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Abstract 
Cyber hygiene has come to represent the basic tools, processes, and knowledge necessary for opera-
tions of a secure and reliable system. Until now, the field of artificial intelligence (AI) has been devel-
oping at a fast pace with security a secondary consideration. The absence of a strong emphasis on se-
curity has led to the emergence of poor standard practices within the AI community, creating AI 
systems with inherent vulnerabilities and security issues. This work aims to identify and analyze these 
problematic practices specifically related to the hygiene of models and data in AI products. Further-
more, it also identifies remedial controls, inspired by traditional cybersecurity principles, to help the 
AI community strengthen its security posture and improve its overall cyber hygiene.  

Introduction 
The pace of artificial Intelligence (AI) development has been staggering since the first release of com-
pute unified data architecture (CUDA) in 2007 followed by TensorFlow in 2015 and PyTorch in 2016. 
These packages have come to form the basis of many machine learning solutions, in both industry and 
academia, but they were only the first of a series of platforms in the machine learning space. Until 
now, the AI community has been working hard at solving difficult technical problems and adding fea-
tures to existing platforms to drive productivity; however, it is time for the community to incorporate 
security as a vital part of the platforms. Improving AI product security will improve industry security. 
This poses a question: how can we improve AI security practices from the product level?  

With each passing month, the need to establish good security practices and mechanisms in the AI field 
becomes more obvious. The field of machine learning has repeatedly accepted poor security practices 
which have led to 
• threat models around the use of model zoos1 such as Tensorflow Hub and PyTorch Model Zoo

without signatures or checksumsi

____________ 

1 Model zoos are a collection of trained models that are released for distribution. 
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• poor practices around deserialization of untrusted models and dataii,iii

• the use of models without a log, journal, or manifest detailing on what data they were trainediv

This paper focuses on these practices around models and data that machine learning practitioners 
freely exchange between themselves both within organizations and on the public internet.  

AI systems and frameworks are software; therefore, traditional cybersecurity-based vulnerabilities 
must be appropriately managed. Consequences of cybersecurity vulnerabilities being exploited in AI 
system include stealing a model file that is at rest or in transit, tampering with data on a filesystem or 
in a database to change what a model learns, and altering a model file at rest or in transit to influence 
how a model performs. Google’s Secure AI Framework (SAIF)v further names and discusses these 
vulnerabilities in greater detail and describes a secure-by-default framework to be an effective mitiga-
tion; however, secure-by-default platforms do not currently exist. Fortunately, there are existing secu-
rity controlsvi and proceduresvii that can help mitigate these traditional cyber risks. Securing models 
and data loaders, as described throughout in this paper, is the first step on the path to securing a ma-
chine learning framework. If implemented, these controls can effectively reduce the risk for both tra-
ditional cyber-based and Adversarial Machine Learning2 attacks and vulnerabilities. 

This paper seeks to outline where traditional cybersecurity controls should be available within AI soft-
ware packages and to identify places where formats and processes should be standardized. By adopt-
ing traditional cybersecurity controls, the AI field and community will benefit from decades of re-
search into mechanisms such as encryption, hashing, and checksums, thus reinforcing proven and 
effective cybersecurity practices as common processes and procedures inherently making AI more se-
cure. 

We view models and data loaders as the most pressing and in need of improvement. Models and data 
loading are the two places in the machine learning workflow where items are frequently loaded from 
rest or are in transit from local and remote sources thus making them most vulnerable. Items that are at 
rest or in transit are susceptible to tampering, especially when they are acquired from remote sources 
of unknown provenance. Cryptographic controls, as well as robust verification mechanisms when 
working with model files and data, can help secure these parts of the machine learning workflow.  

