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Abstract

Cyber hygiene has come to represent the basic tools, processes, and knowledge necessary for opera-
tions of a secure and reliable system. Until now, the field of artificial intelligence (Al) has been devel-
oping at a fast pace with security a secondary consideration. The absence of a strong emphasis on se-
curity has led to the emergence of poor standard practices within the Al community, creating Al
systems with inherent vulnerabilities and security issues. This work aims to identify and analyze these
problematic practices specifically related to the hygiene of models and data in Al products. Further-
more, it also identifies remedial controls, inspired by traditional cybersecurity principles, to help the
Al community strengthen its security posture and improve its overall cyber hygiene.

Introduction

The pace of artificial Intelligence (AI) development has been staggering since the first release of com-
pute unified data architecture (CUDA) in 2007 followed by TensorFlow in 2015 and PyTorch in 2016.
These packages have come to form the basis of many machine learning solutions, in both industry and
academia, but they were only the first of a series of platforms in the machine learning space. Until
now, the Al community has been working hard at solving difficult technical problems and adding fea-
tures to existing platforms to drive productivity; however, it is time for the community to incorporate
security as a vital part of the platforms. Improving Al product security will improve industry security.
This poses a question: how can we improve Al security practices from the product level?

With each passing month, the need to establish good security practices and mechanisms in the Al field
becomes more obvious. The field of machine learning has repeatedly accepted poor security practices
which have led to

o  threat models around the use of model zoos' such as Tensorflow Hub and PyTorch Model Zoo
without signatures or checksums'

Model zoos are a collection of trained models that are released for distribution.
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i, iii

e poor practices around deserialization of untrusted models and data

«  the use of models without a log, journal, or manifest detailing on what data they were trained '

This paper focuses on these practices around models and data that machine learning practitioners
freely exchange between themselves both within organizations and on the public internet.

Al systems and frameworks are software; therefore, traditional cybersecurity-based vulnerabilities
must be appropriately managed. Consequences of cybersecurity vulnerabilities being exploited in Al
system include stealing a model file that is at rest or in transit, tampering with data on a filesystem or
in a database to change what a model learns, and altering a model file at rest or in transit to influence
how a model performs. Google’s Secure Al Framework (SAIF)Y further names and discusses these
vulnerabilities in greater detail and describes a secure-by-default framework to be an effective mitiga-
tion; however, secure-by-default platforms do not currently exist. Fortunately, there are existing secu-
rity controls' and procedures“! that can help mitigate these traditional cyber risks. Securing models
and data loaders, as described throughout in this paper, is the first step on the path to securing a ma-
chine learning framework. If implemented, these controls can effectively reduce the risk for both tra-
ditional cyber-based and Adversarial Machine Learning? attacks and vulnerabilities.

This paper seeks to outline where traditional cybersecurity controls should be available within Al soft-
ware packages and to identify places where formats and processes should be standardized. By adopt-
ing traditional cybersecurity controls, the Al field and community will benefit from decades of re-
search into mechanisms such as encryption, hashing, and checksums, thus reinforcing proven and
effective cybersecurity practices as common processes and procedures inherently making Al more se-
cure.

We view models and data loaders as the most pressing and in need of improvement. Models and data
loading are the two places in the machine learning workflow where items are frequently loaded from
rest or are in transit from local and remote sources thus making them most vulnerable. Items that are at
rest or in transit are susceptible to tampering, especially when they are acquired from remote sources
of unknown provenance. Cryptographic controls, as well as robust verification mechanisms when
working with model files and data, can help secure these parts of the machine learning workflow.

