Carnegie Mellon University
Software Engineering Institute

CENTER FOR CALIBRATED TRUST
MEASUREMENT AND EVALUATION (CATE)—
GUIDEBOOK FOR THE DEVELOPMENT AND
TEVV OF LAWS TO PROMOTE
TRUSTWORTHINESS

Andrew O. Mellinger, Tyler Brooks, Chris Fairfax, Daniel Justice

April 2025

DOI: 10.1184/R1/28701104

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Table of Contents

1 CaTE Guidebook Overview

1.1
1.2

1.3
1.4
1.5

Rationale and Background: Trustworthiness in ML
Focus Areas

1.2.1 Science and Technologies

1.2.2 Engineering Tools and Practices

1.2.3 Human-Machine Teaming (HMT), Tools, and Practices Evaluation Lab
1.2.4 Workforce Development

Scoping: Al Versus ML

How to Read This Guidebook

Key Findings

1.5.1 Defining Systems (From Models to Systems)
1.5.2 The Need for Concreteness

1.5.3 System Scope: Working from Small to Large
1.5.4 Conflating Al and ML

1.5.5 Continuous Learning

1.5.6 Trust, Ethics, and Conflict

1.5.7 Bootstrapping the Operationally Relevant Tests
1.5.8 Ops Cycles and Deployment

2 Trust, Ethics, and Human Systems Integration

2.1 Setting the Groundwork of Trust, Ethics, and HSI
21.1 Trust
2.1.2 Calibrated Trust
2.1.3 Trustworthiness
2.1.4 Ethics
2.1.5 Human-Systems Integration (HSI) and Human-Machine Teaming (HMT)
2.2 Trust, Ethics, and HSI Across the Product Lifecycle
2.2.1 Ethical Requirements May Not Be Explicit
2.2.2 Data Is Central to Ethics and Trust
2.2.3 Methods for Ethical Measurements May Be Inconsistent, If They Exist at All
2.2.4 Process May Not Align with Goals
2.2.5 You May Need to Update Test Plans to Deal with Ethics
2.3 Measuring Trust: Key Elements of a Trustworthy System
2.3.1 System Trustability Scale: How to Measure Trust
2.3.2 Key Findings from the SEI's Trust Study
2.3.3 Discussion of the SEI's Trust Study
3 System Context and Requirements
3.1 Recommendations for System Context and Requirements

3.1.1 Use the Defense Innovation Unit Worksheets When Defining Mission Use

NNNNOOOOOODO MDD DNWW_ A

9

9

9
10
11
12
12
12
13
13
14
14
15
15
16
17
18

21
21
21

3.1.2 Use Checklists Such as Dimensions of Autonomous Decision Making (DADs) to Identify

and Elicit undocumented TEVV Needs
3.1.3 Choose and Consolidate Analytic Methods to Identify Appropriate Metrics
3.1.4 Check If the System Safety Analysis Factors in the Function of ML Faults
3.1.5 Integrate Context-Specific Emergency Stop Mechanisms

22
22
22
22

3.1.6 Leverage Post-Event and Live-Logging Mechanisms to Provide Traceability for ML-

Dependent Processes

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

23

3.1.7 Test the System in All Conditions Outlined by Performance Requirements 23

3.2 Observations About Model Metrics 24
3.3 Commentary on System Context and Requirements 24
3.3.1 DIU Responsible Al Guidelines in Practice 24

3.3.2 ML Throughout the System 24

3.3.3 Cognitive Dissonance in the PTR Chain 26

3.3.4 Incorporating and Evaluating Fail-Safe Designs 28

3.3.5 Fault Detection 29

3.3.6 Goal Question (Indicator) Metric (GQM and GQIM) 30

3.3.7 Perception, Targeting, and Environmental Difficulty 32

3.3.8 Levels of Autonomy from Human Control to Full Autonomous Systems 35

3.3.9 Timing 36
3.3.10 Operator Task and Cognitive Loading 37
3.3.11 Dimensions of Autonomous Decision Making (DADs) 37
3.3.12 Values Criterion Indicator Observables (VCIO) 38
3.3.13 Emergency Stops 39
3.3.14 Automated Decision Transparency and Traceability 40
3.3.15 Replicable Tests for ML Components and Use Cases 41

4 Data Collection, Curation, and Management 42
4.1 Recommendations for Data Management 42
4.1.1 Assess Data Management and Datasets 42

4.1.2 Incorporate Data Provenance into Dataset Evaluation 42

4.1.3 Establish Data Governance and Compliance 43

4.1.4 Evaluate Data for Its Current Quality 43

4.1.5 Validate That Datasets Provide Full Coverage of the Operational Design Domain 43

4.1.6 Test That the System Accurately Detects Data Drift 44

4.2 Commentary on Data Management 44
4.2.1 Data and Ethical Principles for Al 44

4.2.2 Data Splitting 46

4.2.3 Verifying Dataset Relevancy 46

4.2.4 Data Augmentation for Training and Testing 47

4.2.5 Data Labeling 48

5 ML System Design 50
5.1 Commentary on ML System Design Testing 51
6 Model Design, Development, and Testing 52
6.1 Recommendations for Model Design, Development, and Testing 54
6.1.1 Start with Good, Appropriate Models and Metrics 54

6.1.2 Tailor the Pipeline to the Mission Need 54

6.1.3 Get Control of Probabilistic Software Development Experiments 54

6.1.4 Confirm Through Testing That Processes Are Effective 54

6.1.5 Consider Robustness and Model Calibration When Designing the System 54

6.1.6 Segment Testing for Performance Insights 55

6.2 Commentary on Model Design, Development, and Testing 55
6.2.1 Repeatability, Reproducibility, and Replicability 55

6.2.2 Base Model Selection 56

6.2.3 Training Practices 58

6.2.4 Metric Selection 59

6.2.5 Overfitting 60

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

6.2.6

Designing Model Tests

6.2.7 Responsible Engineering Practices, Processes, and Tools
6.2.8 Model Cards, Outputs, and Standardization
6.2.9 Counter Al
7 System Development
7.1 Commentary on System Development
7.1.1 Allocate Extra Time for Process and Technology Maturation
7.1.2 Prepare for Higher Computing Resource Demands
7.1.3 Build One to Throw Away (You Will Anyway)
7.1.4 Team Culture May Not Support Testing
7.1.5 Allocate More Time and Effort to Develop and Manage Baseline Tests
7.1.6 ML Development Tools Have Higher Resource Demands
7.1.7 Placeholder Components Provide Extra Value During MLES Development
7.1.8 Code Instrumentation Provides Higher ROI for ML Systems

8 System DT&E
Recommendations for System DT&E

8.1

8.2

8.1.1
8.1.2
8.1.3

Expand Reproducibility to System Tests
Capture All Test Configurations and Outputs
Define an Explicit Maturation Testing Path

Commentary on System DT&E

8.2.1
8.2.2
8.2.3
8.2.4
8.2.5
8.2.6
8.2.7
8.2.8
8.2.9

Reproducibility, Determinism, and Statistics
Maturing the Testing

Reduce, Adapt, and Reuse

Evolve the Tests

Perform Field Testing as Early as Possible
RAIl and DIU Guidelines

Capture and Share Data

Security

Runtime Measures are Still Applicable

9 System OT&E
Recommendations for System OT&E

9.1

9.2

9.3

References

9.1.1
9.1.2

Allocate Significant Additional Time and Effort to Testing
Capture Datasets for Evaluation and Replay

Observations on System OT&E

9.2.1
9.2.2

9.2.3 Decision-Making Systems Require Greater Resources to Develop and Test than

Testing a Model Is Not the Same as Testing a System
Data Is a Small Reflection of the Test Environment

Previous Systems

Commentary on System OT&E

9.3.1
9.3.2
9.3.3
9.3.4
9.3.5
9.3.6
9.3.7

Test Datasets and Model Interaction

Continuous Learning and Emergent Behavior

Field Updates

lteration and MLOps

Reliability and Robustness: Uncertainty Quantification
Counter Al

Transparency, Observability, and Governability

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

60
61
62
63

65
65
65
65
66
66
66
66
67
67

68
69
69
69
69
69
69
70
71
72
72
72
73
74
75

76
77
77
77
77
77
78

78
78
78
79
80
80
81
81
82

83

Legal Markings

Contact Us

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

94

95

Carnegie Mellon University
Software Engineering Institute

1 CaTE Guidebook Overview

The purpose of this guidebook is to provide operational test and evaluation (OT&E) and developmen-
tal test and evaluation (DT&E) personnel with observations and recommendations that help them ef-
fectively develop, test, evaluate, verify, and validate (TEVV) lethal autonomous weapons systems
(LAWS) that function with the use of machine learning (ML) models, specifically with regards to the
ideas of system trustworthiness and operator trust in these system.

This guidebook is a product of the Center for Calibrated Trust Measurement and Evaluation (CaTE),
which is a program that was jointly chartered by the Office of the Under Secretary of Defense for Re-
search and Engineering (OUSD(R&E)) and the Carnegie Mellon University Software Engineering In-
stitute (CMU SEI). The main purpose of CaTE is to establish methods for evaluating operator trust
and to assure the trustworthiness of artificial intelligence (Al) systems. CaTE aims to “[address] fun-
damental complexities and engineering challenges associated with Al assurance, and developing some
of the standard framework methods and processes for how the Pentagon evaluates trustworthiness”
[Harper 2023].

The need for this guidebook arises out of Department of Defense (DoD) Directive 3000.09, which was
updated in January of 2023 to allow for “developing and using autonomous and semi-autonomous
functions in weapon systems” up to and including those that use lethal force [DoDD 3000.09]. Devel-
opment of such autonomy often entails incorporating Al into these systems, so the directive seeks to
provide policy and guidance around the use of Al. To that end, this guidebook aims to support the fol-
lowing objectives from DoD Directive 3000.09:

o understand and evaluate operator trust
e provide evidence about a trustworthy system
o establish how to create a trustworthy system that also promotes operator trust

o promote responsible Al (RAI) principles and tenets

1.1 Rationale and Background: Trustworthiness in ML

On May 26. 2021, the DoD issued the memorandum “Implementing Responsible Artificial Intelli-
gence in the Department of Defense.” This memorandum outlined the five DoD Al ethical principles,
which dictate that Al should be responsible, equitable, traceable, reliable, and governable. In addition,
it defines the following six foundational tenets: RAI governance, warfighter trust, Al product and ac-
quisition lifecycle, requirements validation, RAI ecosystem, and Al workforce. All the principles and
tenets promote the establishment of a responsible set of processes for developing a trustworthy and
trustable system. However, we want to emphasize the second tenant on warfighter trust, which is as
follows: “Ensure warfighter trust by providing education and training, establishing a test and

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY Design: REV-03.18.2016.0 | Template: 02.04.2025
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

evaluation and verification and validation framework that integrates real-time monitoring, algorithm
confidence metrics, and user feedback to ensure trusted and trustworthy Al capabilities” [DoD
2021a].

Although this guidebook supports all the principles and tenets throughout all the stages of the product
lifecycle, the core goal of the CaTE program is to promote trust. We therefore quote the “warfighter
trust” tenet to emphasize the leading aims of this guidebook. Trust is essential because any operator
that doubts the behavior of any machine might be distracted from his or her focus, and the most mini-
mal of distractions can significantly decrease the effectiveness of individual operators as well as entire
teams.

To aid in the TEVV of LAWS while making the tenet of trust central, this guidebook provides recom-
mendations and observations on how to discuss, design, and integrate trust, trustworthiness, calibrated
trust, and ethics based on emerging practices, frameworks, metrics, measures, formats, and tools. We
provide direct contributions toward the understanding of trust, trustworthiness, and ethics and provide
specific ways of evaluating them with respect to LAWS. The goal of CaTE is not to reinvent system
or software engineering but to build on strong, existing foundations while incorporating the latest and
greatest innovations from current investment. However, current standards are few, and the ones that
exist tend to focus on non-lethal autonomy in the public sector, such as self-driving cars. These stand-
ards don’t necessarily account for the complexities covered in DoDD 3000.09, and there is currently
no centralized standard that precisely targets CaTE’s scope.

To achieve trustworthiness, we must address numerous issues in several key areas. The use of Al, and
in particular ML, introduces new and significant challenges in the development and testing of mobile
LAWS, especially ML that affects decision-making processes involved in navigation, perception, tar-
geting, and response. Semi-autonomous fixed weapons systems such as the close-in weapon systems
(CIWS)! have been in use for decades, and the engineering and testing of these systems is well under-
stood. However, ML introduces many additional complexities such as a dependency on data or train-
ing environments, ambiguity in outputs, increased system demands, and vulnerability to deception,
among many others. To address these issues in detail, the recommendations we provide in this guide-
book assume the use of the highest complexity devices—such as small, form factor quadrupeds—op-
erating in the most challenging environments—such as urban conflicts with a mix of civilians and
warfighters.

In addition to these complexities that determine whether ML works as technically intended, the use of
ML in LAWS and its ability to make decisions also has ethical implications—another enormous con-
sideration for system trustworthiness and promoting user trust. Ethics is a complex and nuanced sub-
ject, and it is often situationally dependent and based on dynamic and often subtle factors. For this rea-
son, it is critical that commanders and operators understand and trust that the machine’s behavior is
governed by a well-understood and clearly communicated set of ethical rules or models. Therefore,

! For a short definition and overview of close-in weapon systems, see the following: https://en.wikipedia.org/wiki/Close-

in_weapon_system

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 2
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

https://en.wikipedia.org/wiki/Close-in_weapon_system
https://en.wikipedia.org/wiki/Close-in_weapon_system

systems and design rules demand significant effort and clear engineering requirements during devel-
opment to meaningfully test and verify them later.

We support using the idea of calibrated trust to guide developers in making decisions about specific
environments and conditions when building these systems. Calibrated trust provides a behavior profile
for the machine based on its performance in specific environments and situations so that users can
have a high level of trust in its behavior, rather than relegating trust to a baseless feeling. In addition,
to support ethical behavior, we introduce the concept of conduct assurance. The National Institute of
Standards and Technology (NIST) defines assurance as follows: “Grounds for justified confidence
that a claim has been or will be achieved” [NIST 2024]. We therefore emphasize the importance of
defining ethical rules to help generate trust by establishing the conduct that the machine must follow,
and, throughout this guidebook, we propose a variety of ways that conduct assurance case claims can
be supported with practices and artifacts throughout the development and testing process.

The significant challenges we’ve outlined here in addition to the constant flux in ML technologies ne-
cessitate frequent reevaluation of testing techniques, tools, and practices. These challenges and the
constantly changing landscape hinder the identification of best practices and consequently the stand-
ardization of approaches, as many of them have yet to exist. We’ve tried to create a complementary
set of practices we think provide a body of evidence that is sufficient to TEVV these products. How-
ever, to continue supporting the changing landscape of ML, we intend to update this guidebook on a
regular basis to provide better recommendations and observations about the current state-of-the-art
and state-of-the-practice techniques as they continue to evolve with the technology. There are many
unsolved challenges, and sections of this guidebook provide “best effort” solutions, guidance for how
to fill gaps, expectations for the future, and calls for future work until better options are available.

1.2 Focus Areas

The following sections provide an overview and explanation of how we developed this guidebook,
and how its structure can help readers understand what it provides. The CaTE pilot focused on four
areas during its development, which we outline in these sections to explain how we address each area.

1.21 Science and Technologies

This area addresses the fundamental basics of Al and ML. Because Al and ML techniques and tools
change on a regular basis, this focus area tries to answer questions about how model capability and
performance change over time. It looks at topics like measures and metrics of individual model perfor-
mance, measures and metrics of model ensembles, model reliability, robustness and calibration, and
how these issues affect trustworthiness and operator trust. Ultimately, CaTE is interested in how the
end systems perform, but such assessment isn’t possible without understanding their base technolo-
gies.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 3
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

1.2.2 Engineering Tools and Practices

This area addresses practices, frameworks, processes, formats, and tools that can help produce a body
of evidence in support of an assurance case towards trust, trustworthiness, and ethical behavior.

Interest in Al has increased rapidly in recent years, resulting in staggering growth in investment. Ac-
cording to a recent article in Crunchbase News, Al startup funding alone exceeded $100 billion in
2024 [Teare 2025], dwarfing the DoD budget of $1.8 billion for 2025 [Vincent 2024]. This funding
has led to enormous growth in the tools available for Al, and it does not even directly include autono-
mous systems. In such a quickly changing environment, we aim to recommend some reasonable start-
ing points for adopting new and useful tools for important processes and approaches to ML develop-
ment and testing.

1.2.3 Human-Machine Teaming (HMT), Tools, and Practices Evaluation Lab

We can’t understand the effectiveness of science and technology practices until they are applied. This

area emphasizes the importance of having a hands-on environment where we examine tools and prac-

tices to evaluate and measure how they support the trustworthiness case and operator trust. We seek to
answer questions such as the following:

e How do tools and practices reveal important information about the development process and sup-
port observability, governability and equitability?

e How effective are they at achieving desired metrics?
e How easy are they to learn?
e How easy are they to use?

e How easy are they to adapt to new machines?

1.2.4 Workforce Development

This area promulgates the best practices and advancements in the states of the art and practice to de-
liver them quickly and effectively into the hands of our users. This area focuses on developing and
transitioning the most effective and meaningful training in the areas of foundational Al engineering
and the effective TEVV of LAWS to guide the adoption and use of the practices and tools we evalu-
ate.

1.3 Scoping: Al Versus ML

There are many definitions of Al currently in use even within the DoD. The Defense Acquisition Uni-
versity (DAU) has provided a “DoD Al Definition Reference Chart” that attempts to reconcile and
align three different definitions. In general, these definitions have similar goals in that they stress how
the Al is used to recognize patterns, make recommendations, and support decision-making in ways
that normally require human intelligence [DAU 2024].

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 4
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

There are many ways to provide the capabilities outlined in these definitions of Al, such as through
expert systems, fuzzy logic, and ML, to name a few. Currently, most technological advancement fo-
cuses on ML over these other methods and, more specifically within ML, on deep neural nets (DNNs).
For these reasons, we focus on the subset of ML technologies within the larger field of Al throughout
this guidebook.

ML approaches bring significant changes to existing engineering practices. Consequently, CaTE’s fo-
cus is on ML-enabled systems [Horneman 2019]. This version of the guidebook addresses supervised
learning, and we therefore leave reinforcement learning, and its challenges, to subsequent versions.

1.4 How to Read This Guidebook

The primary intended audience for this guidebook is the personnel performing the development and
operational TEVV of DoD LAWS for which adherence to the principles of RAI and DoDD 3000.09
are required. Such individuals will benefit from reading this guidebook in its entirety.

Related audiences, such as Al, ethics, and society developers and acquisition personnel, will also find
this guidebook of significant benefit to help them understand how to develop and evaluate trustworthy
systems. All other audiences are likely to get the most value by reading the Overview chapter and the

observations and challenges sections of ensuing chapters.

