Carnegie Mellon University
Software Engineering Institute

Do You Know What Your Software
s Actually Doing?

Use Silent Sentinel to Evaluate Software Before Release

or Deployment

BEFORE INSTALLING TRUSTED SOFTWARE,
SYSTEM OWNERS MUST ASSESS THE RISK

it presents and the impact it will have on the
environment where it will be installed. We at the
Software Engineering Institute (SEI) designed Silent
Sentinel to streamline and automate this analysis to
help teams evaluate the behavior of the following:
software, development frameworks, application
programming interfaces (APIs), or libraries under
consideration in a development project.

By automating the analysis process and producing
consistent output for analysis, Silent Sentinel helps teams
answer questions like the following:

* How much memory and disk space should we provision
for this application? How many CPU cores?

+ What files should we expect the software to add, modify,
or delete?

* How many processes does the software create when it
runs? What are they?

* What is the baseline for network communication?

Streamlining Quality Assurance

Most organizations require some level of quality
assurance (QA) testing before an application can

be deployed into a production environment. Some
organizations require a deeper level of testing and more
in-depth data, such as a risk analysis assessment, a list
of dependencies for the software, and information about
the supply chain. The aim of a risk analysis assessment
is to go beyond what a software application is supposed
to do and evaluate how that application may affect the
computer system or environment where it is deployed.

To perform a risk analysis assessment, testers evaluate
different aspects of the tool's execution relating to
functional, operational, and security metrics. When

this is done manually, the evaluation results are highly
dependent on the tester’s skill, and results can be
inconsistent, both in the amount of effort required to
complete the tests and in the accuracy of test results.
Inconsistent results can negatively affect risk analysis, and
poor or incomplete risk analysis can negatively affect the
assessment's accuracy.

By automating such testing, Silent Sentinel creates a
unified set of data that teams can reference and update
over time to not only support risk assessment activities
but also to serve as a baseline for evaluating future
proposed changes.

Assessing Frameworks

Software developers with code security requirements
must often incorporate one or more development
frameworks into code to minimize development time.
Silent Sentinel enables developers to compare different
frameworks by providing objective metric data that
they can analyze. This data helps developers determine
whether the desired performance and functionality
requirements for their use case are met.

Interpreting the Results

When evaluating the static characteristics and the
dynamic impact of software, many factors come into
play. Silent Sentinel comes with an Interpretation
Guide to help end users understand the objective
data collected and compiled into the report.

This guide presents example questions users may wish to
contemplate and commentary to help users understand
the report when testing and evaluating software. For
each section of the report, the Interpretation Guide also
provides (1) a description of why the information in that
section is useful for detecting unwanted behavior and

(2) a sample of report output data.

How It Works
Silent Sentinel works by following this process:

D
\Y

10010011110

I;I
]

(=)=

o EE

PDF

It runs a battery of tests on
the software in a Linux-based
containerized sandbox environment.

During the automated tests, Silent Sentinel collects a
wealth of information, including the following:

* processes * CPU usage

+ system calls * virus scan results

+ changes to files * packet captures

* memory usage * network configurations

Silent Sentinel then makes this information available

to system owners to help them understand how the
software will affect their systems. This information also
provides data to help teams establish a baseline of
expected behavior that subsequently helps them detect
any future anomalous or unwanted behavior.

About the SEI

Always focused on the future, the Software Engineering Institute (SEl) advances
software as a strategic advantage for national security. We lead research and
direct transition of software engineering, cybersecurity, and artificial intelligence
technologies at the intersection of academia, industry, and government. We
serve the nation as a federally funded research and development center (FFRDC)
sponsored by the U.S. Department of Defense (DoD) and are based at Carnegie
Mellon University, a global research university annually rated among the best for
its programs in computer science and engineering.

©2025 Carnegie Mellon University | 6421 | C12.10.2024 | S 02.04.2025 | DM25-0144

It collects and stores the test results.

It synthesizes the
results into a report
for review.

Supported Systems

Silent Sentinel easily integrates into a program'’s
development pipeline. It is currently supported on Linux
systems with ARM or x86 architectures. Silent Sentinel's
sandbox is a Linux-based containerized environment.

It supports multiple base container images, including
Debian, Rocky Linux, Alpine, and Arch Linux.

Ready to Learn More About Silent Sentinel?
Download the code from GitHub and try it in your
environment:
https://github.com/cmu-sei/silentsentinel.

For more information, contact us at
silent-sentinel@sei.cmu.edu.

Contact Us

CARNEGIE MELLON UNIVERSITY
SOFTWARE ENGINEERING INSTITUTE
4500 FIFTH AVENUE; PITTSBURGH, PA 15213-2612

sei.cmu.edu
412.268.5800 | 888.201.4479
info@sei.cmu.edu

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