Model files lack integrity, privacy, and authorization mechanisms 
A model file is the serialized representation of a machine learning model. Because model files need to 
exist beyond volatile memory, they must be saved in a format that makes them easy to use later or 
share with others. When a system is reading in serialized data from possibly unknown sources, there is 
opportunity for insecure deserializationviii issues. The Open Worldwide Application Security Project 

____________ 

2 Adversarial Machine Learning attacks target the machine learning components in a system. See our previous work 
on this subject. (reference AML Blog, counter AI document) 
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(OWASP) is an organization that tracks common vulnerabilities in software applications. Insecure 
deserialization from untrusted sources has consistently been the OWASP Top 10 lists since 2017ix. In 
response, the field of cybersecurity has established methods, processes, and controls that should be in 
place when handling deserialization from untrusted sources, such as 
• maintaining data integrity via the use of checksums 
• preventing deserialization of untrusted or unsafe data or implementation of safe deserialization 

methods 
• using encryption to ensure privacy of serialized sensitive data 

Machine learning model files are, at their core, just software. The TensorFlow authors even call this 
out in their documentationx. This means that when you load a machine learning model, you are load-
ing a serialized program. Unfortunately, machine learning platforms will load any model without per-
mission or authorization from the system owner or current user. Our review of the capabilities built 
into major machine learning platforms shows a lack of mechanisms to enforce authorization policies 
that specify the conditions under which a model can be loaded and executed. Additionally, there are 
no built-in mechanisms to verify the provenance of a model file or ensure its integrity through check-
sum validation against its original source.  

In fact, our research has shown machine learning platforms store their models in formats that are sus-
ceptible to tampering; models at rest or in transit are open to manipulation by untrusted partiesxi,xii. 
Even a model that a party has trained themselves may be unsafe when later deserialized because there 
is no mechanism in place to help ensure the integrity of the file while it is at rest or in transit. 

A model represents a significant amount of research, development, labor, and resources. The parame-
ters contained in the file are often proprietary and sensitive information about operations, customers, 
or the solution to a difficult problem. Items contained in the model file could leak sensitive infor-
mation about a model’s structure, how it was trained, or its usage. Even if the model is to be made 
public in the future, an organization may want to keep it private until the intended date of release. 
Moreover, for models that are completely private, an organization might have regulatory require-
ments, like the General Data Protection Regulation (GDPR), to further protect the data contained in 
the model file.  

As we look forward, we see more platform providers and more model formats being introduced into 
the machine learning ecosystem. Until now, each creator has produced their own proprietary formats 
for model file storage and sharing. Some actors, like Hugging Face and Open Neural Network Ex-
change (ONNX), are defining standardized formats to make model files more secure and portable; 
however, even their formats have been shown to have security flawsxiii,xiv, and the community is not 
converging on either of these formats but instead continuing to use discrete proprietary formats. With 
an ever-increasing number of model formats, it will be impossible for consumers to keep up to date 
with all formats and their respective security risksxv. This speaks to the need for standardization across 
the industry. 

So far, we have outlined what we view as some pressing issues for model files: 
• Model files are code but are not treated or managed with the same rigor as traditional code. 
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• Poor practices around serialization and deserialization make them vulnerable to tampering and 
exploitation. 

• The existence of numerous formats, each with distinct and potentially unique weaknesses & vul-
nerabilities, adds to complexity and risk. 

Data loaders do not verify and authorize 
As we turn our attention to data and the data centeredness of the machine learning process, we see that 
machine learning platforms are data centric; however, they do not provide good mechanisms for track-
ing data provenance nor ensuring data consistency in a standardized way. Without data provenance 
tracking and consistency verification, it is difficult to determine what training data was used to train a 
model, whether those data were verified, or whether those data were authorized or approved to be part 
of the dataset. 

Data poisoningxvi is a serious adversarial machine learning threat that can create backdoors in machine 
learning models. The current practice for machine learning systems is to use labels obtained from vari-
ous annotation file formats as the base mechanism for data loading. These annotation formats do not 
typically contain checksums for the files that they represent thus allowing an adversary to easily 
switch or edit data files to suit their purposes. This flaw exists across all public datasets that we know 
of, regardless of their size. Nicholas Carlini et al. have shown that a lack of data integrity checks 
means that models can be poisoned even when their training data is web-scalexvii. Even though poison-
ing attacks can be executed through various methods, incorporating robust data integrity checks sig-
nificantly reduces the attack surface and subsequent risk exposure by limiting the tractability of tam-
pering with models and datasets. 