The main chapters in this book address what we believe to be most important for the TEVV of LAWS.
The book is not intended to comprise an exhaustive list of all TEVV concerns, but the topics we cover
will serve to guide audiences through their most pressing issues. The first four chapters cover broad
issues and cross-cutting concerns such as trust, ethics, and software development life cycles (SDLCs).
The subsequent chapters provide guidance at various stages of the SDLC, focusing on how the intro-
duction of ML impacts LAWS. We suggest reading the first four chapters entirely, and then the re-
maining as needed.

Each of the subsequent chapters contains an overview of what the chapter covers, guidance on the
topic, observations our team has made, challenges personnel will face, future work we expect will be
needed on this topic, and, finally, details to provide background for the previous sections.

1.5 Key Findings

Al, ML, and autonomy are not new, but they are undergoing rapid evolution with many contributors
across academia, industry and government. Such rapid evolution results in the addition of capabilities
at a tremendous pace to the both the state of the art and state of the practice. Due to this constant
change and rush to market, we have yet to reach a consistency or a sufficient level of maturity from
which to establish best practices and techniques that could provide an engineering rigor for safety crit-
ical systems such as LAWS. The fields of Al and robotics both contribute to these issues as well as to
other technical, process, and cultural challenges in the TEVV of LAWS [Afzal 2020; NAS 2023; Ris-
mani 2023]. In this guidebook, we provide guidance for many of these areas, and the following sec-
tions provide brief summaries of the findings and themes that came out of this work.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 5
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

1.5.1 Defining Systems (From Models to Systems)

Testing is based on the premise of knowing what the right answer is. In systems, “the right answer”
comes from real mission needs, operators, and practical experience. However, finding those real ex-
amples has been difficult because fully autonomous, squad-level weapons systems are rare. We were
therefore unable to find publicly available examples or guidelines for writing good Al or ML require-
ments, especially for LAWS.

Establishing guidelines to generate consistent goals, language, measures, metrics, and techniques for
specifying Al, ML, and LAWS requirements would significantly improve the ability to test these sys-
tems. Similarity in system specifications, even for different systems, enables the transfer of knowledge
and the extension of approaches to other systems. We explore this area in Chapter 5 and provide ex-
ample guidelines.

1.5.2 The Need for Concreteness

The sources we reviewed offer sound, high-level guidance, but they lack concrete specifics. While
such generality is understandable given rapid technological advances, it still places significant burden
and uncertainty on individual projects. As the field evolves, we anticipate that publications will move
beyond general questions like “Does the system have good transparency?”” and toward measurable
evaluation frameworks like those offered by IEEE 7000-2021, which provides ordinal transparency
levels for autonomous systems [IEEE 7000-2021].

1.5.3 System Scope: Working from Small to Large

Most of the sources we consulted focus on single models or small sets of similar models. A few
sources, such as those that deal with self-driving cars, address large systems of models with complex
integration logic. As we move into more complex, multi-model, ML-enabled systems—and especially
LAWS—we need to emphasize and capture how we specify, design, and test advanced hybrid systems
to help develop the LAWS engineering discipline.

1.5.4 Conflating Al and ML

The terms Al and ML are often used together or interchangeably, though not all Al technologies are
learning systems like expert systems. ML models typically generate predictions about inputs (e.g.,
classifications, object identifications, or next-word predictions) that must then be integrated with deci-
sion-making logic to determine actions. From an integration perspective, a complete Al system com-
bines both the ML prediction component and this decision-making logic.

Many sources we reviewed were ambiguous about which part or combination they addressed. When
discussing “Al accuracy,” sources were often unclear about whether they were referring to the ML
model’s prediction accuracy or the accuracy of decisions the system made using those predictions. For
effective development and testing of ML-enabled systems, identifying this transition point enables
component isolation, observability, and targeted testing. We emphasize this critical distinction
throughout our guidebook and supporting documentation.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 6
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

1.5.5 Continuous Learning

Sources we consulted often assume that ML-enabled systems are continuous learning systems in
which the Al or ML components are constantly changing over time based on direct mission experi-
ence. This assumption leads to both inflated expectations about capabilities and concerns about vul-
nerabilities, all of which contributes to the fundamental challenges involved in developing operator
trust. We need to provide a clearer and more realistic picture of what the capabilities are. In the future,
we need to clarify to design and testing teams when and how learning will occur—whether learning
happens during development, periodically during deployment through explicit updates, or through on-
platform tuning on a frequency that we need to specify.

1.5.6 Trust, Ethics, and Conflict

Trust, trustworthiness, and ethics in Al and autonomous systems are receiving a tremendous amount
of attention. The new capabilities provided by Al and ML introduce new areas of automated decision-
making that challenge our understanding of ethics. Therefore, we must design the devices we make to
act in an ethical way. Ethics covers a broad set of moral principles, although some definitions narrow
the field to directly address the safety, health, and welfare of the public and goal of improving society
[Institute for Ethical Al & Machine Learning 2025; IEEE 2025].

Because of the nature of ethics, and because people are quick to disagree on ethical principles, it be-
comes difficult to consensually arrive at a single instance of ethics when designing and engineering a
system, especially with a system that can apply lethal force. Therefore, we have found that separating
the definition of specific ethical values from designing a rational engineering process is critical to ena-
ble the development of the supporting technology. However, even when separate, we must work to
codevelop each area in parallel while paying attention to their dependent relationship.

1.5.7 Bootstrapping the Operationally Relevant Tests

Developing operationally relevant tests for LAWS faces two major challenges. First, we lack
knowledge about these systems’ real-world applications, about their functionality in the field, and
about how they interact with operators. Without this understanding, the “train as you fight” philoso-
phy relies on speculation. This lack of understanding is common with disruptive technologies, but
LAWS introduce so many novel capabilities that the operational shift will be both significant and
more difficult to anticipate than usual for disruptive technologies. Second, user testing based on simu-
lations or prototypes cannot provide sufficiently realistic environments for effective testing, especially
with enough “perceived risk” to gather accurate user feedback. When studying warfighter trust, we
must address these challenges by emphasizing realistic test environments, introducing prototypes
early, and engaging warfighters throughout the development process.

1.5.8 Ops Cycles and Deployment

Most of the commercial ML model providers emphasize rapid updates, cutting-edge techniques for
evaluation, and fast delivery to market for new use cases that do not pose critical safety concerns.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 7
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

MLOps, which has emerged from DevOps, embodies continuous development and deployment. The
rapid develop-deploy cadence of MLOps may not be appropriate for a safety-critical LAWS and may
even increase the cost of LAWS-development efforts. The ops paradigm provides strong support for a
reliable and rapid development-to-deployment process but requires extra cost to achieve full automa-
tion that may be unnecessary and even prohibitive for LAWS. As a result, many of the commercial
technologies, while attractive, may not directly meet the special development and testing needs of
LAWS. It is unclear at this time what the preferred ML-enabled SDLC will be for acquisition.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 8
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

2 Trust, Ethics, and Human Systems Integration

As we established in the discussion in Section 1.1, human operators and evaluators must be able to
trust that the lethal autonomous weapons system (LAWS) under their charge will perform as intended
to promote adoption. For machine learning (ML)-enabled LAWS, which is the primary focus of this
guidebook, trust can be engendered by focusing on the principles of RAI (e.g., governability, tracea-
bility, reliability, etc.) and ethical conduct throughout the software development lifecycle (SDLC). Im-
portantly, the trustworthiness and ethics of a system often depend on the development of a third fea-
ture: human-systems integration (HSI). This chapter covers these three topics to foreground how
closely they are interrelated not only in theme, but in the life of products and in the testing, evaluation,
verification, and validation (TEVV) process.1

2.1 Setting the Groundwork of Trust, Ethics, and HSI

Developers must design LAWS that can work alongside humans and for warfighters to use in an ethi-
cal manner as directed by humans. The LAWS, itself, does not decide on the ethical values that guide
it. Machines, regardless of whether they are machine-learning enabled systems (MLES), fundamen-
tally lack agency and cannot be held accountable for their actions. Rather, developers—aided by
stakeholders—must decide on what ethical values the machine should follow before they begin de-
signing the system. Good system design should enable all desired ethical values, and operators should
be able to configure those values as appropriate before deployment and monitor them during opera-
tion.

Ultimately, therefore, developers and stakeholders must understand trust, ethics, and system design—
in particular HSI—and the interrelationship between all three to design systems that generate user
trust. In the following sections, we provide an overview of key terms and how developers and stake-
holders must consider them to design and deploy systems with the highest levels of trust and trustwor-
thiness.

211 Trust

Trust is inherently personal and highly dependent on human memories and perception; it is influenced
by qualities and attributes that can vary over time and by situation. Because there are many ongoing
studies on the nature and dimensions of trust, definitions of “trust” are numerous and varied. Because
the purpose of CaTE is to develop the evaluation and measurement of trust in LAWS, we establish
definitions for types of trust in the following sections that we further use in the guidebook.

The National Institute of Standards and Technology’s (NIST’s) website offers several useful defini-
tions of trust, which share similar language. One definition that is useful to our discussions defines
trust as “A belief that an entity meets certain expectations and therefore, can be relied upon.” Another
defines trust as “The willingness to take actions expecting beneficial outcomes, based on assertions by
other parties” [NIST 2005]. These definitions, while broad, provide a foundation for understanding
and reasoning about how we approach trust.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 9
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Our companion guidebook Human-Centric, Teaming-Focused Approach for Design and Development
of Non-Deterministic Systems: A Human Machine Teaming Design Framework provides an in-depth
survey of definitions of trust and how we can use them in human-machine teaming (HMT) experi-
ments [Rigsbee 2025]. That guidebook investigates nuances of different trust definitions and provides
guidance for developing ways to measure trust in a broader way that is pertinent to HMT, which we
apply to LAWS-specific experiments. We discuss these topics later in Section 2.3.

Other sources add the concept of “willingness to be vulnerable” to the definition of trust, which em-
phasizes the idea the that LAWS will be taking actions that have a direct impact on the user and that
users need to have a willingness, consciously or subconsciously, about accepting those risks [Cox
2016]. This definition is significant because it changes the nature of evaluation questions from “Do
you trust the robot to do X" to “Are you willing to accept risk Y when letting the robot do X.”

The article “Trusting robots: a relational trust definition based on human intentionality,” covers ideas
of dependence, risk, positive expectation, and free choice, and it highlights that trust functions as an
asymmetric relation [Schifer 2024]. These dimensions highlight the complexity involved in construct-
ing trust experiments and measuring trust. The asymmetric relationship means that robots do not have
to trust humans, which emphasizes that trust models used in HMT are going to be different than those
used between two humans. For that reason, proper development of these models requires the acquisi-
tion of new data, especially in operational context.

Different definitions of trust may be used in different situations to emphasize different dimensions of
trust. In our companion guide, Data Curation for Trustworthy AI, we use the following definition: “A
trustworthy Al-enabled system must be optimized for performance on the true distribution of inputs it
will encounter in a deployed environment” [Clemens-Sewall 2025]. That definition emphasizes how a
data distribution is fundamental to the meaning of trust, and we use it throughout that companion
guide to provide coherence and focus for understanding trustworthy data. In this guidebook, we de-
scribe several approaches that developers can implement during development to positively influence
the perception of trust. Some of these methods include developing feedback mechanisms, following
expected behaviors, and running behavioral trials during design and development to gauge which fea-
tures are most likely to engender trust. Section 2.3 provides an example of how we developed and ap-
plied a trust measure in a laboratory environment.

21.2 Calibrated Trust

When addressing the complex issues of ML, especially in LAWS, we feel that the concepts of trust
that we began outlining in Section 2.1.1 are useful, but insufficient. To properly engage user trust in
LAWS, it’s important to develop a concept of trust that provides better information about users’ ex-
pectations and reasoning and how trust can change depending on various factors. Better understanding
of user trust enables developers and other stakeholders to make design decisions based on the situa-
tions and environments where LAWS operate, and it will promote the development of systems that
better align with human expectations and behaviors.

For that reason, we want to introduce the concept of calibrated trust to drive discussions about how
trust works with LAWS. The SEI offers the following definition of calibrated trust: “a psychological

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 10
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

state of adjusted confidence that is aligned to end users’ real-time perceptions of trustworthiness”
[Gardner 2023]. To address trust, therefore, this definition guides us to gauge how trust fluctuates de-
pending on a person’s expectations based on past experiences and new situations.

In addition to addressing general circumstances under which trust takes form, this approach to under-
standing trust also addresses how trust changes under specific conditions, locations, and times. For ex-
ample, to get a sense of general trust as opposed to calibrated trust, we may ask an operator the fol-
lowing question: “Based on the current feedback and behavior from the LAWS in these exact
circumstances, do you trust it to make good decisions?” This question measures trust in a particular
circumstance, but not how the user formed his or her thinking to form trust, or how that trust might
change. Calibrated trust goes even further to understand how factors that contribute to the formation
of trust can change dynamically with each interaction. Therefore, to gauge calibrated trust, we might
ask an operator, “Based on similar situations you have experience with this LAWS, do you trust it to
make good decisions in this circumstance?”

However, trust—because it is rooted in individual perception, mental states, and other conditions—
poses significant challenges for objective measurement, both on an individual level and across popula-
tions. These challenges underscore the need for a clear framework to understand trust, particularly in
environments involving complex technologies. Ultimately, the only way to be able to predict whether
a person will trust a system is to run experiments involving trials with real users using the devices in
operationally relevant situations.

21.3 Trustworthiness

While we can’t easily measure trust, we can talk objectively about the trustworthiness of a system.
The SEI offers the following definition of trustworthiness: “a property of a system that demonstrates
that it will fulfill its promise by providing evidence that it is dependable in the context of use and end
users have awareness of its capabilities during use” [Gardner 2023]. Such a definition alludes to the
possibility for generating tangible evidence for developing testable methods to prove not only whether
a system is trustworthy, but also just how trustworthy it is.

Based on this definition, and in its goal to promote trust, this guidebook helps its readers develop bod-
ies of evidence at all stages of the SDLC to understand the trustworthiness of a system. Such a process
would be akin to the way that TEVV personnel and others might build an assurance case. NIST de-
fines an assurance case as “A reasoned, auditable artifact created that supports the contention that its
top-level claim (or set of claims), is satisfied, including systematic argumentation and its underlying
evidence and explicit assumptions that support the claim(s)”” [NIST 2025]. The similarities are obvi-
ous, and we can see that an assurance case is a mechanism for supporting trustworthiness. In fact, the
term trust assurance has been in use for many years to refer to the idea of building the trust case, usu-
ally in terms of cybersecurity. Throughout this document we pursue how to build a trust assurance
case to support the trustworthiness of the LAWS for ethical deployment.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 11
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

21.4 Ethics

Ethics is the set of principles that govern a person’s actions. Like trust, ethical principles can some-
times be based on personal views and beliefs, and no system of ethics is universally held as valid.
There are a variety of different ethical models such as consequentialism, deontology, and virtue-flaw,
which we can use to help study and understand sets of ethics, how to relate them together, and how to
reason about them. These models should not be mistaken for a universally accepted or established eth-
ics. IEEE 7000-2021 offers a good discussion in one of its appendices of ethical models in the context
of software systems [IEEE 7000-2021]. That document describes how to apply, create, and design
processes that embody and reflect ethics.

Like IEEE 7000-2021, this guidebook does not describe a particular set of ethics. Rather, it explains
how development teams might reason about ethical models to incorporate them into development pro-
cesses and system designs. Knowing how development teams consider ethics during design and how
TEVYV personnel evaluate them during testing is central to the approval process in DODD 3000.09.
Therefore, this subject is of particular interest to TEVV personnel, and it will play a central role in
building the trust assurance case.

21.5 Human-Systems Integration (HSI) and Human-Machine Teaming (HMT)

Human-systems integration (HSI) and human-machine teaming (HMT) are areas of knowledge that
pertain to how an operator or warfighter will interact with these systems and, ultimately, to whether
they will trust or distrust them. The central focus of CaTE is operator trust and HSI and HMT are
therefore core concerns. Our companion guide Human-Centric, Teaming-Focused Approach for De-
sign and Development of Non-Deterministic Systems: A Human Machine Teaming Design Framework
and Human Systems Integration Test and Evaluation of Artificial Intelligence Enabled Capabilities:
What to Consider in a Test & Evaluation Strategy provide detailed background on definitions and de-
scriptions of HSI and HMT [Rigsbee 2025; CDAO 2024b]. They are consistent in their message that
development teams must consider operators and warfighters throughout the entire product develop-
ment lifecycle, and testing processes must also take them into account.

2.2 Trust, Ethics, and HSI Across the Product Lifecycle

In the following sections, we build on the definitions of trust that we offered above by discussing how
issues related to ethics might impact trust in LAWS. Throughout the guidebook, we provide ways of
addressing these problems whenever TEVV personnel might encounter them, and we link references
to the sections in the guidebook where they can find those solutions.

It is important to note that trust, ethics, and HSI are highly interrelated and crosscut many develop-
ment and testing activities. Therefore, addressing any issues related to trust, ethics, or the development
of HSI requires holistic approaches that encompass the entire life of the product. Developing such ap-
proaches is difficult because systems take time to develop, and cultures and processes take time to
evolve. In addition, it is highly likely that the systems that developers and TEVV personnel are

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 12
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

developing and testing today may not have followed many of the RAI or ethical practice guidelines
that are currently available. Almost by definition, very few systems are developed using the “latest”
practices.

However, it isn’t too late to take advantage of these practices and processes, even if retroactively ap-
plied, and they can be used to highlight and prioritize where to spend evaluation effort. In this guide-
book, we inform TEVV personnel about those latest practices with the intent that they can begin mak-
ing use of them today. However, we understand the level of effort that implementing such practices
might entail. Process adoption is difficult, and it requires significant time and effort. While ethics as a
philosophical reflection is often a high-level aspiration, ethics expressed in detailed engineering pro-
cesses, especially software and Al, is a recent investment, and the processes and methods to ade-
quately test it require extra attention from TEVV personnel.

2.21 Ethical Requirements May Not Be Explicit

LoW and laws of armed conflict (LoAC) provide warfighters with ethical guidance, but technical sys-
tems need clearly defined system requirements [OGC 2023; NSLD 2022]. Howeyver, as of the writing
of this document, no guides on how to write requirements for ML-enabled LAWS and their targeting
systems are available, even though efforts are underway to bridge the requirements-engineering gap
for autonomy [Turri 2022]. In Chapter 3, we address approaches for defining system context, what
issues to look for, and how to understand hidden requirements.

In Chapter 4, we discuss training and validation data and how it must address ethical situations that
the ML components must deal with. For example, if a set of ethical values focuses only on static vis-
ual characteristics of objects and entities (e.g., a badge), then developers do not need to design mo-
tion-tracking models with these properties in mind. However, if the system makes judgments about an
object’s behavior and actions over time to make ethical decisions, then the system must have a way to
detect and track an object’s behavior. System designers and developers must reflect these ethical re-
quirements in system capabilities, and it is up to the TEVV staff to confirm that the requirements are
complete. If they are incomplete, then the TEVV personnel must take appropriate steps to supplement
and amend the missing requirements.