Model files lack integrity, privacy, and authorization mechanisms

A model file is the serialized representation of a machine learning model. Because model files need to
exist beyond volatile memory, they must be saved in a format that makes them easy to use later or
share with others. When a system is reading in serialized data from possibly unknown sources, there is

opportunity for insecure deserialization"' issues. The Open Worldwide Application Security Project

2 Adversarial Machine Learning attacks target the machine learning components in a system. See our previous work
on this subject. (reference AML Blog, counter Al document)
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(OWASP) is an organization that tracks common vulnerabilities in software applications. Insecure
deserialization from untrusted sources has consistently been the OWASP Top 10 lists since 2017, In
response, the field of cybersecurity has established methods, processes, and controls that should be in
place when handling deserialization from untrusted sources, such as

s«  maintaining data integrity via the use of checksums

s  preventing deserialization of untrusted or unsafe data or implementation of safe deserialization
methods

s  using encryption to ensure privacy of serialized sensitive data

Machine learning model files are, at their core, just software. The TensorFlow authors even call this
out in their documentation®. This means that when you load a machine learning model, you are load-
ing a serialized program. Unfortunately, machine learning platforms will load any model without per-
mission or authorization from the system owner or current user. Our review of the capabilities built
into major machine learning platforms shows a lack of mechanisms to enforce authorization policies
that specify the conditions under which a model can be loaded and executed. Additionally, there are
no built-in mechanisms to verify the provenance of a model file or ensure its integrity through check-
sum validation against its original source.

In fact, our research has shown machine learning platforms store their models in formats that are sus-
ceptible to tampering; models at rest or in transit are open to manipulation by untrusted parties*-*i,
Even a model that a party has trained themselves may be unsafe when later deserialized because there

is no mechanism in place to help ensure the integrity of the file while it is at rest or in transit.

A model represents a significant amount of research, development, labor, and resources. The parame-
ters contained in the file are often proprietary and sensitive information about operations, customers,
or the solution to a difficult problem. Items contained in the model file could leak sensitive infor-
mation about a model’s structure, how it was trained, or its usage. Even if the model is to be made
public in the future, an organization may want to keep it private until the intended date of release.
Moreover, for models that are completely private, an organization might have regulatory require-
ments, like the General Data Protection Regulation (GDPR), to further protect the data contained in
the model file.

As we look forward, we see more platform providers and more model formats being introduced into
the machine learning ecosystem. Until now, each creator has produced their own proprietary formats
for model file storage and sharing. Some actors, like Hugging Face and Open Neural Network Ex-
change (ONNX), are defining standardized formats to make model files more secure and portable;
however, even their formats have been shown to have security flaws*i-*V and the community is not
converging on either of these formats but instead continuing to use discrete proprietary formats. With
an ever-increasing number of model formats, it will be impossible for consumers to keep up to date
with all formats and their respective security risks™. This speaks to the need for standardization across

the industry.

So far, we have outlined what we view as some pressing issues for model files:

e Model files are code but are not treated or managed with the same rigor as traditional code.
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e  Poor practices around serialization and deserialization make them vulnerable to tampering and
exploitation.

e  The existence of numerous formats, each with distinct and potentially unique weaknesses & vul-
nerabilities, adds to complexity and risk.

Data loaders do not verify and authorize

As we turn our attention to data and the data centeredness of the machine learning process, we see that
machine learning platforms are data centric; however, they do not provide good mechanisms for track-
ing data provenance nor ensuring data consistency in a standardized way. Without data provenance
tracking and consistency verification, it is difficult to determine what training data was used to train a
model, whether those data were verified, or whether those data were authorized or approved to be part
of the dataset.

Xvi

Data poisoning™"' is a serious adversarial machine learning threat that can create backdoors in machine
learning models. The current practice for machine learning systems is to use labels obtained from vari-
ous annotation file formats as the base mechanism for data loading. These annotation formats do not
typically contain checksums for the files that they represent thus allowing an adversary to easily
switch or edit data files to suit their purposes. This flaw exists across all public datasets that we know
of, regardless of their size. Nicholas Carlini et al. have shown that a lack of data integrity checks
means that models can be poisoned even when their training data is web-scale*"!i, Even though poison-
ing attacks can be executed through various methods, incorporating robust data integrity checks sig-
nificantly reduces the attack surface and subsequent risk exposure by limiting the tractability of tam-

pering with models and datasets.