Similar to models, there is no cryptographic signing and chain of custody tracking for annotation or 
data files, so it is hard to determine their provenance. Without a mechanism to verify the integrity or 
origin of data, it is not possible to automate authorization, chain of custody, nor integrity checks be-
fore the data is used in a machine learning workflow. This means that anyone with access to the anno-
tation files can alter their integrity to add or remove data items into a training process. With the addi-
tion of cryptographic signing and change of custody tracking, system owners will be able to determine 
who authored and authorized data files for use in a machine learning system.  

Lastly, there is no automated catalog or journal created by machine learning systems to track the train-
ing of a model. This would be especially helpful for consumers of public model zoos where, other 
than a textual description, there is no record of what data was used to train a model. For example, 
ImageNet3 has several versions that have been created over its lifetime, some of which have known 
weaknesses. Prior to 2020, models trained on ImageNet were found to underperform on 

____________ 

3  ImageNet is a large image database that has become the primary backbone for computer vision 
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underrepresented groups of peoplexviii. Because there is no catalog of the data a model has been 
trained on, there is no way to determine if the ImageNet backbone in a particular model has these is-
sues or not. It is vital that users can easily know on what data a model was trained, validated, and 
tested. 

In this section we have outlined that data loaders should: 
• Incorporate checksums and signatures to ensure file integrity. 
• Implement minimal chain-of-custody mechanisms that focus on preventing data tampering and at 

the same time assess its suitability for training. 
• Have a data cataloging mechanism that couples data and models together with sufficient clarity 

to enable a third party to determine what data was used to train, validate, and test a model.  

Securing Models and Data Loaders 
When trying to implement security for the machine learning process, there is a simple rule of thumb: 
If you are unsure of the provenance or do not trust the provider of the model or data, then you should 
not load it, just as you should not load an unknown program on your computer system. Model creators 
and consumers need a consistent, reliable, and secure way to work with model and data files. To this 
end, we suggest that whenever a model or data is present, security controls are implemented and uti-
lized in a reliable and verifiable way.  

We believe the best place to implement security controls is at the organizational level of the machine 
learning platform. While engineers of machine learning systems can do this individually, there are is-
sues in doing so. Firstly, it has been shown that correctly implementing security controls is a very dif-
ficult task. When implemented by novice personnel, errors can be introduced that increase the amount 
of riskxix,xx. This leaves opportunity for controls to be improperly implemented or circumvented. Sec-
ondly, if each engineer or organization discretely implements security controls, this will create an eco-
system of non-compatible implementations in an area where standardization is needed.  

Having established that the best place for standardized security controls is in the machine learning 
platforms themselves, we will present a few controls that should be implemented as a first step to 
make these platforms more secure by design.  

Encryption, such as National Institute of Standards & Technology (NIST) AES-256xxi, is the gold 
standard for keeping data private, and it should be implemented in a standardized way on all model 
formats. This helps producers of models ensure that their models are private while at rest or in transit. 
Additionally, because the ability to inspect a model is key to performing analysis, encryption helps 
model producers keep their models more private and secure from adversarial actors such as threats 
from adversarial machine learning.  

Cryptographic checksums and signatures, which are commonly used in cybersecurity, can address two 
critical issues in securing machine learning model files: verifying the creator of a model file and 
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detecting any tampering since its creation. We propose that model creation platforms should support a 
checksum and signing standard to help model consumers understand who created a model and deter-
mine whether it has been modified. This also aids Machine Learning Operations (MLOps) to help en-
sure that model integrity is intact throughout the whole process.  

Authorization controls protect systems by denying actions without owners’ authorization. Therefore, 
machine learning platforms should support a standardized model authorization framework based on 
cryptographic signatures. This helps platform owners create Allow and Deny lists to ensure that only 
models of their choosing are loaded and executed.  