2.2.2 Data Is Central to Ethics and Trust

The quality of any learning system can only be as good as the quality of the data that developers use to
train it. Developers must carefully consider how to collect and curate the data to meet not only the de-
tailed mission requirements, but also its overall ethical needs. We provide details on this topic and on
how developers can collect and curate training data for these special needs in Chapter 4.

The RAI principle of equitability refers explicitly to data in terms of bias. However, when it comes to
ML-enabled LAWS, bias becomes even more important with regards to ethical decision-making be-
cause the consequence of bias can be more severe.

Risk and data are highly intertwined in learning systems, so it isn’t surprising that artifacts such as the
Center for Naval Analyses (CNA’s) dimensions of autonomous decision-making (DADs) play a

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 13
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

central role in determining dataset quality [Stumborg 2021]. We recommend that developers and
TEVV personnel use DADs during testing and requirements gathering because answering the ques-
tions in the DAD document significantly improves these processes. For example, the fifth DAD,
“Command and Control,” asks the following question: “Is the IAS [intelligent autonomous system]
prohibited from initiating operation in the absence of a control link to a human operator?”” Understand-
ing the relationship between human operators and autonomous behavior and when control is lost—as
this question prompts TEVV personnel to do—significantly improves the trustworthiness of the sys-
tem. We provide more in-depth discussion of DADs and how TEVV personnel can make use of them
in Chapter 3.

2.2.3 Methods for Ethical Measurements May Be Inconsistent, If They Exist at All

On Oct 16, 2024, DARPA kicked off a new program called “ASIMOV: Autonomy Standards and Ide-
als with Military Operational Values.” The purpose of the program was “to develop benchmarks to
objectively and quantitatively measure the ethical difficulty of future autonomy use cases” [DARPA
2025]. DARPA is known for tackling complex and hard-to-solve problems, and the fact that they have
decided to initiate a multi-year program in this area emphasizes the difficulty of measuring ethics.
Given that the program won’t reach completion until 2026, quantitative measures are unlikely to be
available for some time.

As of the writing of this document, there are no clear quantitative measures and metrics for judging
ethical behavior. Without clear measures, metrics, and thresholds that can translate into requirements
in a computer-readable form, testing whether LAWS behaves ethically is extremely challenging, and
lack of such measures will likely lead to inconsistencies with different providers using different ap-
proaches that will yield different results. Most efforts for the novel development of autonomy in
LAWS employ ML, which uses model-level measures such as precision, accuracy, and reliability.
However, even though these measures are useful at the internal model level, they are insufficient at
the system level.

In chapter 3, we discuss methods for writing system requirements, which is especially important—and
difficult—when such requirements with respect to ethical behavior are missing. Our discussion pro-
vides guidance to clarify how TEVV personnel can generate requirements for testing these difficult
aspects of the system. Further, in chapter 5, we discuss principles and approaches for increasing trace-
ability in the system, how the system shows details about how it makes decisions, and how to observe
and control various measures and metrics.

2.24 Process May Not Align with Goals

Development and testing processes may not have kept up with changing business goals and emerging
standard practices, and TEVV personnel should not assume that existing processes will be sufficient
for ML-enabled LAWS. Before beginning new development efforts, we recommend that development
and TEVV teams perform a detailed evaluation of all their development and testing processes in light
of the most recent guidance and that they update their development and testing processes as time and

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 14
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

resources allow [DOD 2022a; Dunnmon 2021; IEEE 7000-2021; IEEE 7001-2021; ISO/IEC
5338:2023; Stumborg 2021].

Process adoption, cultural change, and getting funding for engineering are always a challenge, and we
expect that these tasks will prevent developers from adopting all, or even many, of the available guid-
ance documents on early ML-enabled LAWS. Therefore, we recommend that development teams pri-
oritize all process changes based on the specific system’s needs and mission risk. In chapter 3,we dis-
cuss how TEVV personnel can map project goals into requirements. In Chapter 8 and Chapter 9, we
discuss developmental testing and evaluation (DT&E) and operational testing and evaluation (OT&E),
respectively.

2.2.5 You May Need to Update Test Plans to Deal with Ethics

Unsurprisingly, there are no documents that offer clear instruction for how to specifically test for eth-
ics. The Director of Operational Test and Evaluation (DOT&E) has produced guidance documents for
test plan development and for testing Al, and that guidance requires that development teams address
ethics and RAI However, it lacks specific criteria by which to do so. Further, these guidance docu-
ments are limited in their scope to OT&E and live fire test and evaluation (LFT&E) [DODM
5000.100; DODM 5000.101]. We expect that other organizations will develop further guidance to ad-
dress developmental testing, evaluation, and assessments (DTE&A).

For now, the traditional practice of developing test scenarios around corresponding requirements is the
best method available for testing ethical requirements. If explicit ethical requirements are not provided
at the outset of testing, then TEVV personnel will need to backfill them during design and prepare
tests appropriately. We offer several discussions in this guidebook to support such work, including the
following:

e Chapter 3 discusses techniques for developing ethical requirements.

e Chapter 5 provides guidance on instrumentation that may be available for evaluation.

e Chapter 6 discusses how to test the individual models.

o Chapter 8 describes how developmental testing might provide useful insight before OT&E.
o Chapter 9 covers the current practice for OT&E.

2.3 Measuring Trust: Key Elements of a Trustworthy System

As we discussed earlier, trust, as a general concept, is subjective and difficult to measure objectively.
Therefore, at the inception of the CaTE pilot, we had no clear way to measure trust in a contextualized
way. This issue made it difficult to make progress because, as outlined in the CaTE background, our
objective was to “ensure high trust and assurance” for ML systems. Our initial effort, therefore, in-
volved developing a basic metric to measure the trust that users placed in a system.

These early efforts of the CaTE pilot resulted in a study that we published in March, 2025, titled,
“Center for Calibrated Trust Measurement and Evaluation (CaTE) Pilot: Human-Machine Teaming

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 15
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Study 17 [Hale 2025]. That study showed how it is possible to measure whether a set of software or
hardware users is more likely to trust one approach to system design and behavior over another. For
example, we can test two different interfaces to determine—with a significant degree of confidence—
whether users are more likely to trust one over the other.

In the following sections, we provide an overview of that study’s findings. We discuss the software
features that we determined are most important for generating user trust. The purpose of sharing these
results is to give development teams a better sense of what features they should prioritize for LAWS
to promote trust, and to provide a better sense of how users might think about system interaction so
that development teams can better plan how to build the system.

231 System Trustability Scale: How to Measure Trust

As mentioned above, one of the first steps we took was to develop a metric that we could use to meas-
ure users’ trust in a system. To do so, we leveraged John Brooke’s System Usability Scale (SUS),
which he developed to “take a quick measurement of how people perceived the usability of computer
systems” [Brooke 2013]. Using SUS as a starting point, we developed the System Trustability Scale
(STS) to measure user trust in systems. We then applied STS to measure trust for a hypothetical sys-
tem and to determine whether STS worked correctly to serve its intended purpose.

STS works by engaging users to evaluate a series of 10 statements, which are as follows:

o Ithink that I would like to use this system frequently.

o I found the system unnecessarily complex.

o Ithought the system was easy to use.

o Ithink that I would need the support of a technical person to be able to use this system.
e I found the various functions in this system were well integrated.

o Ithought there was too much inconsistency in this system.

o I would imagine that most people would learn to use this system very quickly.

o I found the system very cumbersome to use.

o I felt very confident using the system.

e Ineeded to learn a lot of things before I could get going with this system.

Our study presented these ten statements to SEI employees. Then, we asked them to imagine fictitious
scenarios involving different kinds of systems. In one scenario, we asked study participants to think
through their possible engagement with a fully autonomous, lethal quadruped robot.

We have taken note of the fact that testing these systems with SEI employees as potential users is not
the same as testing them with actual users of the system. However, SEI employees are well acquainted
with DoD missions and objectives, and their input is significant as an initial effort to assess trust and
to develop further studies. We intend to continue studying user trust with different pools of partici-
pants, but these initial findings are useful as a preliminary way of thinking through system features
and behavior, and their relationship to user trust.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 16
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

23.2

The study identified 12 areas that engender user trust, which we reproduce in Table 1. The table lists
the features in order from most important for engendering trust—as identified by users—to least im-

Key Findings from the SEI's Trust Study

portant. The table also includes an explanation of the feature and requirements for implementing it in
the system. We offer a discussion of these findings in Section 2.3.3.

Table 1:

Summary of Key Findings from the SEI’s Trust Study

Priority

Feature

User Needs and Trust Requirements

1

Human authorization
of force

User need: Users expect human authorization in all decision-making pro-
cesses leading to lethal force.

Trust requirement: Development teams must implement human-in-the-
loop for all decision-making involving the use of lethal force.

High-precision tar-
geting

User need: When Al is involved in targeting, users expect it to meet or
exceed human capabilities.

Trust requirements: The system should perform at 98-100% accuracy.

Testing and reliabil-
ity

User need: Users value evidence over claims of testing and reliability.

Trust requirement: TEVV personnel must provide proof of successful
and thorough testing, such as thousands to tens of thousands of trials in
varied environments and scenarios to demonstrate reliable performance
in harsh conditions.

Situational aware-
ness

User need: Users want clear and actionable sensory information and
data to make mission critical decisions when monitoring, cooperating
with, or controlling a system.

Trust requirement: Systems must provide operators with real-time,
easy-to-understand data (e.g., video, audio, system location, orientation,
projected path, objects of interest, obstacles, battery status, etc.).

Hardware redundan-
cies

User need: Users expect systems to have redundancies and fail-safes to
prevent failure.

Trust requirement: Systems must include redundancies for critical com-
ponents, especially for navigation and classification (e.g., camera, mic,
speaker, GPS, LiDAR, or IMU) and features that enable a total system
shutdown (e.g., a remote or on-system, analog kill switch).

Operator handover
in uncertain contexts

User need: Users want to be able to intervene and make critical deci-
sions when confidence is low or uncertainty is high.

Trust requirement: Development teams must implement clear notifica-
tions, error messaging, and handover protocols to decrease the likeli-
hood that the system will make poor decisions and cause unintended
harm.

Ul to support opera-
tor decision-making

User need: Users want an intuitive Ul that creates visual separation be-
tween targets and background, coupled with precise, easy-to-parse data
that reduces cognitive load and improves performance.

Trust requirement: The system must employ bounding boxes for targets
and provide simple but precise class labels and confidence metrics.

Ethical governor

User need: Users want transparency about system limitations and moti-
vations. Although skeptical about its implementation and effectiveness,
users view an ethical governor as a system requirement.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

17

. Trust requirement: Development teams must design, implement, and
test an ethical decision-making framework that clearly explains system
limitations to users.

9 De-escalation capa- | e User need: Users want systems that prioritize de-escalation and that
bilities minimize the use of lethal force.

. Trust requirement: The system must prioritize de-escalation via one of
the following: (a) communications; (b) non-lethal engagement; (c) preci-
sion targeting to wound rather than kill. The system applies lethal force
only when absolutely necessary and in appropriate environments.

10 Spatial, rules-based | o User need: Users do not believe current Al and ML can safely or reliably
framework for auton- classify human targets based on appearance or behavior. Users feel
omous behavior comfortable mapping target classification risks onto environments but not

lives. Users expect a system to adhere to predefined rules that determine
what actions are allowed within different operational environments.

e Trust requirement: Development teams must implement a spatial
framework for users to define operational zones that determine levels of
autonomy and restrict robotic behaviors ensuring reliable, context-aware
behavior. We recommend the following zone classifications: combat, limi-
nal, non-combat, and no-go.

11 Visual and audio op- | e User need: Users want real-time, high-quality feedback to understand
erator feedback the robots’ location and actions.

. Trust requirement: Development teams must equip the system with low-
latency, high-fidelity cameras, microphones, and speakers to increase
users’ connection with and confidence in the system.

12 Post-mission review | e User need: Users expect an intelligent system to learn from past mis-
and continuous sions and to improve over time.
feedback

e Trust requirement: Development teams must design the system to log
mission data and conduct-rigorous, post-mission reviews to improve
model performance and identify or mitigate errors and unintended biases,
ensuring that models stay current and aligned to evolving operational
needs.

233 Discussion of the SEI's Trust Study

The following sections group the features listed in Table 1 into categories based on whether the fea-
ture impacts human operators, the system, or the system framework. We then offer a discussion about
each of these areas and their impact on ML systems and LAWS.

2.3.31 Human: Oversight and Decision Support
The features we tested in this study that directly affect humans operating the system are as follows:

o human authorization of force (priority 1)
e operator handover in uncertain contexts (priority 6)
o Ul to support operator decision-making (priority 7)

o visual and audio operator feedback (priority 11)

Unsurprisingly, for a study on building trust in human-autonomous systems, the feature that ranked as
highest priority focuses on human oversight and visibility into decision-making and operator control
of that decision-making. At their core, autonomous devices use Al components (and, increasingly,

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 18
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

they use ML components as well) to make decisions, and operators want to know why they make
those decisions, and they want to be able to influence them. This concept reinforces the RAI principles
of traceability and governability in the development of LAWS.

Importantly, quality human oversight cannot be “tested in” at the end of the development process. Ra-
ther, it must be designed in to be effective. We cover system context and requirements definition in
Chapter 3. However, TEVV personnel can consult IEEE 7001-2021 “IEEE Standard for Transparency
of Autonomous Systems” to review an example of modern approaches to promoting observability
[IEEE 7001-2021]. In Chapter 5, we discuss how ML impacts system design.

2.3.3.2 System: Reliability, Robustness, and Continuous Improvement

The group of features that impact the system properties such as robustness, reliability and system
safety properties are as follows:

o high-precision targeting (priority 2)
o testing and reliability (priority 3)
e hardware redundancies (priority 5)

o post-mission review and continuous improvement (priority 12)

Three of these four features manifest throughout the entire system development lifecycle because de-
velopment teams must design these features into the product and into the development process to suc-
cessfully implement them. Consequently, most chapters in this guidebook address testing and reliabil-
ity in some fashion, whether it be through requirements, design, development, or any of the stages of
testing.

High-precision targeting is an example of a specific place to test for reliability. The study indicated
that the system should meet or exceed human capabilities for it to engender trust, and the measure of
that requirement was for the system to achieve 98-100% accuracy, which involves both hardware pre-
cision as well as targeting-system precision. The perception, targeting, and response (PTR) chain—
which we describe in depth in Chapter 5—is responsible for processing the input sensor information
and resolving it into targeting identification and final response actions.

The study also claims that “Falling short of accuracy expectations for target identification, classifica-
tion, and engagement will prevent or erode trust in the system” [Hale 2025]. ML components are pri-
marily responsible for this series of tasks, and, therefore, targeting precision should be one of the criti-
cal metrics for TEVV.

The “testing and reliability” feature is also of particular interest because respondents feel that, to earn
trustworthiness, the device must have been extensively tested, which reinforces the idea that we are
building a trust case. In conversations we held during the study, operators expressed the need to train
extensively with these systems before they could trust them, which is not surprising since extensive
training is a common approach for building trust.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 19
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

2.3.3.3 Framework: Ethical and Autonomous Behavior
The final category lists features that impact the framework of the system; these are as follows:

e situational awareness (priority 4)
o ethical governor (priority 8)
o de-escalation capabilities (priority 9)

o spatial, rules-based framework for autonomous behavior (priority 10)

This category covers general autonomous behavior including targeting and movement. This behavior
forms part of a device’s ethical conduct. General perception is still a central part of these behaviors,
but localization is also an important consideration. If the devices have spatial-based rules, such as no-
go zones, then it is important to devise a reliable and robust way to identify these areas. GPS has
downfalls because attackers can mislead it, and attackers can use visual camouflage to mislabel build-
ings or areas.

In addition, development teams must provide a way to deliver ethical conduct holistically through the
entirety of the design, production, and implementation of the system to provide the needed level of ro-
bustness. In Chapter 3, we provide guidance on how to describe ethical requirements. In addition, de-
velopment teams can consult IEEE 7000, “IEEE Standard Model Process for Addressing Ethical Con-
cerns during System Design,” for guidance on how to perform ethical development [IEEE 7000-
2021]. In Chapter 5, we provide an overview for encoding and expressing ethics in a system design.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 20
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

3 System Context and Requirements

This chapter provides guidance for defining systems context and producing good requirements for ma-
chine learning (ML) and ML-enabled systems (MLES), especially to support the process of testing,
evaluating, validating, and verifying (TEVV) such systems. It is common knowledge that the TEVV
of systems is much improved when system context descriptions and requirements are well-docu-
mented, and that relationship holds for MLES as well. When requirements are not well-documented, it
is often up to evaluators to backfill them to the best of their ability and then communicate the extent to
which their results support the intended case. We understand that it is rare for the development process
to provide clear, concise, and unambiguous requirements that testers can directly use to test the sys-
tem, especially with the introduction of radically new technologies, such as artificial intelligence (Al)
and ML. In light of these difficulties, this chapter offers guidance on determining if requirements are
complete and provides steps to take when they are not. Finally, this chapter addresses how to practi-
cally move forward when missing critical information.

There is a significant number of sources that offer guidance for documenting system requirements.
However, most of these sources don’t go far beyond high-level guidance, often resorting to impracti-
cal generalizations and abstractions. This deficiency is not surprising since the nature of guidance is to
be broad, and the science, technology, techniques, and engineering discipline are still evolving. As a
result, we have not found a substantial corpus of examples or guides for describing mission statements
regarding the decision-making components of MLES, which is a substantial need for ML-enabled le-
thal autonomous weapons systems (LAWS). Therefore, the challenge for TEVV, in the interim, is to
extend the broad guidance that exists into more detailed, actionable information and into real metrics.
There are a variety of robust structured analytic methods, underused by the autonomy community, that
can be used to close the gap. This chapter builds on those methods and offers guidance to produce
necessary information and metrics to support TEVV.

3.1 Recommendations for System Context and Requirements

This section provides recommendations for personnel to perform TEVV of LAWS. Supporting infor-
mation and further details can be found in Section 3.3.

311 Use the Defense Innovation Unit Worksheets When Defining Mission Use

The Defense Innovation Unit (DIU) guidelines and worksheets, detailed below in Section 3.3.1, pro-
vide useful information for any project. Many of the questions they provide pertain to how the system
will be developed, but they can be used retroactively to see how it was developed. Using them in this
way provides needed inputs for test development. Many current guidelines ask useful questions, but
the commentary sections in these worksheets provide further explanations about the questions and
how to provide a basic evaluation of the quality of the answers.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 21
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

3.1.2 Use Checklists Such as Dimensions of Autonomous Decision Making (DADs) to Identify and
Elicit undocumented TEVV Needs

TEVYV personnel should maintain a good list of test-specific questions to use for evaluating MLES. As
we discussed in Section 2.2.2, the document “Dimensions of Autonomous Decision Making” de-
scribes 13 different types of questions (which, as the title of the document suggests, are referred to as
dimensions of autonomous decision-making (DADs)) with a total of 585 specific questions that TEVV
personnel can ask about the decision-making process developers used to develop the device. A robust
domain-specific set of questions can then be used to evaluate test coverage and completeness. See
Section 3.3.11 for a further discussion of DADs and Section 3.3.6 for a process to support the use of
questions like these to develop test indicators and metrics.

