexity Cyberattack Detection in loT Edge Computing. IEEE Access, 9, 29696—-29710.
https://doi.org/10.1109/access.2021.3058528

» Zeek: About. (2020). The Zeek Project. https://zeek.org/about/ (accessed February 2022)
* University of West Florida (2022) https://datasets.uwf.edu/

* What Is the MITRE ATT&CK Framework? | Get the 101 Guide. (2022). Trellix. https://www.trellix.com/en-us/security-
awareness/cybersecurity/what-is-mitre-attack-framework.html (accessed February 2022)

« MITRE ATT&CK (2022) Reconnaissance, Tactic TA0O043 - Enterprise | MITRE ATT&CK®.
https://attack.mitre.org/tactics/TA0043/ (accessed February 2022)

+ MITRE ATT&CK (2022) Discovery, Tactic TAOOO7 - Enterprise | MITRE ATT&CK®.
https://attack.mitre.org/tactics/TAOOO7/ (accessed February 2022)

* The Zeek Project. (2022). base/protocols/conn/main.zeek — Book of Zeek (v5.0.0). Zeek.
https://docs.zeek.org/en/v5.0.0/scripts/base/protocols/conn/main.zeek.html (accessed February 2022)

+ Kala Karun, A., & Chitharanjan, K. (2013). A review on hadoop; HDFS infrastructure extensions. 2013 IEEE
Conference on Information and Communication Technologies. htips://doi.org/10.1109/cict.2013.6558077

* Belouch, M., el Hadaj, S., & Idhammad, M. (2018). Performance evaluation of intrusion detection based on machine
learning using Apache Spark. Procedia Computer Science, 127, 1-6._https://doi.org/10.1016/].procs.2018.01.091

* Gupta, G. P, & Kulariya, M. (2016). A Framework for Fast and Efficient Cyber Security Network Intrusion Detection
Using Apache Spark. Procedia Computer Science, 93, 824—-831. https://doi.org/10.1016/j.procs.2016.07.238

https://doi.org/10.1109/access.2021.3058528
https://zeek.org/about/
https://datasets.uwf.edu/
https://www.trellix.com/en-us/security-awareness/cybersecurity/what-is-mitre-attack-framework.html
https://attack.mitre.org/tactics/TA0043/
https://attack.mitre.org/tactics/TA0007/
https://docs.zeek.org/en/v5.0.0/scripts/base/protocols/conn/main.zeek.html
https://doi.org/10.1109/cict.2013.6558077
https://doi.org/10.1016/j.procs.2018.01.091

S References

* Morfino, V., & Rampone, S. (20202. Towards Near-Real-Time Intrusion Detection for IoT Devices using Supervised Learning
and Apache Spark. Electronics, 9(3), 444. https://doi.org/10.3390/electronics9030444

+ Malik, A.J., Khan, F.A. A (2018) hybrid technique using binary particle swarm optimization and decision tree pruning for
network intrusion detection. Cluster Computing 21, 667—680. https://doi.org/10.1007/s10586-017-0971-8

+ Kevric, J., Jukic, S. & Subasi, A. (2017) An effective combinin% classifier approach using tree algorithms for network intrusion
detection. Neural Computing & Applications 28, 1051-1058. hitps://doi.org/10.1007/s00521-016-2418-1

* Zhang, J., Sun, J. & He, H. (2021) Clustering Detection Method of Network Intrusion Feature Based on Suzp1port Vector
Machine and LCA Block Algorithm. Wireless Personal Communications. https://doi.org/10.1007/s11277-021-08353-y

 Du, R, Li, Y, Liang, X. et al. $_2022) Support Vector Machine Intrusion Detection Scheme Based on Cloud-Fog Collaboration.
Mobile Networks and Applications. https://doi.org/10.1007/s11036-021-01838-x

+ Leevy, J. L., Hancock, J., Zuech, R., & Khosh;f;oftaar, T. M. (2021). Detecting cybersecurity attacks across different network
features and learners. Journal of Big Data, 8(7). https://doi.org/10.1186/s40537-021-00426-w

» Sharafaldin, |., Habibi Lashkari, A., & Ghorbani, A. A. (2018). Toward Generating a New Intrusion Detection Dataset and
Intrusion Traffic Characterization. Proceedings of the 4th International Conference on Information Systems Security and
Privacy. https://doi.org/10.5220/0006639801080116

* Microsoft. (2012, July 18). Address Classes. Microsoft Docs. https://docs.microsoft.com/en-us/previous-versions/windows/it-
pro/windows-2000-server/cc940018(v=technet.10)?redirectedfrom=MSDN (accessed April 2022)

* Bagui, S., Simonds, J., Plenkers, R., Bennett, T. A., & Bagui, S. (2021b Classifying UNSW-NB15 network traffic in the Big Data
Framework using random forest in Spark. International Journal of Big Data Intelligence and Applications, 2(1), 39-61.
https://doi.org/10.4018/ijbdia.287617

* Rostami, S., Kleszcz, A., Dimanov, D., & Katos, V. (2020). A machine learnin a{)proach_ to dataset imgutation for software
vulnerabilities. Communications in Computer and Information Science, 25-36. https://doi.org/10.1007/978-3-030-59000-0 3

https://doi.org/10.5220/0006639801080116
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-2000-server/cc940018(v=technet.10)?redirectedfrom=MSDN
https://doi.org/10.4018/ijbdia.287617
https://doi.org/10.1007/978-3-030-59000-0_3

§‘ UNIVERSITY of

S WEST FLORIDA Acknowledgements

* The research was supported by 2021 NCAE-C-
002: Cyber Research Innovation Grant
Program, Grant Number: H98230-21-1-0170

UNIVERSITY of
) WEST FLORIDA

Thank you!

I" >

//

UNIVERSITY of
) WEST FLORIDA

Questions ?

¢

Data Available at: datasets.uwf.edu .
. A8

o

	Performance of Machine Learning Algorithms on UWF-ZeekData22
	Tactics in UWF-ZeekData22
	Malicious vs. Non-malicious traffic in UWF-ZeekData22
	Reconnaissance and Discovery Tactics
	Features in Zeek Conn Log File
	Experimentation…
	Preprocessing
	Preprocessing Using Binning
	Binning IP Addresses and Port Numbers
	Information Gain
	Computing Environment
	Determining Spark’s �Optimum Parameters
	Testing Spark’s Configuration Parameters
	Performance Results with various Spark Executor Parameters
	Process Times vs Memory Per Executor
	Process Times vs Number of Executor Cores
	Processing Times as a Function of Executor Count and Shuffle partitions
	Spark’s best Config Settings
	Spark’s Resources and Total Allocations
	Number of Attributes vs Training Times for all Algorithms
	Machine Learning Algorithms
	Experimentation>
	Spark’s Parameters Used
	Spark’s Parameters Used
	The Reconnaissance Tactic
	Reconnaissance: Accuracy - by Algorithms by Number of Features
	Reconnaissance: Recall by Algorithms by Number of Features
	Reconnaissance: FPR by Algorithms by Number of Features
	Reconnaissance: Training Time by Algorithms by Number of Features Used
	The �Discovery Tactic
	Discovery: Accuracy by Algorithms by Number of Features
	Discovery: Recall by Algorithms by Number of Features
	Discovery: FPR by Algorithms by Number of Features
	Discovery: Training Time by Algorithms by Number of Features
	Conclusions
	Optimizing Classifier Performance on Spark
	Machine Learning Results
	Machine Learning Results Cont’.
	References
	References
	Acknowledgements
	Thank you!
	Questions ?