Similar to models, there is no cryptographic signing and chain of custody tracking for annotation or
data files, so it is hard to determine their provenance. Without a mechanism to verify the integrity or
origin of data, it is not possible to automate authorization, chain of custody, nor integrity checks be-
fore the data is used in a machine learning workflow. This means that anyone with access to the anno-
tation files can alter their integrity to add or remove data items into a training process. With the addi-
tion of cryptographic signing and change of custody tracking, system owners will be able to determine
who authored and authorized data files for use in a machine learning system.

Lastly, there is no automated catalog or journal created by machine learning systems to track the train-
ing of a model. This would be especially helpful for consumers of public model zoos where, other
than a textual description, there is no record of what data was used to train a model. For example,
ImageNet® has several versions that have been created over its lifetime, some of which have known
weaknesses. Prior to 2020, models trained on ImageNet were found to underperform on

8 ImageNet is a large image database that has become the primary backbone for computer vision
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underrepresented groups of people*i, Because there is no catalog of the data a model has been
trained on, there is no way to determine if the ImageNet backbone in a particular model has these is-
sues or not. It is vital that users can easily know on what data a model was trained, validated, and
tested.

In this section we have outlined that data loaders should:
e  Incorporate checksums and signatures to ensure file integrity.

e  Implement minimal chain-of-custody mechanisms that focus on preventing data tampering and at
the same time assess its suitability for training.

e  Have a data cataloging mechanism that couples data and models together with sufficient clarity
to enable a third party to determine what data was used to train, validate, and test a model.

Securing Models and Data Loaders

When trying to implement security for the machine learning process, there is a simple rule of thumb:
If you are unsure of the provenance or do not trust the provider of the model or data, then you should
not load it, just as you should not load an unknown program on your computer system. Model creators
and consumers need a consistent, reliable, and secure way to work with model and data files. To this
end, we suggest that whenever a model or data is present, security controls are implemented and uti-
lized in a reliable and verifiable way.

We believe the best place to implement security controls is at the organizational level of the machine
learning platform. While engineers of machine learning systems can do this individually, there are is-
sues in doing so. Firstly, it has been shown that correctly implementing security controls is a very dif-
ficult task. When implemented by novice personnel, errors can be introduced that increase the amount
of risk****_ This leaves opportunity for controls to be improperly implemented or circumvented. Sec-
ondly, if each engineer or organization discretely implements security controls, this will create an eco-
system of non-compatible implementations in an area where standardization is needed.

Having established that the best place for standardized security controls is in the machine learning
platforms themselves, we will present a few controls that should be implemented as a first step to
make these platforms more secure by design.

Encryption, such as National Institute of Standards & Technology (NIST) AES-256** is the gold
standard for keeping data private, and it should be implemented in a standardized way on all model
formats. This helps producers of models ensure that their models are private while at rest or in transit.
Additionally, because the ability to inspect a model is key to performing analysis, encryption helps
model producers keep their models more private and secure from adversarial actors such as threats
from adversarial machine learning.

Cryptographic checksums and signatures, which are commonly used in cybersecurity, can address two
critical issues in securing machine learning model files: verifying the creator of a model file and
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detecting any tampering since its creation. We propose that model creation platforms should support a
checksum and signing standard to help model consumers understand who created a model and deter-
mine whether it has been modified. This also aids Machine Learning Operations (MLOps) to help en-
sure that model integrity is intact throughout the whole process.

Authorization controls protect systems by denying actions without owners’ authorization. Therefore,
machine learning platforms should support a standardized model authorization framework based on
cryptographic signatures. This helps platform owners create Allow and Deny lists to ensure that only
models of their choosing are loaded and executed.