3.1.3 Choose and Consolidate Analytic Methods to Identify Appropriate Metrics

TEVYV personnel can use analytic methods (see examples in Section 3.3 below) to develop appropriate
test metrics from abstract requirements. Organizations should choose one method that fits their needs
and apply it to all requirements to provide consistency across TEVV activities. Consolidating all pro-
cesses into one method reduces training time and costs and improves communication between person-
nel because they can share techniques and terminology.

Value Criterion Indicator Observable (VCIO) is an iterative method for turning abstract socio-tech-
nical characteristics into observables. We discuss VCIO in Section 3.3.12. In addition, we discuss the
Goal Question Metric (GQM) and the Goal Question Indicator Metric (GQIM) in Section 3.3.6 with
an example of how to map the “Civilian Harm Mitigation and Response” goal to ML-model metrics.
Systems Theoretic Process Analysis (STPA) and Failure Mode and Effects Analysis (FMEA) are
commonly used safety practices for developing a safety assurance case and could also prove useful for
TEVV personnel.

3.1.4 Check If the System Safety Analysis Factors in the Function of ML Faults

When performing a system safety analysis and working to understand how the system’s faults func-
tion, it is important to note that ML algorithms have their own definitions and metrics for faults.
TEVYV personnel will need to incorporate these in the safety analysis to ensure as many functions as
possible are covered by these measures. We provide expanded definitions in our discussion of the sys-
tem safety assessment (SSA) in Section 3.3.5. As of this writing, many safety standards such as MIL-
STD-882E are under revision, and they do not yet include these definitions. See Section 3.3.5 for
more details on fault detection.

3.1.5 Integrate Context-Specific Emergency Stop Mechanisms

Introducing ML algorithms into the design and operation of LAWS also introduces new variability to
decision pipelines dependent on these algorithms. It is not feasible to predict how an ML algorithm
will respond to circumstances it was not specifically trained to understand. Such circumstances may

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 22
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

cause the algorithms to provide incorrect information to the system, resulting in misinformed deci-
sions that can potentially lead to irreversible harm.

To help mitigate consequences from these situations, requirements for LAWS should include emer-
gency stop mechanisms, such as deactivation switches and manual overrides. Developers and TEVV
personnel should use the LAWS’ deployment context to determine the amount, type, and locations of
these mechanisms. Requirements for emergency stop mechanisms should also consider all ML com-
ponents involved in decision-making pipelines.

3.1.6 Leverage Post-Event and Live-Logging Mechanisms to Provide Traceability for ML-
Dependent Processes

Because traceability is a core area of the DoD’s Ethical Principles for Al, requirements for LAWS
should include mechanisms for providing such traceability, specifically for processes that leverage
ML algorithms. There are two ways developers can provide such traceability: by recording logging
decisions for post-operation analysis and by surfacing decision information in real time during system
operation. Requirements for LAWS, therefore, should include mechanisms to capture and avail deci-
sion-making data in both ways, and they should also specify a number of data points and decisions
that the system must log or surface to operators during system use at a frequency and detail that helps
them fully understand how those decisions were made. These requirements should target the highest
impact decision pipelines and focus on their core components. As we noted in Section 3.3.10, devel-
opers should consider operator cognitive load when determining what information to surface to the
operator during system use. Developers should also consider how the system will be used, who will be
using it, and how decision information will be delivered to operators when writing these requirements.

We offer further discussion about this recommendation in Section 3.3.14.

3.1.7 Test the System in All Conditions Outlined by Performance Requirements

TEVV personnel should develop a test for every requirement that development teams or others docu-
ment for the ML system. For example, if there is a requirement about the daytime performance of an
object-detection model, there should also be a repeatable test with a specific dataset that demonstrates
the system meets the requirement. The same approach should apply for nighttime or rainy-day perfor-
mance requirements.

TEVV personnel should consider results across all conditions individually and not average them to-
gether because success in one set of testing conditions is not evidence for success in another set of
testing conditions, regardless of the similarity between conditions. Similarly, every use case should
have a test and test suite. If the system uses two operating domains with different safety constraints,
each should have its own test suite that matches the requirements for operating in that domain.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 23
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

3.2 Observations About Model Metrics

When testing systems, TEVV personnel might be inclined to test the individual models for metrics
such as accuracy, precision, recall, mean average precision, and so on. While this is appropriate for
standalone model development, the models in LAWS are operating within a larger system context that
testers must consider. For example, testing whether a single object detector has a high chance of iden-
tifying an adversary does not imply that the remainder of the targeting and response chain performs
well.

3.3 Commentary on System Context and Requirements

This section provides in-depth explanations for the recommendations and observations listed above.

3.31 DIU Responsible Al Guidelines in Practice

The DIU’s “Responsible Al Guidelines in Practice” and its accompanying worksheets provide an ex-
cellent introduction, overview, set of guidelines, and commentary for applying the Department of De-
fense’s (DoD’s) responsible Al (RAI) principles for developing a product [Dunnmon 2021]. These ar-
tifacts tend to be general because they are intended for anyone working on Al in the DoD for any
purpose, so they do not contain specific details regarding LAWS. However, the questions posed in
these guidelines and worksheets are relevant, so providers should not only answer them, but offer evi-
dence that they followed the worksheets to contribute to their assurance case and body of evidence for
certification.

Each worksheet contains questions to help perform Al development planning and tasks, and these
questions are accompanied by a section with commentary that provides useful guidance to a reviewer.
For example, the Planning worksheet asks, “Have you clearly defined tasks, quantitative performance
metrics, and a baseline against which to evaluate system performance?” The commentary explores the
terms clearly defined, quantified metrics, and baseline along with some additional questions. Again,
due to the breadth of possible Al systems that the guidelines are intended to address, they do not ex-
tend to some of the details needed for a LAWS. For example, the commentary about “clearly defined
tasks for Al systems” addresses how to determine if an Al approach is needed but does not specify
thresholds for LAWS performance [Dunnmon 2021].

As mentioned before, due to the current sparsity of ML-enabled LAWS deployment, detailed guidance
is not currently available, but we hope to see an extension to the DIU Guidelines —or others—that
specifically target ML-enabled LAWS.

3.3.2 ML Throughout the System

Because so many components can use ML, there are many approaches to how and where systems can
make use of it. These complexities change how we design, develop, and test the system. Currently,
during perception and targeting, it is reasonable to use different strategies or techniques for object
identification, classification, object tracking, scene understanding, target nomination, and response

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 24
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

selection. To provide a rough analog, a system might employ a separate piece of ML for each step of
the find, fix, track, target, execute, and assess (F2T2EA) chain [JP 3-60]. In addition, TEVV personnel
should consider what models the navigation system employs, such as goal planning, waypoint deter-
mination, or trajectory planning because these different pieces require different detailed requirements.

ML models make predictions about their inputs, such as if an entity should be classified as a tank, but
do not make decisions themselves. The surrounding program logic compares these predictions against
thresholds and then directs other parts of the system to take some action. When testing, TEVV person-
nel must consider not only the individual components, but also the surrounding symbolic logic and ul-
timately the behavior of the entire system. Therefore, while it is informative to examine the output of a
first-pass object detector for evaluation and diagnostic purposes, the final TEVV effort should exam-
ine the risk associated with the question of whether the system took action against the targeted entity
and whether that action was appropriate. The final assurance case for ML-enabled systems will be ex-
tensive when all the outputs are considered.

The document Reference Architecture for Assuring Ethical Conduct in LAWS describes an example of
a system that one can use to consider and reason about a sufficiently complex autonomous system that
identifies both traditional navigation pieces and an advanced, fully autonomous perception, targeting,
and response (PTR) chain [Mellinger 2025]. It goes into detail on how the components can be orga-
nized to promote testability, usability, and observability (among other properties) and introduces pat-
terns and components that promote ethical conduct governance for trustworthiness. Figure 2 shows
ML components (the ones in green) that developers and designers can potentially use for architecting
a PTR chain.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 25
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Object Detector

Path Tracker

Fomsmsmsssseme- u w | = > u " mm==a
' Boxes — Paths !
1 1
1 1
1 1
1 1
1 1
1 classes and boxes | paths v
1
1 Entlty
'
image object :
metadata features !
v
Activity
Health Recognizer
1
! 1
(SAB&CD) PE— o !
activity 1
classes :
1 1
1 1
Navigation and ! H
Localization ! .
1 1
1 v
1
djust t traint d fi
| pose adjustments 1| constraints and config | Scene
, Understanding
, 1
1 1
1 1
: Hisvcomms :
1 1
1
: 4 !
1] 1
: | '
weapon and 1 : :
motion control , , 1
1 1 :
1 1 1
1 1 1
v ! 1
) €«--- H !
Action Target € H
Responder $mmmmmmmmmmees Nominator
1 4
1 1
1 1
1 1
1 1
L > Battle Damage | | ________ !

Assessment

Figure 2: Example of a Perception, Targeting, and Response Chain

3.3.3

For the time being, we assume that PTR consists of multiple components, learned or symbolic, that

Cognitive Dissonance in the PTR Chain

perform different actions such as basic object detection in a frame, object tracking across frames, ob-

ject-to-entity mapping, scene understanding, target nomination, and response determination. Each

component fulfills a different role in this structure, and each may have significantly different models,

approaches, validators, and checkers. In fact, we expect that the system will employ multiple algo-

rithms or approaches to increase reliability and robustness even within a single step in the chain. This

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

26

complex chain of components results in a rich sequence of data that generates many predictions about
that data (e.g., class) and assessments about the quality or validity of the data that contribute to a com-
plex decision-making component. A deeper description of the types of components, their responsibili-
ties, and recommendations for how to understand and test them can be found in the commentary in
Section 3.3.2 of this chapter, Chapter 5 of this guidebook, and in the Reference Architecture for Assur-
ing Ethical Conduct in LAWS [Mellinger 2025].

In later stages of the chain—such as during scene understanding, target nomination, and response—
algorithms assemble many of these different predictions and assessments together to produce a result
such as identifying an object as a hostile target or protected entity. During these steps, some of the in-
dicators may be contradictory. For example, the basic object detector may provide erroneous classifi-
cations based on individual frames. The fact that some of the still-frame classifications are not accu-
rate comes to light when the tracker evaluates them in a sequence to determine a path. In such a case,
performing sensor validation could help determine which of the classifications in the sequence the
system can appropriately discount and when.

Another example might occur during “scene understanding,” in which the perception system analyzes
the relationships between objects and other cues from the scene such as background information. Dur-
ing that process, the system might identify a quadruped animal as either a cat or a horse. When located
in a scene beside a human, the “scene understanding” component can use the relative sizes between
the two figures to choose the cat or horse label with greater accuracy.

To provide yet another example, adversarial ML (AML) or counter Al—where adversarial actors use
mathematical techniques to modify training data or to generate data, such as images, that can be physi-
cally produced as objects such as glasses, t-shirts or, stickers for placement in the physical environ-
ment—can cause the Al to misclassify the objects [VanHoudnos 2024; Sharif 2016]. In these cases,
researchers have found that some techniques only fool a subset of the classifiers, and a generalized at-
tack is not yet available. To offer robustness against such attacks, developers can use other types of
classifiers, symbolic or ML, to perform additional redundant classifications for verification.

In these complex systems, all these examples serve to illustrate how certain issues can result in a sort
of Al “cognitive dissonance,” where algorithms disagree on what should be resolved. In a complex
sequence like the PTR chain, system designers should reflect on and consider any conflicting infor-
mation between components that can result in such “cognitive dissonance.” System designers must
determine satisfactory confidence scores for discrepancies and how many discrepancies are accepta-
ble. They must also determine whether these discrepancies lean toward particular biased outcomes.
For example, when classifying civilians in certain situations, we are likely to bias toward a civilian
classification rather than a hostile one, However, other situations might dictate that we should bias to-
ward hostile classifications. Providing the operator with a clear set of thresholds and continuous feed-
back on the system’s performance—relative to those thresholds—will significantly improve the opera-
tor’s understanding of the machine state and engender trust.

Ultimately, system designers must be able to answer the following questions:

e What is the result of “excessive” discrepancies?

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 27
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

e Are the discrepancies the result of sensor failure or algorithm failure?
e Could the presence of many discrepancies be the result of an adversarial attack?

o How is the presence of many discrepancies communicated to the operator and maintenance indi-
viduals? And at what point does the system conclude that it is operating outside of its specifica-
tions?

Advanced systems will employ decision-making functions that consider all input values instead of re-
lying on just one component. In these systems, combinatorial testing approaches are important be-
cause of all the permutations of the different factors that comprise a PTR chain [Chandrasekaran
2023].

3.3.3.1 Evaluation Criteria
The following list provides a set of considerations to address cognitive dissonance:

o The system should explain how PTR decisions are made, and how it deals with conflicting indica-
tors. It is preferable to employ a mechanism that considers all attributes holistically rather than
just choosing a single best value, as described in UL 4600 Section 8.3.3 [UL 4600].

o Itis preferable to employ a combinatorial testing approach that exercises a full set of expected and
prioritized mission scenarios. See Section 3.3.7 for examples of different environments.

o Designers should include defenses against adversarial attacks and counter Al in requirements,
data sets, and test plans.

e Designers should consider how the system uses, or should use, redundant checks, voting schemes,
or other hybrid ML and symbolic checks for defending against counter Al. They should also find
ways for conflicts to be resolved in alignment with mission biases.

3.3.4 Incorporating and Evaluating Fail-Safe Designs

Fail-safe modes are common features of a safe design. Any traditional weapon system is expected to
employ a variety of fail-safe mechanisms. However, developers and TEVV personnel that want to in-
troduce ML into a system might need to reevaluate traditional fail-safe mechanisms before using them
in such a system because those fail-safe designs may have assumed a human operator and their needs
and behaviors. Such designs, therefore, might not align with the requirements and function of ML. For
example, if a weapon intended for human use is mounted on an autonomous system, designers must
consider how preexisting weapon-safety measures, assumptions, and human training and reasoning
integrate into the targeting and firing process of the automated design for the weapon.

In addition to mechanical techniques, designers must also consider process-based, fail-safe designs.
Such designs might draw on the idea introduced above about how the behavior of autonomous sys-
tems should align with human training and reasoning on weapon-safety measures. For example, it
would be useful for a robotic weapon to point to the ground when it isn’t actively ready to engage.
This measure is called “holstering,” and it mimics one of the four primary rules for gun safety that hu-
man users are familiar with [NSSF 2024]. Not only does this measure provide a fail-safe mechanism,

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 28
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

but it also increases trust by visually communicating readiness and intent to the operator and other
persons.

Autonomous systems might also employ other common fail-safe measures such as non-visible design
patterns or redundant systems. All ML-enabled systems should have non-ML validators, checkers, and
constrainers as part of early detection and safety checks. See the Reference Architecture for Assuring
Ethical Conduct for LAWS for an in-depth example of how to build these measures [Mellinger 2025].
Some ML systems employ redundancy patterns by using multiple versions of models that are trained
with different neural net architectures, subsets of data, or training practices with the results combined
to form a consensus for ML redundancy. If non-ML systems are available, they can also be run in par-
allel. See Chapter 5 and the Reference Architecture for Assuring Ethical Conduct for LAWS for more
details.

3.3.5 Fault Detection

Fault detection is imperative for any safety or mission-critical system and is foundational for ensuring
that systems are robust, resilient, and, if necessary, degrade or fail gracefully. To frame this discus-
sion, we differentiate faults? and failures® using the definitions in SAE’s “Guidelines for Conducting
the Safety Assessment Process on Civil Aircraft, Systems, and Equipment” [SAE ARP4761a]. Faults
and failures are related in that an item or system can experience faults yet not fail (i.e., undergo a loss
of function). The more faults or anomalies an item or system can withstand while continuing to oper-
ate within its specifications, the more robust and resilient that item or system is. This resilience is re-
ferred to as fault tolerance.

It stands to reason that a system’s fault tolerance is a byproduct of the system’s architecture imple-
mentation—both hardware and software—and its ability to detect and handle faults. It is, therefore,
important to perform SSA activities early in the system concept- and architecture-development phase.
A substantial amount of literature exists that can provide guidelines, methods, and processes for devel-
oping fault-tolerant systems. For example, SAE’s Aerospace Recommended Practices (ARP) provide
safety and certification consideration for highly integrated or complex systems [SAE ARP4754b;
SAEARP4761a]. These ARPs provide guidance on SSA activities such as performing fault tree analy-
sis (FTA), fault hazard assessment (FHA), failure mode effects analysis (FMEA), and common cause
analysis (CCA), among others. While these ARPs are geared toward aircraft, the practices and consid-
erations are applicable to the development and verification and validation (V&V) of any software-in-
tensive system. It is worth noting that these standards are developed by SAE International: The Engi-
neering Society for Advancing Mobility Land Sea Air and Space, and they are therefore relevant
domains for the DoD. While the ARPs do not preclude development of ML-enabled systems, they also
do not provide specific guidance on their development or V&V. Development and V&V of ML will
be the focus of the remainder of this section.

2 SAE defines the term “fault” as an undesired anomaly in an item or system [SAE ARP4761a].

8 SAE defines the term “failure” as a loss of function or a malfunction of a system or part thereof [SAE ARP4761al].

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 29
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Underwriters Laboratories developed the ANSI/UL 4600 Standard for Safety for the Evaluation of Au-
tonomous Products to address safety considerations in fully autonomous systems while also address-
ing the reliability needed for ML [UL 4600]. The standard requires “a goal-based safety case” to en-
sure that an autonomous system is “acceptably safe for deployment” and is intended to work with
existing standards and frameworks to support safety and TEVV aspects of ML-enabled and autono-
mous system development and deployment. For example, TEVV personnel can use the GQIM pro-
cess, which we discuss in the Section 3.3.6, supplementally with UL4600’s safety case approach to
achieve system and mission-specific TEVV objectives. Section 3.3.6 also introduces the reader to
some practitioner-level guidance for development and TEVV of ML-enabled systems, specifically at
the ML model level.

The SEI developed A Guide to Failure in Machine Learning: Reliability and Robustness from Foun-
dation to Practice, which provides theoretical concepts in reliability and robustness for ML models
and some current techniques for reasoning about ML model reliability and robustness [Heim 2025].
Specifically, the SEI provides a definition of ML model failure and robustness-measurement tech-
niques that are useful in practice. The guide also provides recommendations for measuring the effects
of sample uncertainty and prediction uncertainty. Measuring the effects of these uncertainty terms
provides empirical ML model performance degradation information that TEVV personnel can use to
provide evidence for assurance to—and promote trust by—developers and evaluators.

Recognizing that the failure modes of an ML model—and, by extension, the failure detection methods
within an item or system—are implementation and application specific, this guidebook provides some
application-specific examples to contextualize the concepts at the ML-model level. For system-level
concepts, recall that Section 3.3.4 discussed the concept of redundancy or “use of ensembles of ma-
chine learning components,” and Section 3.3.3 provides guidance on considerations for “cognitive dis-
sonance” in the PTR chain. Developers should use these concepts in a system’s fault detection or
health monitoring schemata.

