
1Why doesn’t anyone program anymore?
© 2022 Carnegie Mellon University

[[Distribution Statement A] Approved for public release and unlimited distribution

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

[Distribution Statement A] Approved for public release and unlimited distribution

Why doesn’t anyone program
anymore?

Tom Longstaff
Chief Technology Officer

2Why doesn’t anyone program anymore?
© 2022 Carnegie Mellon University

[[Distribution Statement A] Approved for public release and unlimited distribution

Who am I?

I was a programmer! Math -> Physics -> Computer Science -> Software Engineering ->
Acquisition -> Systems Engineering -> Software intensive systems and human impact

Self identify as a Computer Scientist, specializing in network cybersecurity and incident
response

PhD in automated programming

Well-versed in a dozen or so languages, focused on OO and functional programing

Conversant with a dozen or so more

Worked on many software projects using a variety of standards for software process,
culminating in DevSecOps

No one wants me to write code anymore 

3Why doesn’t anyone program anymore?
© 2022 Carnegie Mellon University

[[Distribution Statement A] Approved for public release and unlimited distribution

Where am I?

CTO at the Software Engineering Institute

A DoD sponsored R&D center at Carnegie
Mellon University (CMU)
Charged to improve the state of the art and
practice of software engineering and
cybersecurity
Added AI Engineering in 2018
Capable of conducting both fundamental
research and classified work
I'm here because of Watts and Rich Pethia, its
all about the data.

4Why doesn’t anyone program anymore?
© 2022 Carnegie Mellon University

[[Distribution Statement A] Approved for public release and unlimited distribution

What do I think about programming?

Observations
• Real SW engineering projects never start from scratch, never just write

code, and rarely focus on unintended consequences of their system
when it is reused.

• Best practice treats CODE as a first-class object, but SW architecture
is really the first-class object.

• System quality attributes hold the key to success.

Suggestions
• Modify assumptions to progress in SW process.
• Use quality attributes of the desired system and the systems to be

repurposed as the primary artifacts.
• Focus on code as supporting quality attributes and emergent behavior

of the combined system.

5Why doesn’t anyone program anymore?
© 2022 Carnegie Mellon University

[[Distribution Statement A] Approved for public release and unlimited distribution

F-35 SLOC as composed

5% Ada837% Assembly

35% C++

53% C

About 5% of the millions of on-board software lines of code come from the F-22,
written in an Ada language first deployed nearly 40 years ago.

Leverages COTS components

6Why doesn’t anyone program anymore?
© 2022 Carnegie Mellon University

[[Distribution Statement A] Approved for public release and unlimited distribution

Software Supply Chain

Reuse of systems forms a complex
software supply chain.
Systems are informally defined; quality
attributes are rarely described at all.
Mix of public and private/proprietary
repositories leads to licensing nightmares
and emergent behavior.
Lots of functionality is “not used” but
included in the final system.
Complexity leads to potential vulnerabilities;
instability; brittle systems; and difficult,
costly maintenance.

7Why doesn’t anyone program anymore?
© 2022 Carnegie Mellon University

[[Distribution Statement A] Approved for public release and unlimited distribution

Case study: SolarWinds Cyber-Attack

Intrusion that leveraged a commercial
software application made by SolarWinds
Initiated by advanced persistent threat
(APT) actors infiltrating SolarWinds supply
chain by inserting a back door
Customers downloaded the Trojan Horse
installation packages from SolarWinds,
giving attackers access the systems
running the SolarWinds product(s).
Result: emergent vulnerable infrastructure
across many companies and sectors

8Why doesn’t anyone program anymore?
© 2022 Carnegie Mellon University

[[Distribution Statement A] Approved for public release and unlimited distribution

Case study: Apache Log4j zero-day exploit

Highlights software supply chain security
Java-based logging utility
Commonly used by apps and services
across the internet
Flaw allows hackers to run code on
vulnerable machines or hack into any
application directly using the Log4j
framework
Not the first or last time this was discovered
after wide-scale distribution in an ultra-
large-scale system

SEI CERT Coordination Center (CERT/CC) Vulnerability Note on
Apache Log4j. For all CERT/CC vulnerability notes, visit
https://kb.cert.org/vuls/bypublished/desc/

9Why doesn’t anyone program anymore?
© 2022 Carnegie Mellon University

[[Distribution Statement A] Approved for public release and unlimited distribution

Software-intensive
Complex system-of-systems where components of the
system are always changing
Not simply bigger: Interdependent webs of systems,
people, policies, economics, cultures
Traditional, centralized engineering no longer adequate for
ultra-complex systems

Ultra-large-scale systems

10Why doesn’t anyone program anymore?
© 2022 Carnegie Mellon University

[[Distribution Statement A] Approved for public release and unlimited distribution

Quality (aka non-functional) attributes

Describe visible properties of a software system
and the expectations for that system’s operation
Define how well a system should perform
some action
Influence decisions about software architecture:
Designers need to analyze trade-offs between
attributes to satisfy user requirements
Often called "ilities"— such as availability, reliability,
maintainability, deployability
Some qualities may arise from emergent behavior
of a complex system and be difficult to characterize