Having looked at how cryptographic methods and authorization mechanism can be used to secure ma-
chine learning models, let’s now look at how these methods can be used to secure the data loaders that 
are used to train machine learning systems. We recommend the use of a secure data loader that can be 
used by consumers to ensure, validate, and enforce robust data management practices. 

The first component of a secure data loader is a robust method to verify checksums and confirm the 
authorization of data items before loading them. Data file checksums should be calculated and verified 
before reading them into memory for use in machine learning systems. This will ensure that the data 
used in the system has not been altered from the form meant to be used for training or verification. 
The data loader must also contain an authorization system that denies loading of files with invalid 
checksums using signed annotation files and a list of data items that are allowed or denied based on a 
cryptographic signature. Creators of machine learning systems can use this mechanism to ensure that 
data provided to the system is allowed and has the intended integrity. 

A second component of a secure data loader is a data journaling mechanism that can be used to track 
what data items a model was trained on, their checksums, and any signatures that are present on the 
data items. In addition, a journaling mechanism should have the capacity to add its own cryptographic 
signature to the journal so its integrity can be verified later. This journaling mechanism will help solve 
issues around data provenance and versioning that exist in modern machine learning pipelines. Ideally, 
this journal could be included as part of a standardized model file so that future users of the model 
know the origins of the model. 

The last capability we envision in a secure data loader is the ability to handle encrypted data. When 
trained on public data, there may not be a need for a model and data loader to support loading en-
crypted data. However, some system owners may want or need to keep data private during the training 
process. To do this, a secure data loader should support reading encrypted data and properly disposing 
of it after use.  

In this section, we discussed: 
• the need for the standardization of model cryptographic capabilities, and we are not alone in this 

belief; the National Security Agency’s (NSA) “Guide for Deploying AI System Securely” also 
highlights the need for cryptographic methods in the model deployment processxxii. For some of 
these items, the industry is independently moving to create solutions, like ONNX and Hugging-
Face safetensors, but without standardization, these discrete efforts further fragment the model 
format landscape.  
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• the serious and urgent necessity for the industry to come together and standardize on a machine 
learning model format that provides portability, flexibility, and cryptographic security controls.  

• how cryptographic controls and journaling can be built into the data loading process. Without 
cryptographic capabilities, it is impossible to ensure the confidentiality and integrity of the entire 
machine learning lifecycle from data ingestion to model creation to deployment. 

Conclusions 
In this paper we discussed the need to secure machine learning models and the data loading mecha-
nisms used to train them; the real and immediate need for the application of traditional security con-
trols to machine learning platforms; and the need for more standards and collaboration in the machine 
learning industry.  It is vital that these needs be met otherwise the risks to AI systems will continue to 
grow likely manifesting as security breaches, reputational damage, operational disruptions, and finan-
cial loss.  

In sum, we offer three suggestions to the machine learning platform providers and major players: 
• Provide verified and consistent cryptographic controls, such as encryption, signatures, and check-

sums, in model and data related processes across all platforms.  
• Implement authorization mechanisms to allow system owners to ensure unauthorized content is 

denied loading into the system.  
• Ensure that standardized processes, platforms, and workflows around machine learning products 

enforce good cyber and AI hygiene practices. 

Instead of each organization acting independently to implement these suggestions, we recommend the 
creation of a community-driven standards body. This body should consist of members from industry, 
government standards bodies, and academia who will work together to ensure the controls, processes, 
and procedures that drive AI are consistent, reliable, and secure. 

In this paper, we have focused on specific issues where there are viable solutions using traditional 
cryptographic controls. Additional issues include those found in community interaction with model 
and data repositories, as well as security concerns found lower in the computing stack, like memory 
management on GPUsxxiii,xxiv and model tampering via machine learning compilersxxv, that are only 
recently becoming apparent. These additional security concerns only strengthen the need for a holistic 
implementation of security mechanisms across the machine learning pipeline. It is our hope that this 
paper will inform and inspire others to focus on the steps necessary to ensure that AI products and sys-
tems are secure by design.   
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