The SEI has also proposed a formal framework for ML requirements validation [Turri 2022]. Beyond
theoretical concepts, such as cost functions and expected or empirical errors, these artifacts provide
techniques for evaluating ML models that can be useful during concept- and architecture-development
phases or as part of the body of evidence in the V&V phases of a system. These theoretical concepts
and evaluation techniques are all integral to designing a trustworthy ML-enabled and autonomous sys-
tem with an appropriate level of fault detection and response.

3.3.6 Goal Question (Indicator) Metric (GQM and GQIM)

Building a strong assurance case involves providing a body of evidence that supports that the product
does what it claims to do. At the core of any assurance case is the ability to trace the pieces of evi-
dence back to the system requirements. At a high level, ML-enabled systems are no different: TEVV
personnel and others must tie measures back to the requirements. Therefore, we must determine the
right metrics to measure to build evidence for assurance.

There are many ways to measure ML algorithms, but TEVV personnel must determine which measure
to use and what the proper values are on a case-by-case basis. For example, the OECD lists 123

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 30
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

technical metrics for trustworthiness, but there is no guidance about which to select for a given sce-
nario or model [OECD 2024]. The question remains, therefore, about how to choose the right measure
for the requirements.

There are a variety of techniques for developing software measurements derived from goals such as
the Goal-Question-Metric (QGM) [Solingen 1999]. The SEI has developed a workshop based on an
expanded GQM approach called Goal Question Indicator Metric (GQIM), which TEVV personnel can
use to develop an assurance case. The presentation “GQIM and Assurance Cases” discusses how to do
so and provides an example workshop report [Stewart 2015; Nichols 2023]. While this document is
described as a workshop, the framework can serve independently as a reasoning method.

Figure 3 summarizes the GQIM process.

Identify
business
objectives that
establish the
need for
resilience and
cybersecurity

Goal

>

Develop one or
more goals for
each objective

Figure 3: GQIM Process Flow

Question
Develop one or
more questions
that, when
answered, help
determine the
extent to which
the goal is met

Indicator

>

Identify one or
more pieces of
information
that are
required to
answer each
guestion

>
MetriC m—p

Identify one or
moore metrics
that will use
selected
indicators to
answer the
question

TEVYV personnel can use this method to build traceability between system requirements and ML
measures and metrics. To provide an example of how to accomplish this task, we used GQIM to iden-
tify what metrics to measure using the objective of “Minimizing Civilian Harm.” The results of that
exercise appear in Table 2.

Table 2:

Example of How to Identify Metrics for the “Minimizing Civilian Harm” Objective

Objective: Minimize Civilian Harm [DODI 3000.17]
e Goal: Maximize the ability of the system to identify civilians to prevent harm.

Question, Indica-
tors, and Metrics

Question: Do the training dataset(s) identify civilians encountered in the missions?
. Indicator: contains labels and annotations that differentiate civilians from other classes

o Metric: variability, balance, coverage

. Indicator: Do the civilians represented by the dataset match the civilians in the target

area?

o Metric: compare model accuracy between two data sets
. Indicator: data taken from appropriate operational context

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

31

o Metric: mapping of operation environment features to features in the collection
environment

Question, Indica- Question: Can the system identify civilians visually and rapidly?
tors, and Metrics |, |ndicator: identifying all civilians

o Metric: “high” recall on civilian class

o Metric: “high” precision on civilian class

. Indicator: time within limits

o Metric: milliseconds to classification

This example defines metrics that the system might use to support civilian identification to prevent
harm to civilians. This content serves only as an example and uses hypothetical metrics like “high.” In
contrast, programs building real systems need to identify actual mission-specific values based on mis-
sion need, which may vary based on the specifics of the situation. For example, the metrics above are
biased toward civilian identification and not toward enemy combatant identification or friendly warf-
ighter identification. The timing metric example also must be contextualized within the overall re-
sponse time. The same structure of the GQIM can be used for identifying those classes but should re-
sult in different confidence thresholds during operational use.

3.3.7 Perception, Targeting, and Environmental Difficulty

LAWS can be deployed in a variety of operational environments that present varying levels of diffi-
culties for perception and targeting. Obviously, identifying the minimal set of specific operational sce-
narios greatly reduces the scope of development and operational testing whereas trying to address all
combinations is infeasible.

There are many challenges for the PTR chain beyond common environment factors such as lighting,
fog, rain, mud, and so on. Additionally, ML must deal with perception and interpretation factors in the
scenes. Perceiving a single silhouette against a bright skyline requires a very different perception task
from determining a single individual’s behavior from within a crowded urban scene in the dark. The
following list offers several sample scenarios with different operational environments, resulting in dif-
ferent development and testing requirements:

o Remotely piloted drones with targeting assistance: In this case, the operators are responsible
for all actual decision-making and only take input from the Al This scenario doesn’t remove all
responsibility from the Al in that it can suggest highly incorrect actions, but the operator acts as a
safety.

o Loitering aerial munition with targeting capabilities: In this case, the munition is capable of a
variety of advanced actions such as wayfinding and basic target identification. It is the responsi-
bility of the operator to perform final target determination and to trigger the response. At that
point, the system is self-guided for the remainder of its flight.

e Fully autonomous ground system with lethal and non-lethal capabilities: In this case, the de-
vice detects, nominates, prioritizes, and, under certain mission conditions, automatically responds,
which in other conditions requires human approval.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 32
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

For the sake of the ensuing discussion, we use three categories of entities that the system must iden-
tify: adversaries, friendlies, and neutrals (AFN). Neutrals are those entities not yet identified as adver-
saries or friendlies. For certain safety cases, it might be prudent to consider all neutrals as friendlies
until such time as they can be confirmed as adversaries or friendlies, but for this conversation we will
consider all three.

The following sections provide eight example questions to ask of the system when developing test
cases to gauge the relative level of difficulties that tests can cover.

3.3.7.1 How difficult is it to identify the entities in a still frame?
The following list shows some examples of increasing difficulty.

o Simple structures with clear outlines, fixed locations and no motion. Note that this item is also the
easiest for attackers to compromise using counter Al or AML.

« mobile devices with identifiable silhouettes or features, such as a ship, tank, quadruped, construc-
tion equipment, military aircraft, drones, and so on

« mobile devices with ambiguous features, such as trucks, SUVs, buses, civilian aircraft, and so on
e animals

e humans
Development teams should note the following key points:

o Motion tracking is often different from static object detection and can require combinatorial test-
ing approaches.

o Inanimate systems with highly discrete features are obviously easier to identify.

3.3.7.2 What is the composition of entities within the scene?
The following list shows some examples of increasing difficulty.

o only adversarial targets
« mixed adversarial and friendly targets but simple perception difficulty such as ships

o complex, mixed environment of adversarial, friendly, and neutral entities of varying difficulty
types

Early systems and some guided munitions may be limited to environments where only adversarial en-
tities are expected to operate or where adversarial entities are expected only when the device is opera-
tional. An example of such a scenario might involve a case of a guided munition in which all percep-
tion and targeting decisions have been made before the munition is activated.

3.3.7.3 What confounding qualities exist in the scene?

Damage, smoke, camouflage, and counter Al may occur accidentally or intentionally, but all these
eventualities must be accounted for during training and testing. Battle damage assessment has been an

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 33
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

area of study for some time but is still an ongoing problem for ML. Traditional camouflage and coun-
ter Al can have similar effects where they work to misclassify a target.

3.3.7.4 How many classes of each AFN type are to be identified?

In some cases, it may be desirable for the device and datasets to have different subclassifications
within a higher-level classification. For example, within the tank classification, it is important to sepa-
rate different types of adversarial tanks or ships for different types of responses. Obviously, within hu-
man targets, this discrimination is significantly more challenging. TEVV personnel must be mindful
of the complexities of trying to test a device that is intended to finely differentiate between subclassifi-
cations of people.

3.3.7.5 How many entities are expected to be in the scene?

As the number of entities in the scene increases, independent of the overlap, the speed at which many
object detectors perform decreases. Quality suffers in systems with real-time deadlines that must con-
tend with numerous entities because the system struggles to meet those deadlines. This scenario re-
sults in decreased confidence in the system.

3.3.7.6 What mixture of entity types is expected in the scene?

The ratio of the different AFN types can affect the types of metrics developers or TEVV personnel
choose for measuring system requirements. An operational environment populated only by adver-
saries, such as a surface fleet, involves much simpler decision-making than a highly mixed urban envi-
ronment composed of equal numbers of each entity type.

3.3.7.7 Does AFN determination require tracking or assessment of behavior?

In some situations, silhouettes or other similar static factors are not enough to identify adversarial be-
havior to support accurate target identification and response determination. Before prosecuting an at-
tack, the system might need to observe an entity for a certain amount of time to acquire enough identi-
fying samples from multiple frames to reach a certain confidence threshold. Alternately, behaviors can
be determined by motion across frames such as with keypoints or behavior models that require several
frames.

TEVYV personnel will need to highly scrutinize requirements and thresholds for any determinations
that require a significant amount of time to make. The system might express such determinations in
terms of confidence windows where the system has “accumulated” enough evidence over a certain pe-
riod for accuracy and to establish the absolute minimum thresholds needed for determination.

3.3.7.8 How much trajectory crossover is allowed?

During PTR activities, there are certain situations where the system might lose visual surveillance of
an entity that it is tracking. At some point, the system might recover tracking of the entity. We refer to
the period during which the system can’t track the entity as a period of crossover.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 34
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Entities may cross over for varying lengths of time if they are moving quickly or if they become ob-
fuscated. For example, objects might behave like players in a basketball game where they move with
extreme agility and can change directions and become obfuscated. Or, they might behave like billiard
balls where the entities can change direction due to collisions making tracking difficult and producing
periods of crossover. System designers must establish how the system will perform crossover detec-
tion, especially if the entities are highly mobile.

3.3.7.9 Are IFF detectors employed?

If Identification Friend or Foe (IFF) technology is employed, it can significantly assist in identifying
friendly entities but may not improve the positive detection of adversary or neutral entities. Adver-
saries can spoof or steal IFF, so the system should use it as just another indicator within the overall
PTR chain.

When systems use IFF, they should provide details about the types of classes it applies to. For exam-
ple, an IFF designed for a vehicle but identified on a human should be considered suspect and raise
concern.

3.3.8 Levels of Autonomy from Human Control to Full Autonomous Systems

There is a lot of variation between devices in terms of the amount of Al and ML they use as well as
how autonomous the device is and what degree of control an operator might have over the functions of
the Al and ML. For example, some “simpler” systems, from an Al perspective, are remotely con-
trolled or piloted by an operator, and ML might serve only in more “minor” assistive flight tasks
through recommendations that the operator can ignore. More “complex” systems might support
greater autonomy for operations such as navigation and guidance.

Guided munitions have been around for a long time, and many traditional electro-mechanical systems
increasingly incorporate more and more software, from the use symbolic Al to adoption of ML. Over

time, as the level of autonomous decision-making increases, the human takes a more supervisory role.
At the furthest end of the spectrum, we envision fully autonomous devices navigating entirely on their
own and choosing and engaging targets.

When developing requirements and tests, it is critical to understand the extent of human control. Clear
and detailed descriptions of how the user interacts with the LAWS, which decisions the LAWS makes,
and under what conditions LAWS requests support are critically important to provide effective opera-
tional test environments. Additionally, TEVV personnel must define what feedback mechanisms the
system uses in conjunction with its decision-making processes. Chapter 2 of the Reference Architec-
ture for Assuring Ethical Conduct in LAWS discusses how human trust is deeply dependent on under-
standing how the system makes decisions. Human trust is also dependent on getting understandable
feedback about what state the machine is in and understanding when operators are required to interact
with the system [Mellinger 2025].

SAE has defined six different levels of autonomy for self-driving cars [SAE 2021]. Other standards
such as MIL-STD-882E also define autonomy in their “Software Control Categories.” TEVV

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 35
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

personnel can use these categories as guidelines when defining the decision-making scenarios for re-
quirements and testing. Different operational modes might require different levels of decision-making,
and TEVV personnel should define these modes separately. For example, a machine operating in re-
connaissance mode may only require the user to set areas for search, but in an urban environment the
user may be required to provide more precise waypoints and even directly assist in navigation. Addi-
tionally, as mentioned above, the complexity of the environment can have a direct impact on the level
of operator interaction.

3.3.9 Timing

Requirements and scenarios should specify end-to-end timing needs and consider such factors as hu-
man-response time, system-response time, and situational demands. In any autonomous system, the
chain of perception to reaction must occur quickly enough that the final action is relevant to the initial
input. Researchers have extensively studied these issues in safety-critical systems such as avionics.

LAWS add the dimension of user-response times when they involve human-in-the-loop or human-on-
the-loop. Given a particular situation, we must determine whether it is reasonable for a system to de-
termine the need for human approval, send a message for human approval, or wait for approval and
respond appropriately. For certain situations, the system might require preapproval, such as when the
user nominates certain targets for automatic response rather than on a case-by-case basis.

In general, human-reaction times are on the order of 250 milliseconds from visual stimulus when
ready. Network latencies can last between 7-25 milliseconds for a single message, without interfer-
ence. In a PTR chain consisting of multiple ML components that need to communicate with a human
about whether to engage in direct response to an action, it quicky becomes apparent that a human may
not have time to approve engagement in demanding situations.

When evaluating mission scenarios and requirements, it is therefore important to consider all the fol-
lowing:

o sensor data acquisition time

o PTR chain execution time

e communication time to operator

o the operator’s readiness to respond combined with their response time

o communications time back to the machine

e time to engage

Any engagement requirements must specify realistic timing so that developers can design the system
to work within that time. For example, if a requirement specifies that the operator must provide ap-
proval within 200 milliseconds of detection, it is highly unlikely, even with perfect processing speed
and perfect network speed, that an operator would be able to respond within that time frame.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 36
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

3.3.10 Operator Task and Cognitive Loading

Human-reaction times are affected significantly by the cognitive load involved in the decision, which
includes both the inherent complexity of the task as well as the way the information is presented.
Tasks with a high cognitive load take more time, and any sort of distractions, such a distrust of a sys-
tem, can lengthen this reaction time.

When specifying mission context and requirements, TEVV personnel should address cognitive load,
tasks, and distractions accordingly. When doing so, it is important to remember that, even though
warfighters are trained to react in challenging environments, they are likely to have had less training
on human-machine teaming (HMT) with respect to LAWS than training to work with human counter-
parts.

TEVYV personnel must evaluate whether requirements for operator interaction present decision-making
to the user with sufficient information and feedback to elicit appropriate responses with respect to cog-
nitive load. For example, it is common in object-detection systems to show bounding boxes that iden-
tify objects with confidence scores. TEVV personnel should check whether these display elements use
well-understood and common mechanisms and whether they provide enough information to reduce
the decision load. In the study “Measuring Trust: Concept Testing and User Trust Evaluation in Au-
tonomous Systems,” we identified that the participants preferred color coded boxes with confidence
scores on a high-medium-low scale [Hale 2025].

TEVYV personnel should also find whether any studies exist that describe relevant cognitive load
measures that could assist in testing. For example, NASA task load index (TLX) is a tool for collect-
ing workload assessments [Hart 1986]. TEVV personnel might consider whether this sort of measure
has been used to understand which tasks require or may require more cognitive load, and under what
conditions. These conditions can be used to create additional tests.

Additionally, tools like the STS can be used to evaluate the effectives of these interfaces on operator
trust.

3.3.11 Dimensions of Autonomous Decision Making (DADs)

The document “Dimensions of Autonomous Decision-making” identifies 13 categories of risk ele-
ments to help reflect on risk in the use of autonomous systems [Stumborg 2021]. The paper proposes
the creation of a Joint Autonomous Risk Elements List (JAREL) based on the DADs provided in the
paper. At the time of this writing, a JAREL or similar risk list has not been developed. However, until
a list is created, TEVV personnel can effectively use the questions in the DADs to identify require-
ments and then to identify metrics.

DAD #10, titled “Test and evaluation adequacy,” is directly applicable to TEVV. The paper describes
it as follows:

Will/did the IAS test and evaluation procedure reflect the breadth, depth, and complexity of the
contemplated operational environment to test and evaluate the system attributes unique to the
use of autonomy technologies to the greatest extent practicable? [Stumborg 2021]

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 37
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

These considerations directly refer to the testing process and how TEVV personnel can perform the
testing. Working through some of those considerations can result in significant project impact. The
following question from the DADs provides an example of how they can help impact testing: “Did the
IAS test and evaluation procedure receive an already-trained IAS, or is the IAS to be tested also to be
trained in the replicated operational environment?” [Stumborg 2021]. If the IAS is to be trained during
testing, then a completely different approach is needed than if the IAS had already been trained be-
forehand. While we don’t expect such a scenario to arise during practice, there may be times when the
system did not have enough access to accurate operational data and therefore relies on training data
acquired during testing. Developers and TEVV personnel can overcome this issue by using an itera-
tive approach like MLOps, where the device is trained and perhaps iterated over during testing. To
employ such a method, training pipelines, processes, equipment, and personnel must be available dur-
ing testing to train and tune such models. Adopting this process can significantly increase the cost and
time for development and testing.

The other DADs can inform requirements development and test plan production. For example, DAD
#5, titled “Command and Control,” asks the following question: “Is the IAS prohibited from initiating
operation in the absence of a control link to a human operator?” [Stumborg 2021]. The results of
working through this question can lead to very different testing paths and might accrue considerable
time and risk. In DDIL environments, defining “absence of control link” depends on how absence is
defined. Defining the term might mean working through several questions, such as the following: Is
there a particular data bitrate that is required to support information to the operator and return control
data? What control acknowledgment mechanisms are provided to guarantee delivery of critical infor-
mation? When delays occur, what responses times are required on a per command basis? Different
user commands may require different response measures based on associated risk.

As mentioned above, we hope some method like GQIM will become available in the future to provide
a detailed set of examples and guidelines for how to create or evaluate such requirements, and we
hope that such a method will be published as a standard document.

3.3.12 Values Criterion Indicator Observables (VCIO)

The VCIO model provides a way to describe and map socio-technical values into system observables.
The intent of the model, as described in the specification, is to establish if “it is possible to describe
whether a product adheres to specific values and can be trusted” [VDE 2022]. The model iteratively
progresses from values, through criterion, to indicators, and finally observables. It is conceptually sim-
ilar to the GQIM method, but the end focus is a little different. GQIM tries to focus on continuous
measures where VCIO usually works on ordered measures.

In the book From Principles to Practice: An interdisciplinary framework to operationalise Al ethics,
the authors use the VCIO process to provide some structure for discussing Al ethics such as transpar-
ency or accountability [Krafft 2020]. The book uses a variety of numerically ranked observables
where each higher-numbered observable has more stringent criteria. For example, 0 is associated to
“No,” 1 is associated to “Data with mission observations,” and 2 is associated to “Complete data.”
They then combine these numbers across multiple observables and criteria to provide an A-through-E

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 38
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

grade for each value. Finally, they produce a graphic that shows all values to provide an “Al Ethics
Label” inspired by the energy efficiency label. Structured assessments like these improve understanda-
bility, and they make it easier to compare different assessments. When possible, TEVV personnel can
use these kinds of structured assessments with approaches like GQIM—which we discussed in section
3.3.6—to improve their processes. While this document does not directly map to the RAI principles
and tenets, developers and TEVV personnel can make use of much of the analytic thinking and detail
the authors provide to inform any requirements development or evaluation method.