11Why doesn’t anyone program anymore?
© 2022 Carnegie Mellon University

[[Distribution Statement A] Approved for public release and unlimited distribution

Quality attribute as first-class object

In programming, first-class object is a
function or variable that operates as other
entities in a language.
An architectural model provides a
framework to reason about software quality
attributes.
Reasoning About Software Quality
Attributes (cmu.edu)

https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=513803#:%7E:text=Software%20Engineering%20Institute%20Subjects%20Software%20Architecture%20Abstract%20Quality,influence%20on%20the%20software%20architecture%20of%20a%20system.

12Why doesn’t anyone program anymore?
© 2022 Carnegie Mellon University

[[Distribution Statement A] Approved for public release and unlimited distribution

SEI integration of SWE, AI, and Cyber

Answer to software
complexity
Model-based system
engineering using
architecture modeling of
software and hardware
AI for system analytics,
evolution, security
enforcement, affordability
Supports continuous
integration and delivery
processes

13Why doesn’t anyone program anymore?
© 2022 Carnegie Mellon University

[[Distribution Statement A] Approved for public release and unlimited distribution

Categorize
System1 Select

Security Controls2 Implement
Security Controls3

Monitor
Security Controls6 Authorize

System5 Assess
Security Controls4

Assurance arguments, T&E, and Continuous ATO

• ATO: Authority to operate—approval for information systems
• Federal agencies expend considerable resources seeking ATO approval for information systems.
• Updates require reapproval and delay deployment.
• DevSecOps pipeline can automate processes for continuous ATO.

From The Role of DevSecOps in Continuous Authority to Operate, an SEI Blog posted on October 4, 2021.

• Categorize per CNSSI 1253
• Initiate security plan
• Register system with

cybersecurity program
• Assign RMF roles

• Identify common controls
• Develop monitoring strategy
• Review/approve security and

monitoring plan
• Apply and tailor

• Document security control
implementation the security
plan

• Develop security assessment
plan

• Assess security controls
• Conduct remediation

• Prepare action plan
• Submit authorization

package

• Determine impact of changes
• Conduct remediation
• Update security plan
• Implement system

decommissioning strategy

AutomateManual

14Why doesn’t anyone program anymore?
© 2022 Carnegie Mellon University

[[Distribution Statement A] Approved for public release and unlimited distribution

U.S Air Force DoD-wide DevSecOps Managed Services Platform One merges top talent from across the U.S. Air Force
using various factories (Kessel Run, Kobayashi Maru, SpaceCAMP, and Unified Platform). It is an official DoD DevSecOps
Enterprise Services team for the DoD.

15Why doesn’t anyone program anymore?
© 2022 Carnegie Mellon University

[[Distribution Statement A] Approved for public release and unlimited distribution

Looking ahead

Model-based engineering (MBE)
linked with DevSecOps practices
Shift security left in SDLC to make
continuous security (toward zero
trust) a priority
Incorporate operational feedback
into MBE and DevSecOps
MBE and secure code in a single
pipeline
Reusing models rather than code
to start with
Updating code becomes a
customization activity

16Why doesn’t anyone program anymore?
© 2022 Carnegie Mellon University

[[Distribution Statement A] Approved for public release and unlimited distribution

Incorporation of AI

Automation and autonomy in key cyber
tradecraft areas
Trustworthiness
Risk bounds for AI/ML
New architecture AI solutions across
software lifecycle
An AI Engineering discipline
AI components that are engineered to the
size and complexity of future system needs

17Why doesn’t anyone program anymore?
© 2022 Carnegie Mellon University

[[Distribution Statement A] Approved for public release and unlimited distribution

CODE

18Why doesn’t anyone program anymore?
© 2022 Carnegie Mellon University

[[Distribution Statement A] Approved for public release and unlimited distribution

Copyright 2022 Carnegie Mellon University.

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8702-15-D-0002 with Carnegie Mellon University
for the operation of the Software Engineering Institute, a federally funded research and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as an official Government position, policy, or
decision, unless designated by other documentation.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN "AS-
IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER
INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED
FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO
FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US
Government use and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without requesting formal permission.
Permission is required for any other use. Requests for permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu.

Carnegie Mellon® is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

DM22-0437

	Why doesn’t anyone program anymore?
	Who am I?
	Where am I?
	What do I think about programming?
	F-35 SLOC as composed
	Software Supply Chain
	Case study: SolarWinds Cyber-Attack
	Case study: Apache Log4j zero-day exploit
	Ultra-large-scale systems
	Quality (aka non-functional) attributes
	Quality attribute as first-class object
	SEI integration of SWE, AI, and Cyber
	Assurance arguments, T&E, and Continuous ATO
	Slide Number 14
	Looking ahead
	Incorporation of AI
	Slide Number 17
	Slide Number 18