Having looked at how cryptographic methods and authorization mechanism can be used to secure ma-
chine learning models, let’s now look at how these methods can be used to secure the data loaders that
are used to train machine learning systems. We recommend the use of a secure data loader that can be
used by consumers to ensure, validate, and enforce robust data management practices.

The first component of a secure data loader is a robust method to verify checksums and confirm the
authorization of data items before loading them. Data file checksums should be calculated and verified
before reading them into memory for use in machine learning systems. This will ensure that the data
used in the system has not been altered from the form meant to be used for training or verification.
The data loader must also contain an authorization system that denies loading of files with invalid
checksums using signed annotation files and a list of data items that are allowed or denied based on a
cryptographic signature. Creators of machine learning systems can use this mechanism to ensure that
data provided to the system is allowed and has the intended integrity.

A second component of a secure data loader is a data journaling mechanism that can be used to track
what data items a model was trained on, their checksums, and any signatures that are present on the
data items. In addition, a journaling mechanism should have the capacity to add its own cryptographic
signature to the journal so its integrity can be verified later. This journaling mechanism will help solve
issues around data provenance and versioning that exist in modern machine learning pipelines. Ideally,
this journal could be included as part of a standardized model file so that future users of the model
know the origins of the model.

The last capability we envision in a secure data loader is the ability to handle encrypted data. When
trained on public data, there may not be a need for a model and data loader to support loading en-
crypted data. However, some system owners may want or need to keep data private during the training
process. To do this, a secure data loader should support reading encrypted data and properly disposing
of it after use.

In this section, we discussed:

o  the need for the standardization of model cryptographic capabilities, and we are not alone in this
belief; the National Security Agency’s (NSA) “Guide for Deploying Al System Securely” also
highlights the need for cryptographic methods in the model deployment process™. For some of
these items, the industry is independently moving to create solutions, like ONNX and Hugging-
Face safetensors, but without standardization, these discrete efforts further fragment the model
format landscape.
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o  the serious and urgent necessity for the industry to come together and standardize on a machine
learning model format that provides portability, flexibility, and cryptographic security controls.

o how cryptographic controls and journaling can be built into the data loading process. Without
cryptographic capabilities, it is impossible to ensure the confidentiality and integrity of the entire
machine learning lifecycle from data ingestion to model creation to deployment.

Conclusions

In this paper we discussed the need to secure machine learning models and the data loading mecha-
nisms used to train them; the real and immediate need for the application of traditional security con-
trols to machine learning platforms; and the need for more standards and collaboration in the machine
learning industry. It is vital that these needs be met otherwise the risks to Al systems will continue to
grow likely manifesting as security breaches, reputational damage, operational disruptions, and finan-
cial loss.

In sum, we offer three suggestions to the machine learning platform providers and major players:

e  Provide verified and consistent cryptographic controls, such as encryption, signatures, and check-
sums, in model and data related processes across all platforms.

e  Implement authorization mechanisms to allow system owners to ensure unauthorized content is
denied loading into the system.

o  Ensure that standardized processes, platforms, and workflows around machine learning products
enforce good cyber and Al hygiene practices.

Instead of each organization acting independently to implement these suggestions, we recommend the
creation of a community-driven standards body. This body should consist of members from industry,
government standards bodies, and academia who will work together to ensure the controls, processes,
and procedures that drive Al are consistent, reliable, and secure.

In this paper, we have focused on specific issues where there are viable solutions using traditional

cryptographic controls. Additional issues include those found in community interaction with model
and data repositories, as well as security concerns found lower in the computing stack, like memory
management on GPUs
recently becoming apparent. These additional security concerns only strengthen the need for a holistic

il XXV and model tampering via machine learning compilers™”, that are only
implementation of security mechanisms across the machine learning pipeline. It is our hope that this
paper will inform and inspire others to focus on the steps necessary to ensure that Al products and sys-
tems are secure by design.
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