3.3.13 Emergency Stops

Automated systems can make decisions and execute actions without operator intervention. In the con-
text of LAWS, these decisions include choosing where and when to target and engage entities. These
systems make decisions using the symbolic logic embedded in the system’s design and code. How-
ever, introducing ML models into the decision-making pipeline also introduces new dangers in the
system’s operation.

For example, the decisions made by a LAWS that use object detection and classification models to in-
form its PTR chain depend on how its ML models classify input data from its various input sources
(e.g., FMV, lidar, etc.). As noted in Section 3.3.9, the process of receiving sensor data, classifying it,
determining a response, and executing a response should take no longer than tens or hundreds of milli-
seconds. If the system’s ML models accurately classify objects it detects through sensor data, design-
ing this decision pipeline to unfold as quickly as possible improves the system’s ability to successfully
perform safety-critical tasks by enabling faster responses or by providing more classification attempts
in the same time period. However, such would not be the case if the system’s ML models inaccurately
classify an object, which may happen if the system encounters an object that it’s never encountered
before. If the system inaccurately classifies an object and the system’s speed is insufficient, then the
system may execute a lethal response incorrectly, which it would have avoided had the system had
more opportunity to make additional classification attempts. This outcome can occur in fully auto-
mated systems when the process does not run quickly enough to avoid these unintended consequences.

The example above showcases the need for developers to design a way for LAWS to mitigate unin-
tended consequences if their ML models underperform. One way to provide these mitigations, as men-
tioned in Section 3.3.2, is to implement design patterns that proactively limit system behavior in cer-
tain contexts. In situations where unintended consequences were not or could not be prevented,
LAWS must have mechanisms that enable their operation to be altered, interrupted, or stopped alto-
gether. One such mechanism is an emergency stop, or a “deactivation switch.” If the system has made
undesirable decisions, operators—or even the system itself—must be able to activate such a mecha-
nism to prevent the system from incurring further damage. Often, these mechanisms occur as operator
manual override functionality.

Requirements for LAWS should include emergency stop mechanisms, such as deactivation switches
and manual overrides. The use case and deployment context will inform the amount, type of, and
physical and logical locations of emergency stop mechanisms. Therefore, developers should consider

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 39
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

both the ML components and the intended system deployment context when writing requirements for
emergency stop mechanisms.

3.3.14 Automated Decision Transparency and Traceability

Though decisions made by LAWS are automated and generally occur within milliseconds, humans
should be able to retroactively review what decisions the system made, as well as the input it used to
make each decision. This ability to review system decisions adheres to the traceability principle of the
DoD’s Ethical Principles for Al, which describes it as follows: “Al capabilities will be developed and
deployed such that relevant personnel possess an appropriate understanding of the technology, devel-
opment processes, and operational methods applicable to Al capabilities” [DoD 2021a]. Traceability
provides several major benefits, but for the purposes of this document, we want to highlight the fol-
lowing three:

o Ifthe system makes an incorrect decision, traceability helps development teams diagnose and fix
the offending system components.

o Transparency in the decision-making process engenders operator trust in the system’s ability to
make correct decisions.

e Traceability during system operation enables operators to identify potential issues in decision-
making processes (e.g., the PTR chain) and prevent these issues from causing unintended conse-
quences.

Ideally, every decision the system makes, as well as the data used to make that decision, should be
logged with timestamps and made available for post-operation analysis. These measures enable review
of the system’s overall performance with respect to its system-level decision pipelines. Even further, if
the system uses ML models, it should log inference results from all models with timestamps and tie
them to the input data it used for each inference. This logging is required to perform post-operation
evaluation of the system’s ML models, and it should occur in addition to all traditional logging mech-
anisms for LAWS.

The system’s context will heavily influence the number and type of transparency mechanisms required
by the system’s design. For systems with restricted resources, logging every decision and all input
data may not be possible. Such extensive logging may even impact operation if there is insufficient
computational power to support it. In these circumstances, requirements should indicate a minimum
set of data points and decisions that the system must log or surface to operators during system use.
These requirements should target the highest impact decision pipelines, such as PTR chains, and focus
on the core components of the pipelines, such as object detection and classification ML models.

While logging for post-operation analysis should be as comprehensive as possible, Section 3.3.10
demonstrates that developers should consider operator cognitive load when determining what infor-
mation to surface to the operator during system use. Operators should receive as much information
about the highest impact decisions as possible without distracting operators from their mission or cre-
ating cognitive overload. Developers should consider decision transparency when they document

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 40
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

requirements for who will be using the system, how they will be using it, and how the system will de-
liver decision information to operators (e.g., through a user interface, audio comms, haptics, etc.).

3.3.15 Replicable Tests for ML Components and Use Cases

Replicable tests serve several purposes. First and foremost, they provide evidence of the safety and
performance of your system, and they show in an auditable way that it meets all the requirements it
claims to meet. For this reason, all requirements should correspond to a test that can verify them so
that you can show that the whole system meets requirements, as we recommended in Section 3.1.7. A
traceability matrix, which maps each requirement to a test (or multiple tests) is a powerful tool for en-
suring coverage and therefore correct operation. Auditors can later review these tests to determine if
they provide evidence that the system meets requirements, examining both the resulting metrics as
well as the data used to generate the tests.

Secondly, replicable tests are a mechanism for assuring any updates to the system are compliant with
the system’s requirements. These tests allow TEVV personnel to evaluate any new model, with a new
architecture or new set of training hyperparameters, against the previous set of tests to ensure that it
continues to meet requirements. It also gives TEVV personnel a way to compare the updated model to
the existing model’s performance. Developing these tests can also provide utility when closing the
loop between model development, data collection, and evaluation because they can help identify areas
of system weakness where more data or better image augmentations are needed.

Not all system requirements can be represented using typical performance tests and metrics, such as
latency or model size. Where possible, TEVV personnel should find ways to automate these tests as
well, even if when doing so is as simple as loading the model and checking the size in memory. For
these tests, the exact data may not matter, but TEVV personnel should still note the results. If an as-
pect of the system changes, such as image resolution, developers will be able to see and isolate poten-
tial impact on system performance.

The number and range of tests depend heavily on the system’s use case. Both requirements and the
data itself can vary between use cases and contexts. For example, LAWS with separate modes for an
open field of combat as opposed to those that function in a contested urban area where civilians may
be present should each have an independent set of tests. Showing that precision and recall function as
per requirements for the system deployed in an open field of combat does not mean that that system
will perform adequately when civilians are in the mix. Specifically, by only looking at open field data,
you would not be able to quantify the false positive rate of detecting civilians as combatants. It can be
useful to repeat requirements in each context, so that each context contains all the requirements
needed to operate. Doing so ensures that TEVV personnel test all high-level system requirements in
each context.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 41
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

4 Data Collection, Curation, and Management

This chapter discusses the integral role of data in machine learning- (ML)-enabled systems (MLES),
and specifically in lethal autonomous weapons systems (LAWS) in use by the Department of Defense
(DoD), where the trustworthiness of such systems is crucial. The chapter provides guidance for per-
sonnel who perform testing, evaluation, verification, and validation (TEVV) of these systems to use
data as a first litmus test of a system and as an opportunity to understand the nuances of subsystems
that might make subsequent use of the data.

This chapter focuses especially on the data for training, validating, and testing ML models to clarify
the relationship between data characteristics and the correctness and reliability of MLES. In data sci-
ence and the field of ML, a guiding principle is that an ML model is only as good as the data it’s
trained on, so if bad data goes into the model, bad data is bound to come out. As we outlined in Chap-
ter 1, generating trustworthiness in ML systems is fundamental to ensuring operators and teams work
toward maximum efficiency. For that reason, the data an ML model produces should not only be accu-
rate, but operators should be able to trust it. Importantly, the Johns Hopkins University Applied Phys-
ics Laboratory states that “data curation is not just a preparatory step for building an Al-enabled sys-
tem but an opportunity to promote trustworthiness in that system” [Clemens-Sewall2024]. From a
TEVYV perspective, it is also a chance to confirm the trustworthiness of an artificial intelligence (AI)
system. This chapter provides guidance for TEVV personnel to evaluate data to promote such trust-
worthiness.

4.1 Recommendations for Data Management

The following recommendations provide guidance for TEVV personnel to prepare data adequately
and take precautions to promote a trustworthy system.

411 Assess Data Management and Datasets

High-quality datasets can be compromised by low-quality data management. The importance of data
management is demonstrated by its inclusion as the topic of a section in DoDM 5000.101 and DoDI
5000.98. TEVV personnel should be aware of the seven goals outlined in those documents, which
stress that data management should strive to make data visible, accessible, understandable, linked,
trustworthy, interoperable, and secure. Those seven goals are represented by the initialism VAULTIS,
and they comprise the DoD’s new data strategy that it introduced in 2020 [Hicks 2023]. That docu-
ment also provides a checklist for performing an assessment of how TEVV personnel are using data
management and whether it adheres to VAULTIS.

4.1.2 Incorporate Data Provenance into Dataset Evaluation

TEVYV personnel should validate that the entire data lifecycle is trustworthy through proper documen-
tation, application of calibrated rationales, use of ethical practices, and alignment with the project’s
mission. To establish these practices successfully, Section 3.8.a.1 of DoDM 5000.101 promotes the

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 42
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

development of data cards, and DoDI 5000.98 establishes the requirement of a transparent data pedi-
gree. Both documents express the need for datasets and testing and evaluation (T&E) data to be “visi-
ble, accessible, understandable, linked, trusted, interoperable, and secure” [DODM 5000.101; DODI
5000.98]. These qualities foster a trustworthy system and are promoted by data provenance.

41.3 Establish Data Governance and Compliance

Projects should comply with the guidance and requirements provided in current applicable governance
documents. As of this writing, we have identified four such documents—DoDI 5000.98, DoDM
5000.100, DoDM 5000.101, and DoDD 3000.09. DoDI 5000.98 and DoDM 5000.100 both contain
sections on data management with which TEVV personnel must comply [DODI 5000.98; DODM
5000.101]. DoDD 3000.09 specifies that systems should be tested and evaluated to ensure that their
autonomy algorithms can be rapidly reprogrammed on new data [DoDD 3000.09]. DoDM 5000.100
contains the most detail, describing the role that data governance must play in T&E Master Plans
(TEMP) and T&E Strategy, with some specific requirements for data and data-source management
[DODM 5000.10].

DoD guidance and requirements for implementing data governance is sparse. However, as the DoD
moves to adopt Al at a larger scale, it will release more documents with further guidance, and TEVV
personnel must be on the lookout for new publications to ensure they are meeting the most current re-
quirements for data. As this discipline evolves over time, TEVV personnel must work to stay up to
date with DoD directives that directly affect data management standards for LAWS.

41.4 Evaluate Data for Its Current Quality

Datasets can have different levels of quality that dynamically shift over time due to changes in priori-
tization, fluctuating conditions, and many other factors [Hicks 2023]. Quality datasets tend to score
high in dimensions of accuracy, completeness, conformity, consistency, uniqueness, integrity, and
timeliness. The DoD’s Data, Analytics, and Artificial Intelligence Adoption Strategy provides a use-
ful, high-level checklist that can function as an initial assessment [Hicks 2023]. When evaluating
LAWS, TEVYV personnel should leverage similar tools and checklists to ensure the quality of datasets
used to train and test LAWS are of sufficient quality to meet DoD required standards.

41.5 Validate That Datasets Provide Full Coverage of the Operational Design Domain

TEVYV personnel should create testing to validate that datasets provide full coverage of the system’s
operational design domain (ODD). TEVV personnel can meet this recommendation by using metadata
to track key aspects of the data and by performing analysis of the metadata to understand how much
data support there is in various regions of the ODD. Such regions should also include combinations of
conditions, like “raining” and “at night.”

Ideally, developers would have at least some data that represents all possible circumstances that the
system’s ML models may encounter. In such a case, the model would be trained on data equivalent to
deployment data and would respond to all situations appropriately. Due to the sheer size of the data

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 43
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

and the countless possible combinations of circumstances that a deployed system might encounter, ac-
complishing this ideal scenario is infeasible. This is why an ML model should be trained on enough
data to enable it to generalize about situations that it did not “experience” in its training. TEVV per-
sonnel that are testing LAWS that use ML models should, therefore, be rigorous in diversifying their
testing dataset. TEVV personnel may find scenarios that developers did not consider during training,
which provides an additional chance to identify and address weaknesses in model performance.

41.6 Test That the System Accurately Detects Data Drift

Even if ML models perform well in their initial deployment environment, the characteristics of and
trends in the data they encounter in the field will likely change over time. This circumstance is espe-
cially true for models in systems like LAWS that are subject to ongoing variations like changes in en-
vironmental conditions, new deployment locations, and numerous human factors. Such changes in
data over time are referred to as “data drift.”

Data drift is inevitable in most situations and prevention is not practically attainable. To help mitigate
potential loss resulting from data drift, TEVV personnel should verify that the LAWS under testing
can detect data drift. TEVV personnel should purposely expose the system to data and conditions that
are outside of, but adjacent to, the scope of the LAWS to review how the system reacts to data that
falls outside of its initial training domain. Data-drift detection acts as a proactive way to prevent poor
model performance during operation and provides a mechanism for improving operator trust in system
performance and control over the system.

4.2 Commentary on Data Management

This section provides in-depth explanations for the recommendations and observations listed above.

4.21 Data and Ethical Principles for Al

The data used to train an ML model is the foundation from which the model draws when it contributes
to decision pipelines in LAWS. Flaws in the training dataset will manifest as flaws in the model’s—
and likely LAWS’—operational performance. Unless TEVV personnel specifically test for them,
these flaws may not become apparent until a related edge case occurs during operation. Given the dan-
gers of flaws in the operation of LAWS, the testing and evaluation of LAWS should include steps to
identify as many of the model’s hidden flaws as possible. It is impossible to guarantee that TEVV per-
sonnel will be able to account for all edge cases, but the DoD’s Ethical Principles for AI document can
act as a reference to infer general areas, and implicitly general flaws, on which to start focusing testing
efforts. Chapter 2 of our companion guide Data Curation for Trustworthy Al provides detail on the
challenges and approaches for characterizing data [Clemens-Sewell 2025].

Responsible system design and operation is difficult to test and measure due to its subject nature.
TEVYV personnel should frame the task of testing for “responsibility” as testing to verify that system
designers and developers did their due diligence to reduce, as much as possible, the potential for the
system to do unintended harm. From this perspective, TEVV personnel must question the extent to

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 44
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

which designers and developers responsibly selected and used training data for this specific system.
For instance, TEVV personnel should verify to the best of their ability that the data used to train the
system’s ML models is sufficiently relevant to the context in which the system will be deployed. They
should also evaluate training data to ensure that developers did not unintentionally or irresponsibly use
sensitive data, such as restricted government or data or personally identifiable information (PII), to
train the system.

Testing the system for equitability most often takes the form of testing for the existence of bias in the
system’s ML models. Though usually unintentional, models often contain unintended biases due to a
lack of diversity in the training dataset. Such bias will cause the models to influence the LAWS to fa-
vor certain actions or decisions in certain situations, regardless of whether that action is ideal or cor-
rect. Therefore, TEVV personnel must actively test the system’s ML models for the existence of bi-
ases. If access can be provided to the initial training data, then various techniques can be used to
understand the data characterization and potentially adjust the dataset to compensate for the details.
Chapters 6 and 7 of our companion guide Data Curation for Trustworthy Al provide more information
[Clemens-Sewall 2025].

TEVYV personnel should also test ML models using diverse datasets that represent various de-
mographics, conditions, contexts, and potential outliers. Such testing involves identifying edge cases
and deployment context variants and gathering or generating additional testing data to specifically test
against these anticipated conditions. This testing also provides insights into the system’s governability
by providing opportunities to detect and avoid unintended consequences that may arise from issues in
the training data. The Al Fairness 360 tool is an example of a tool that TEVV personnel might use to
actively test and mitigate biases in datasets. It is available through an open source library, and it can
detect and mitigate bias in ML models throughout the Al application lifecycle [Trusted-Al 2025].

As outlined in the DoD’s Ethical Principles document, Al capabilities should be “developed and de-
ployed such that relevant personnel possess an appropriate understanding of the technology” [DoD
2021a]. In other words, the DoD stresses that Al capabilities should provide mechanisms that enable
their users to understand what actions they are taking and what motivated those actions. With respect
to data, testing for traceability starts with verifying that all data sources, design processes, and meth-
odologies are fully documented and understandable to relevant stakeholders. TEVV personnel should
check that there is documentation for every dataset used to train ML models, and they should scruti-
nize its quality. In addition, TEVV personnel should review records of dataset provenance to verify
that all data is traceable back to its source, and they should verify the documentation of all data
sources, including when, where, and how data was collected, as well as any subsequent processing
steps. Using these methods to verify data traceability also provides a way to evaluate the reliability of
the datasets and the data management processes that developers used during system development.

In addition to using the DoD’s Ethical Principles for AI document, TEVV personnel should consult
other responsible Al frameworks for additional guidance. As an example, the Institute for Ethical Al
& Machine Learning published The Principles of Responsible ML, which provides a list of eight prin-
ciples that TEVV personnel can apply directly to LAWS to test if the system was developed responsi-
bly [Institute for Ethical Al & Machine Learning 2025].

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 45
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

4.2.2 Data Splitting

Data splitting is the practice of partitioning a data set into two or three subsets with one part for train-
ing the model, one part for validation the model, and the optional third part for testing the model
[CDAO 2024]. There are a variety of techniques for constructing these subsets such that each properly
represents the operational domain distribution. The CaTE companion guide on Data Curation for
Trustworthy Al provides details on general splitting techniques, how to split while maintaining distri-
bution diversity, resampling for class balance, and guidance for the practitioner on splitting [Clemens-
Sewell 2025]. The document specifically emphasizes the negative effects of overlap between training
and test data splits as well as the potential for misleading test results when using data outside of the
intended system’s operational design domain.

4.2.3 Verifying Dataset Relevancy

Data collection is the first step in the process of training an ML model, and it provides the first oppor-
tunity for TEVV personnel to focus on data provenance and ensure that the data comes from quality
sources that match mission scenarios and goals. The quality and appropriateness of the data collected
will propagate throughout the rest of the process. We have found that there is little to no guidance
available for TEVV personnel to evaluate the data-collection process. However, based on our team’s
expertise, government supplied guidance, and the evidence we’ve gathered from real-world ML pro-
jects and research, we’ve noted effective practices across most use cases. We share some of that infor-
mation in this section.

Though superseded by the DoD Data, Analytics, and Artificial Intelligence Adoption Strategy, the
DoD Data Strategy provided guiding principles for data management and still contains relevant valua-
ble guidance. In particular, Section 2.2.7 of the DoD Data Strategy explains that TEVV personnel
should verify that training data was “fit for purpose,” or, in other words, they should validate that the
data used to train ML models for a LAWS is a suitable proxy for the data that a LAWS will see during
deployment [Norquist 2020]. Suitable datasets should fairly represent the variance in environmental
phenomena that the LAWS is likely to encounter in the domain of the use case. TEVV personnel
should therefore verify that the data used to train ML models in LAWS represents the system’s target
domain as accurately as possible.

Validating the relevance and quality of a dataset is a difficult problem. The CaTE companion guide on
Data Curation for Trustworthy Al discusses several different methods developers can use to align
their datasets with the system’s true operational distribution. These methods include, among others,
leveraging domain SMEs, asking appropriate questions regarding the operational domain, and apply-
ing algorithmic techniques to find differences between the true distribution and the distribution found
in the TEVV datasets [Clemens-Sewell 2025]. TEVV personnel can leverage these same techniques to
assist with gathering appropriate validation datasets and evaluating the quality of the datasets used
during model training.

The types of ML models and architectures employed by the system can also influence data-collection
requirements. Different model types require different types of data, and TEVV personnel need to be
able to identify if developers used incorrect data types or erroneous data annotations for model

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 46
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

training purposes. Models that use different learning types offer a good example to illustrate this point.
For instance, modules that use supervised learning rely on pre-labeled datasets to teach algorithms
how to interpret data and predict outcomes. However, models trained with unsupervised learning tech-
niques only require relevant data and do not need labels. Finally, models that use reinforcement learn-
ing techniques learn by interaction with an environment via a reward function, not from a static da-
taset. Each learning style requires different methods of data collection, cleaning, and labeling (or not
labeling). TEVV personnel should therefore validate that the methods used to collect, clean, and en-
rich each model are appropriate given the model’s type and architecture. The CaTE companion guide
on Data Curation for Trustworthy Al provides example questions that TEVV personnel can ask about
a system and its components to assist in defining what kind of data collection and labeling processes
are appropriate for the system [Clemens-Sewell 2025].

The use of data cards—which aid users in understanding the details and context of datasets—is a prac-
tice that has gained recent popularity, and it is becoming widely adopted [Pushkarna 2022]. Though
there is a lack of standardization in the greater data-management community, data cards can help
TEVYV personnel identify the relevancy of a dataset. If systems under testing are delivered with data
cards for datasets, TEVV personnel can directly compare the fields and metadata in the data cards to
data-centric system requirements. Additionally, TEVV personnel can leverage tools such JATIC Gra-
dient to generate custom data cards to compare as-is data to user-supplied data for data verification
[CDAO 2025]. Tool-assisted generation of custom data cards enables TEVV personnel to customize a
set of metadata that best identifies the dataset characteristics they want to focus on when analyzing da-
taset relevancy.

Often, systems use ML models trained on a dataset that are supplemented in some way by synthetic
data. Synthetic data is artificial data that developers create manually or extract from an artificial or
simulated source rather than gather from the real world. When synthetic data is of sufficient fidelity, it
can supplement training data for classes or contexts that developers were unable to capture naturally.
However, the effects of using synthetic data to train models are largely unstudied, and determining
how well synthetic data generation techniques succeed in approximating real operational domains is
still an open field of research [Clemens-Sewell 2025]. TEVV personnel should be skeptical of all da-
tasets that include synthetic data. Synthetic data is appropriate for use in many situations, but when
performing TEVV of LAWS, TEVV personnel should inspect training datasets for the use of synthetic
data and scrutinize the reasoning behind the inclusion of such data. Further, TEVV personnel should
avoid relying on synthetic data as a primary source for testing model performance. That said, it may
be appropriate to use synthetic data to assist with the testing of edge cases for which data was difficult
or impossible to capture naturally.

4.24 Data Augmentation for Training and Testing

In the development of robust ML models, data augmentation serves as a pivotal technique to enhance
the diversity and volume of training datasets. The essence of data augmentation lies in its ability to ar-
tificially expand the dataset by introducing a range of realistic modifications to existing data points.
Especially in scenarios where data may be limited or overly uniform, data augmentation helps prevent
overfitting and can improve model performance across varied real-world conditions.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 47
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Augmentation techniques vary significantly depending on data type. In image-based applications,
transformations such as rotations, scaling, normalization, and brightness adjustments enable models to
recognize objects under different conditions and perspectives, thereby improving their adaptability.
Similarly, in natural language tasks, techniques like synonym replacement and back translation help
models grasp the nuances of language, ensuring robustness against linguistic variations. Audio data,
too, benefits from augmentations such as noise addition or pitch alteration, preparing models to handle
real-world auditory variations effectively.

In some cases, developers include augmented data in the training dataset as a form of synthetic data.
In other cases, developers augment data during model training using various automated data manipu-
lation techniques. In either situation, TEVV personnel must validate that the chosen methods align
with the LAWS’ intended operational environment. For instance, augmenting image data with noise
might be practical for surveillance systems operating in visually complex scenes but less so for those
operating in controlled environments. Equally important is determining if the augmented data intro-
duces any biases that could skew the model's learning. TEVV personnel should verify that the modi-
fied data still accurately reflects real-world conditions and doesn’t distort the model's perception of the
environment. Part 2 of our companion guide Data Curation for Trustworthy Al provides a detailed
discussion of data modification and approaches to ensure the resulting datasets retain their fidelity and
relevancy while promoting the intended properties [Clemens-Sewell 2025].

Data augmentation can provide additional benefits in the model-testing process. While not a replace-
ment for an actual domain-relevant validation dataset, TEVV personnel can apply the same methods
for augmenting data during model training to supplement the dataset they will use to validate model
performance. Introducing augmented data into the validation dataset is one method for testing model
robustness. However, TEVV personnel should leverage data augmentation cautiously. There is no
guarantee that systems that perform well on augmented data will also perform well on the data being
represented by the augmentations. Additionally, if using data augmentation techniques during testing,
TEVYV personnel should not leverage the same techniques used during training. Doing so may cause
the validation dataset to overlap with the training dataset.

425 Data Labeling

Data labeling is a task that involves labeling or tagging data points to prepare the data to train ML
models. This process is necessary to produce datasets for supervised learning pipelines. Development
teams usually perform data labeling after data collection, but sometimes they can also do it during the
data-collection phase. Data labeling can be costly, time consuming, and arduous, and this step in
model training is therefore often automated, outsourced, or rushed. Because of these known chal-
lenges, TEVV personnel should thoroughly inspect the labeling processes used by developers, seeking
specifically to identify areas where developers may have cut corners or where they may not have per-
formed their due diligence.

Traditionally, the method for data labeling involves people, rather than machines, applying labels
based on their opinion and expertise. However, people make mistakes, and different people’s opinions
or interpretations of a label may often differ. Data labeling tools such as CVAT are useful for

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 48
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

speeding up the process through automation [CVAT 2025], but automated tools like these are also ca-
pable of (and prone to) making mistakes. Because both people and automated tools can make labeling
mistakes, TEVV personnel should be diligent to validate that labels are applied consistently and accu-
rately across the training and validation datasets. Tools such as JATIC RealLabel can assist in identi-
fying problematic or incorrect labels [CDAO 2025].

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 49
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

5 ML System Design

Machine learning- (ML)-enabled lethal autonomous weapons systems (LAWS) include ML compo-
nents that make predictions about the input information and apply additional logic to generate autono-
mous actions based on interpretations of those predictions. Currently, ML technology is not suffi-
ciently advanced to incorporate all these actions into a single model. Therefore, systems require
multiple models that provide different functionality, which the system subsequently combines in vari-
ous patterns to provide the full functionality.

We recently published the Reference Architecture for Assuring Ethical Conduct in LAWS as a com-
panion document to this guidebook [Mellinger 2025]. In the reference architecture, we provide an ex-
ample of a mobile autonomous system with a fully autonomous perception, targeting, and response
(PTR) system that also demonstrates an approach to ethical conduct governance. While we do not ex-
pect developers will necessarily reproduce the organization or the exact components of the architec-
ture as we describe them, we do expect that system development and resulting systems should focus
on the same quality attributes of reliability, robustness, safety, and usability that we do in the reference
architecture.

We produced the reference architecture to reason about the challenges we described in Chapter 3 and
to provide examples of how any system should be able to answer the following questions:

e What models are used by the system and what are their inputs and outputs?

o How are inputs to the models validated and how is that validation used to support decision-mak-
ing, how is decision-making communicated, and how is it stored for later analysis?

e How are model outputs checked, and if necessary, constrained? How is that information commu-
nicated to the operators and stored for later analysis?

o What are the system’s decision-making components, and what is their basic decision-making
logic? How do they deal with questionable input data or model outputs?

e How is the decision-making process communicated to the operator?

e Which components are responsible for the application of ethical controls, how do they apply
these controls, how do they communicate with the operator, and how do they store their infor-
mation for later analysis?

o How are ethical guidelines entered into the systems and configured for regions, missions, or
commander’s intent?

The answers to these types of questions should be evident in the system-level architecture to allow ap-
propriate construction of system testing during developmental and operational testing. For example,
based on input images, a test should be able to show which components are responsible for identifying
mission-relevant features from the sensors, which others are making these decisions, which provide
ethical controls and thresholds, and which logs show this output.

Many of the questions above ask how the system communicates the various types of information to
the user. To support such communication, the system design should leverage pervasive architectural
affordances with corresponding user-interface support and robust logging infrastructure. The “IEEE
Standard for Transparency of Autonomous Systems” provides a comprehensive guide to transparency

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 50
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

including how to perform a system transparency assessment, how to write a system transparency spec-
ification, and how to prepare a transparency design process [IEEE 7001-2021].

5.1 Commentary on ML System Design Testing

Each component of a system has a different set of requirements, and these requirements are often not
qualitatively similar. Earlier, we made the distinction between ML and Al where ML refers to the
model and Al refers to a combination of the model and additional symbolic code to interpret the pre-
dictions for use in decision-making. The requirements for ML components usually contain details
such as precision and recall, and they require tabulating component behavior over a large amount of
data. On the other hand, requirements for software components such as Al typically describe behav-
iors or input and output pairs. TEVV personnel usually test these software components using unit
tests, where the function is called, perhaps a dozen times, to exercise all the code paths and check that
the component behaves as expected. This type of testing is completely different from testing that runs
thousands or more images through an Al and ML component to understand general trends in its per-
formance, and, therefore, such testing requires different tools.

System requirements can either describe explicit behaviors (e.g., with a statement like “The robot
reaches its goal location.”), or they can be performance based (e.g., with a statement like “The robot
can traverse this course in less than 10 minutes.”). Tests for these requirements must go beyond sim-
ple functionality checks that TEVV personnel typically perform for software components in isolation,
and they require a different testing approach to accomplish that goal. The following list offers a rough
guide for writing requirements:

e ML components will require evaluation over a dataset to compute values like precision and re-
call.

e Al and ML subsystems (e.g., an object detector and tracker pair) may require a more advanced
version of testing that occurs over a dataset to compute values.

e Al software components will require unit tests that show that the component performs all the ex-
pected behaviors correctly.

e Hardware, mechanical, and electrical components will often require physical testing as well as
analysis in software.

e Overall system testing requires either field testing, simulation testing, or both, and it can also
make use of log-replay based testing

e TEVYV personnel can also use log-replay based testing on all types of subsystems.

e Some components may need (or at least may benefit from) different testing approaches for differ-
ent requirements.

These are rough guidelines and are not meant to be prescriptive. However, every single requirement
must have at least one test that checks it. These approaches are common as they are often the simplest,
most cost-effective, and most repeatable way of performing that testing.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 51
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

6 Model Design, Development, and Testing

This chapter provides guidance to assist development teams and TEVV personnel with the selection,
design, and training of machine learning (ML) models used in lethal autonomous weapons systems
(LAWS). Importantly, there is a strong foundation for performing development and testing of individ-
ual models, with scores of supporting research and documentation. We strongly urge TEVV personnel
to become acquainted with those available resources. However, one of the goals of this guidebook is
to recognize that existing sources are often insufficient to address the special characteristics and needs
of LAWS. This chapter, therefore, provides guidance for navigating useful resources, but it also aims
to build on those resources to establish actionable guidelines for meeting the unique conditions of
LAWS.

Among the numerous sources that exist to help development teams establish effective practices for de-
veloping and testing ML models, we recommend that they review Machine Learning in Production by
Kaéstner, Artificial Intelligence: A Systems Approach from Architecture Principles to Deployment by
Martinez, and the DIU Guidelines and Worksheet for the RAI perspective [Kastner 2025; Martinez
2024; Dunnmon 2021]. In addition, full-featured development platforms and pipelines are readily
available for ML development, and developers and TEVV personnel should expect to gain modern
engineering benefits from these practices such as configuration management, continuous integration,
automated testing, version control, and so forth. However, as we explain above, this chapter does not
cover these details but instead focuses on how LAWS differ from other systems and the needs these
differences occasion.

Although there are many different ML development process models, we have chosen to concentrate
on a particular version of machine learning operations (MLOps) for this guidebook, which is depicted
in Figure 44. MLOps assumes the model is placed directly into operation (hence the “operations” por-
tion of the name), but for our purposes, providing it for system integration is equivalent to deploying it
into operations, so the model is representative of what LAWS need. Figure 44 shows an example
MLOps process that we have chosen because the process explicitly highlights the RAI principles and
emphasizes the connections and interactions of the process with those principles. Application of RAI
and other ethical controls in LAWS is crucial because the consequences of failure are so high.

Figure 4 comes from an SEI whitepaper on counter Al called Counter Al: What Is It and What Can
You Do About It? which we highly recommend as background reading to understand the basic ap-
proaches attackers use to launch attacks on Al, and what development teams can do to prepare for
such tactics [VanHoudnos 2024]. In addition, see Chapter 2 of this guidebook for discussion of the
ethical motivations and principles we outline for LAWS.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 52
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

o)
S DATA

Figure 44: MLOps Model

Using Figure 4, development teams can begin thinking through the process of choosing a model archi-
tecture and establishing a process for model development that addresses the most pressing issues of
developing ML for LAWS. To start, models function by establishing an architecture that describes the
types of system layers and the relationships between them—sometimes organized into groups—that
provide the model with its distinctive style, such as a convolutional neural network. There are many
different model architectures to choose from that provide different layer group types and repetitions of
groups, as well as different group sizes, customizations, and even pretraining options that develop-
ment teams must choose before they begin the iterative development process. Model architectures
have a direct impact on traditional model performance measures such as accuracy, precision, and re-
call, but also on other considerations such as memory utilization, runtime performance, and training
cost. Choosing an inappropriate architecture can lead to significant rework. We cover model selection
in Section 6.2.1.

After base model selection, developers must train or tune models on mission specific data, which
sometimes requires model modification (e.g. changing layers) beforehand. We discuss how to adjust
the data during training and other training pipeline options in Section 6.2.3 and Section 6.2.5. In Sec-
tion 6.2.4, we discuss how to select metrics for training and how to know when basic training is suffi-
cient. We discuss how to prepare the model for counter Al in Section 6.2.9. Finally, we discuss how to
prepare the model for handoff with appropriate artifacts in Section 6.2.8. To learn more about how to
calibrate the model for mission use, reliability, and robustness, readers can refer to Heim's 4 Guide to
Failure in Machine Learning: Reliability and Robustness from Foundations to Practice [Heim 2025].

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 53
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

6.1 Recommendations for Model Design, Development, and Testing

The following sections provide a list of recommendations for development teams and TEVV person-
nel to appropriately and effectively design, develop, and test the system.

6.1.1 Start with Good, Appropriate Models and Metrics

Model architectures and implementations can have tremendous impacts on the quality of the model
outputs, but TEVV personnel must measure them appropriately with respect to the mission. We dis-
cuss model architecture in Section 6.2.2 and the selection of appropriate metrics in Section 6.2.4.

6.1.2 Tailor the Pipeline to the Mission Need

Having good data and a suitable architecture isn’t enough to ensure high-quality output from the
model. To ensure the highest quality output as possible, the training pipeline and test infrastructure
must follow best practices and must match the model and mission needs. We discuss training practices
in Section 6.2.3, responsible engineering in Section 6.2.7, and metrics selection in Section 6.2.4.

6.1.3 Get Control of Probabilistic Software Development Experiments

Building successful, complex probabilistic systems such as ML requires that development and TEVV
teams develop a strong experimental mindset and acquire tool support. Controlling random seeds and
sources of non-deterministic behavior become necessary for diagnostic and comparative analysis. We
discuss this topic further in Section 6.2.1. Tests must accommodate these controls, which we discuss
in Section 6.2.6. This control is part of the overall responsible engineering practices, which we discuss
in Section 6.2.7. Finally, we discuss the documentation of these configurations in Section. 6.2.8.

6.1.4 Confirm Through Testing That Processes Are Effective

Good data, architectures, designs, and processes promote good outcomes, but they must be confirmed
through testing as well as any feature. For example, development teams might have made use of a
good model selection process, but TEVV personnel must still test the model after selection, and it
should be compared against alternatives. We address how to design good model tests in Section 6.2.6,
how to control the probabilistic nature of these tests in Section 6.2.1, and how to document them in
Section 6.2.1.

6.1.5 Consider Robustness and Model Calibration When Designing the System

Accuracy, precision, recall, and other traditional model metrics are important, but there is much more
to modern model testing such as robustness to adversarial attack and model calibration. TEVV person-
nel should consider and address these techniques during training and make sure that the model’s out-
puts provide evidence to support that development teams have properly prepared the models. We dis-
cuss counter Al in Section 6.2.9 and outputs in Section 6.2.8.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 54
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

6.1.6 Segment Testing for Performance Insights

TEVYV personnel should perform a detailed breakdown system performance by segmenting the test set
to reflect important properties or circumstances for which TEVV personnel need details. TEVV per-
sonnel should then filter results by time of day, location or environment, or classes of interest. All of
these can provide more detailed information about the system’s strengths and weaknesses.

6.2 Commentary on Model Design, Development, and Testing

The sections that follow provide more information about the recommendations in Section 6.1.

6.2.1 Repeatability, Reproducibility, and Replicability

Reproducibility is part of any mature testing process. Performing this part of testing is more challeng-
ing and important for MLES than for other systems, but TEVV personnel must plan and account for it.
Development teams should allocate more resources and planning time than they normally would in
traditional projects to provide reasonable levels of reproducibility. However, as model training can re-
sult in very large outputs, saving every output at every stage is intractable due to the amount of storage
required. Conversely, attempting to regenerate intermediate outputs dynamically, such as re-running
earlier experiments, may be too costly in terms of time and computing resources. Development and
testing teams should reach early agreement about the appropriate amount of infrastructure and tooling
required for anticipated reproducibility needs.

Additionally, establishing the repeatability, reproducibility, and replicability of testing is important to
support diagnostics and experimentation as well as the overall assurance case.

Reproducibility as a general term covers a wide variety of situations. To help establish what we mean
by the terms repeatability, reproducibility, and replicability, we leverage the definitions offered by the
Association for Computing Machinery (ACM), who offers useful distinctions for these three terms.
ACM defines the terms as follows:

Repeatability (Same team, same experimental setup)

The measurement can be obtained with stated precision by the same team using the same meas-
urement procedure, the same measuring system, under the same operating conditions, in the
same location on multiple trials. For computational experiments, this means that a researcher
can reliably repeat her own computation.

Reproducibility (Different team, same experimental setup)

The measurement can be obtained with stated precision by a different team using the same meas-
urement procedure, the same measuring system, under the same operating conditions, in the
same or a different location on multiple trials. For computational experiments, this means that
an independent group can obtain the same result using the author’s own artifacts.

Replicability (Different team, different experimental setup)

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 55
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

The measurement can be obtained with stated precision by a different team, a different measur-
ing system, in a different location on multiple trials. For computational experiments, this means
that an independent group can obtain the same result using artifacts which they develop com-
pletely independently [ACM 2020].

For model training, these definitions have several implications that TEVV personnel must consider.
For example, when a team is working together to train a model, repeatability enables the team to make
incremental changes to code, to hyperparameters, or to other properties and to determine the impacts
of those changes. Teams do not need to complete all the training steps at one time, but they may in-
stead perform iterative model training because each subsequent epoch or iteration of training can be
considered as tuning the model. However, supporting a process where developers repeatedly tune a
partially trained model requires re-initializing the training system to the last state, which in turn im-
plies strong reproducibility. Based on the above three definitions of reproducibility, it is therefore im-
portant to define the conditions in which the iterations take place. For example, TEVV personnel
should specify whether all tuning iterations happen on precisely the same training system (hardware
and software), or whether the iterations can happen across different systems and at different times.

Replicability requires a significantly higher level of configuration, capture, and control, and it may not
be necessary for the development of the models and systems. A fully replicable process would require
identical hardware, identical software platforms, identical starting conditions, identical software pro-
cesses, and full control of all random seeds, networking control, and process interactions. Achieving
replicability for a fully formed system is extremely expensive and probably isn’t worth the value it
provides.

Reproducibility is difficult to build into the system after development has started. Therefore, develop-
ment and testing engineering teams should work together at the beginning of the development process
to agree on the level of reproducibly required at the model level. They also need to discuss the impli-
cations these requirements will have on training time and diagnostics.

Experimental control and reproducibility introduce additional challenges when stochastic components
are involved. ML training intentionally introduces randomness for many reasons, such as preventing
overfitting, and it allows a level of non-determinism to occur to allow optimizations for runtime train-
ing performance [Mellinger 2025].

6.2.2 Base Model Selection

This section discusses the many factors that developers should consider when choosing a model to fit
the system’s purpose. We provide overviews of the basic properties of models that developers should
consider when assessing whether the model is appropriate for the task it is intended to perform. These
considerations should occur before beginning the test and evaluation (T&E) process.

ML models can serve different purposes such as image processing or language tasks. For LAWS, we
expect that designers and developers will choose models for image processing tasks such as image
classification, object detection, or object tracking. For more information, we provide discussion in
Chapter 5 of different design patterns that developers can use to form a perception, targeting, and

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 56
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

response chain. In that chapter, we also discuss these behaviors, and we offer examples of several
models that developers can use in that pattern.

Model developers should describe the architecture and implementation they chose and why, and
TEVYV personnel should review these descriptions as they are necessary for developing testing. For
example, the You Only Look Once (YOLO) object-detection system is a popular, single-shot object
detector architecture that different organizations have used in many implementations for numerous
purposes. YOLO models are not all produced by the same group or vendor. In fact, YOLOvVS5 and
YOLOvV7, while based on the YOLO design, are completely different versions made by completely
different vendors. Unlike traditional software, where a major version change implies significant
changes to features, in this case it may also involve a complete change of developer, implementation,
and properties, which increase the workload for TEVV in that it violates a lot of common assumptions
about software. For example, YOLOV4 or Tiny-YOLO, are versions of YOLO intended for small
computing formats such as a Raspberry Pi. Roboflow’s “What is YOLO? The Ultimate Guide” is an
excellent resource that explains the history of YOLO models and even provides visualizations to com-
pare its different versions should TEVV users need to understand the differences between different
versions of YOLO [Roboflow 2025].

After system designers and developers choose a model architecture, they must decide whether to use a
pretrained model. Many models are pretrained on ImageNet even though that resource doesn’t provide
the dataset or classes that the system will need to function for the purposes of most LAWS. Models
pretrained on ImageNet provide a good set of starting weights instead of a random distribution
[ImageNet 2025]. Many organizations, such as Nvidia, provide models that they have tuned for spe-
cial purposes such as just identifying people [Nvidia 2024]. There are other publicly available models
that are tuned to detect street signs or cars, and developers can tune any of these models even further.
However, it is important for TEVV personnel to understand how the model was trained. Understand-
ing the data that developers used in all stages of the training process can inform testing about particu-
larities in results.

Tuning a model often involves replacing the last layer in the model with a new one that developers
fine-tuned for new classes and images. Alternately, it may just involve freezing some sets of layers
and replacing or training others, while other layers may be added at the end for other purposes such as
calibration. Developers should note and document any changes to a base model architecture, and
TEVYV personnel should ask for the reasoning behind the changes and descriptions of the implications
and side effects of the changes. TEVV personnel should test the model for any side effects or perfor-
mance impacts not anticipated during the design process.

Lastly, developers might choose certain models because of runtime performance. Some models, such
as TinyYOLO, are optimized for small memory or low processor usage, which often negatively im-
pacts model performance such as accuracy, precision, or recall [Rosebrock 2020]. While this result is
often a necessary tradeoff, these impacts should occur by design, and developers should document
them. Naturally, these changes negatively impact model performance, and performance metrics on
these smaller model versions will be lower than those on fully featured models, so normal benchmarks
should not be used for comparison. For example, a system using TinyYOLO will not be able to
achieve the same model performance numbers as their full-sized versions. Models working on small

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 57
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

devices can also suffer from other real-world impacts because they operate on lower resolution sensor
images, which limit vision range. Developers must identify and document all side effects, and TEVV
personnel should construct appropriate tests to make sure models meet mission goals.

6.2.3 Training Practices

Pretrained models are unlikely to be appropriate for a LAWS. One issue is that few datasets for pre-
trained models will contain information about military equipment, and those that do will most likely
not contain the level of detail required for appropriate training. For example, we expect that datasets
will need to use mission-specific class distinctions, such as those that distinguish between military and
civilian vehicles, and they will need to use classes for objects in unusual states such as vehicles that
show battle damage. Accurate perception of such differences requires some level of training or tuning
in a perception chain.

To train or tune a model, developers repeatedly feed training and validation data into the model until it
reaches appropriate metrics. In Section 6.2.4, we discuss how to choose appropriate mission metrics to
perform this process.

There are many techniques that developers can use to organize and feed the data into the model during
training that can influence the outcomes such as overfitting. However, all these techniques will impact
training time. If the final measure of a good model is how it performs, then the process of getting to a
final model is not important except the time and cost. However, ML deployment differs from tradi-
tional systems deployment in that we expect the models to need updating (retraining or tuning) over
time. Therefore, delivering a process to update the model is part of the output. T&E should choose a
functional model, but it must also choose a model based on how feasible it will be to establish a pro-
cess and executable pipeline that allows quick, efficient, and cost-effective updating without sacrific-
ing mission quality. Existing T&E capability may not be prepared for evaluating these processes and
their impact on mission quality as part of a product deliverable, so development teams should allocate
additional time and resources to ensure that testing is adequate for these outputs.

Currently, there are no standardized guidelines or benchmarks for establishing a retraining or tuning
pipeline that meets mission purposes, but resources such as Machine Learning in Production: From
Models to Products provide a good starting point for evaluating such pipelines [Késtner 2025]. Any
such evaluation should cover the ingestion of new data including data preparation; adjustments to the
training process (such as number of epochs or iterations); quality metrics such as accuracy, precision,
or recall; target classes; pipeline augmentations for robustness; and frameworks for counter-Al check-
ing, to name a few.

Training might sometimes entail introducing more complicated changes, such as the addition of new
target classes as part of a change to mission profile. Such changes may result in significantly new mis-
sion capabilities, and they might require senior review as per DODD 3000.09, Section 1.2.c.2, which
states that senior review is required for changes to any of the following: “system algorithms, intended
mission sets, intended operational environments, intended target sets, or expected adversarial counter-
measures [that] substantially differ from those applicable to the previously approved weapon systems”
[DODD 3000.09]. Data classes most likely will change “intended target sets” and updated counter-Al

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 58
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

libraries can significantly change “adversarial countermeasures” as well. In short, any sort of update
or change to the model or pipeline during updating, even without significant change to the deployment
code base, can significantly change the behavior from a DODD 3000.09 perspective and must be re-
approved. This level of change will be inevitable. Pipelines, therefore, should be built in a way that
developers can easily introduce changes, and TEVV personnel should prepare a T&E process that is at
the ready to evaluate these changes. To extend this scenario further, TEVV personnel should prepare a
T&E process that can readily evaluate and consider any changes that might occur in the MLOps
model described in Figure 44. See section 6.2.6 for a further discussion on pipelines.

During training, it is important to understand if the training process affects the model, what sort of an
effect it is having, and how much. There are a variety of diagnostic utilities that developers can apply
during training, such as during backpropagation, to evaluate changes to the model, to understand the
effectiveness of the training process, and to gauge the impact of any changes to the process. An exam-
ple of such a utility are saliency maps, which developers can use to identify what part of the images
are being identified by which layers. Developers can also use other activation-based tools to identify
which layers are being affected by changes to inputs such as augmentations for robustness or for the
prevention of overfitting. Describing the details of these activities is beyond the scope of this guide-
book, but evidence of their use and effectiveness should be identified by T&E as part of the assurance
case.

6.2.4 Metric Selection

Training typically involves iterations in which developers train the system using batches of training
data and then measure system performance using batches of validation data. This process is repeated
until the model meets a given quality metric for the testing predictions it makes about the validation
batch. A common metric is accuracy, which refers to the basic measure of how often the model’s pre-
dictions are right. Other metrics provide more nuanced measures such as precision or recall, and still
other metrics combine these measurements into new metrics, such as the '/ score. The Organisation
for Economic Co-operation and Development (OECD) maintains a list of 130 metrics in their “Cata-
logue of Tools & Metrics for Trustworthy AI” [OECD 2025]. Developers and TEVV personnel must
select the metrics that best measure the performance of the system to ensure it meets mission goals.

Along with a wide variety of mathematical metrics, the T&E process must determine the right mission
value for each metric and whether testing should apply different values for different system contexts
or outputs. For example, developers and TEVV personnel must consider whether to apply the accu-
racy metric against all classes evenly, or whether they should apply different thresholds per class. This
is an important consideration because it’s possible that a particular use case might require that the sys-
tem identify civilians with greater accuracy than domestic animals. Alternately, developers and TEVV
personnel might apply a different threshold for recall (i.e., how well a model can identify positive in-
stances in a dataset) to different classes.

Given the complexity of mission scenarios, we expect that TEVV personnel will measure a model’s
fitness for purpose using values that vary across multiple metrics and many different classes rather
than using a single value or metric such as accuracy. In addition, it is reasonable to expect different

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 59
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

thresholds and measures based on use case or context variations such as environment, lighting, activ-
ity, and weather.

6.2.5 Overfitting

When training an ML model, it is possible to overfit the model to the data, which means that the
model is trained very specifically to that dataset and does not perform well with regards to real-world
data. A system yielding high accuracy rates (or other metrics) on the training data but poor values on
actual test data can indicate that overfitting has occurred.

The basic strategies to prevent overfitting involve acquiring a larger data set, permutating the source
data so that it isn’t the same during training iterations, creating synthetic data if possible, or discontin-
uing training when the system meets a certain metric. Augmentations for image data include tech-
niques such as rotations, scaling, and cropping, which can make the original source data appear differ-
ently without changing the data. Developers can also introduce true modifications to the source data,
such as modifying light levels, adding artifacts, or adding synthetic data, but doing so can introduce
certain risks, which we discussed in Chapter 4.

6.2.6 Designing Model Tests

There are many resources and approaches that provide good guidance for model testing, and it is up to
each program to find one that fits their culture, process, product, and mission goals. The approach that
programs choose to adopt must address the entire lifecycle and integrate with requirements and the
development process in a meaningful way and generate verification and validation (V&V) testing
commensurate with the mission.

TEVYV personnel can consult the following resources and combine them to assemble a comprehensive
approach:

o Chapters 14 through 18 of Késtner’s book, Machine Learning in Production: From Models to
Products, provide a good resource to plan for data management, model testing, pipeline manage-
ment, and system quality [Kédstner 2025].

o “Test & Evaluation Best Practices for Machine Learning-Enabled Systems” provides excellent
coverage of the challenges and approaches to generalized ML model testing. It covers areas such
as test generation, test adequacy, and integration and deployment. Test generation addresses how
to reapply common traditional testing techniques such as metamorphic testing, differential test-
ing, combinatorial testing, and fuzz testing to ML. It also provides some discussion of adversarial
testing [Chandrasekaran 2023].

e The MLTE Documentation website developed the Machine Learning Test and Evaluation
(MLTE) project, which contains a testing library and process framework that starts with mission
analysis facilitated by quality attribute scenarios [MLTE 2025]. It also introduces the idea of ne-
gotiation cards (like data and model cards, but for testing based on quality attributes), discusses
how to apply them to various stages of model testing, promotes iterative processes, and provides
a test catalog and guidelines for producing reports. These techniques are further discussed in the

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 60
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

papers “Using Quality Attribute Scenarios for ML Model Test Case Generation” and “MLTEing
models: Negotiating, Evaluating, and Documenting Model and System Qualities” [Bower-Sin-
ning 2024; Maffey 2023].

o The Chief Digital and Artificial Intelligence Office’s (CDAO’s) Joint Al Test Infrastructure Ca-
pability (JATIC) toolkit contains a wide variety of ML model testing and evaluation tools that
address data quality management, data augmentation, labeling, visualization, and counter Al ro-
bustness [CDAO 2025].

o ISO/IEC 5338 section 6.4.11.3 points out that TEVV personnel should perform verification of Al
based systems from a behavioral perspective [[SO/IEC 5338:2023].

The resources above are not specifically geared for LAWS. Therefore, TEVV personnel will need to
adjust testing plans for the specific safety, ethical, and HSI concerns that we described in Chapter 2
and Chapter 3 in addition to the safety concerns addressed in MIL-STD-882E.

TEVYV personnel should construct test variations and metrics in accordance with the readiness of the
model and the system in which it will be injected. ML technology readiness levels (MLTRLs) can pro-
vide guidance to understand data maturity and review at each stage of the model and system testing
[Lavin 2022]. These processes become more important at the system level, and we discuss them in
depth in Chapter 8.

6.2.7 Responsible Engineering Practices, Processes, and Tools

As of this writing, there are few fully featured and mature tool chains for the TEVV of MLES, and
none specifically focus on trust and trustworthiness. We want to stress for the purposes of this guide-
book that—although numerous documents exist that attempt to describe how to implement RAI, how
to add ethical processes to systems, and how to define RAI maturity models [IEEE 7000-2021; DOD
2022a]—many of them are unlikely to extend seamlessly to the needs of LAWS. RAI tools and prac-
tices are co-evolving but few, if any, industrial tools have incorporated the principles and tenets of
RALI at the level needed by LAWS. Some standards explicitly exclude ethics. Such is the case with UL
4600, which states, in Section 1.3.4, that “Two areas out of scope for this standard are setting accepta-
ble risk levels and setting forth requirements for ethical product release decisions and any ethical as-
pects of product behavior” [UL 4600]. While understandable for a product that fits into an already reg-
ulated environment, the implication is that any guidance in this standard may not be directly
applicable to LAWS.

Until there is an “RAI approved” or “RAI compliant” tool set, each program will have to make its
own. The burden therefore falls to the developers and, as usual, the TEVV community to not only ex-
amine the products themselves, but also the processes for integrating these products. The Defense In-
novation Unit (DIU) guidelines and worksheets for RAI and the Institute of Electrical and Electronics
Engineers’ (IEEE) ethical process guidance can both serve as useful references during ethical model
development [Dunnmon 2021]. Efforts such as JATIC are currently trying to assemble modern tool
suites, but few offerings are established, much less commercial. The operating assumption of TEVV
personnel should be that most tools, practices, and tools chains have not been designed to conform
with or support RAI practices. Software engineering has many guides and techniques for assessing

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 61
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

and selecting tools, and programs should consider using a process such as the one suggested in “A
Process for COTS Software Product Evaluation” [Comella-Dorda 2004]. Lastly, teams should consult
conceptual frameworks, like “Canonical Stack of Machine Learning,” that elaborate on possible com-
ponents for a complete tool chain [Jeffries 2022].

6.2.8 Model Cards, Outputs, and Standardization

The process of training creates not only a trained model but also generates useful information about
the model such as accuracy and loss, how it performs against each test set, and other useful infor-
mation about the training process and the training pipeline. In this section, we discuss some techniques
that developers and TEVV personnel can use during the training process to capitalize on opportunities
beyond just training a model, such as capturing key information.

Model cards—which are like the data cards we discussed in Chapter 4—were initially proposed in
2018 in a research paper by Google research to provide a semi-formalized way to capture the a tech-
nical description of the model including the model architecture, its hyperparameters, its training pro-
cess, and so forth [Mitchell 2018]. Since then, many organizations have published model cards and
improved what they capture by adding more fields or requiring formats such as YAML. A popular
data and model-sharing website called Hugging Face further refines this idea with additional defini-
tions and provides a template [Hugging Face 2025]. The model cards at Hugging Face are more for-
malized and machine readable than other, commonly available formats, but they still contain a lot of
information in natural language, which presents challenges when trying to analyze and summarize a
system containing many models. As for data cards, efforts are underway to standardize even more of
the terminology and formats to improve machine readability.

In Section 6.2.6, we discuss how to create model tests and how to capture testing goals and outputs
using standardized processes and formats that promote completeness, interoperability, and reuse.
TEVYV personnel can find examples of testing cards—which bear similarities to data and model
cards—in MLTE’s negotiation cards and in the Systems Engineering Processes to Test Al Right
(SEPTAR) framework’s evaluation cards. Although the cards from MLTE and SEPTAR serve differ-
ent purposes, they both provide common ground and techniques to understand user needs and model
outputs and to how TEVV personnel can produce and organize test outputs. As with other approaches,
there is room for additional formalisms and standardization, but they provide a good start to create a
full-featured suite of cards for describing the data, models, and performance.

How developers build a model is just as important as the model itself, and it is important to remember
that the entire collection and logs that comprise the training system will contribute to the overall assur-
ance case. In the article “Traceability for Trustworthy Al: A Review of Models and Tools,” the au-
thors propose a single, unified file format that describes the business, data, modeling, processing pipe-
line, evaluation criteria, and deployment that serve as an example of a complete set of output data with
formalisms [Mora-Cantallops 2021]. Until there is a standard for what comprises a complete Al assur-
ance case—such as something similar to one listed above—each program should define guidelines and
details for each technical area such as the data used for training, the model development process,
model evaluation, or pipeline development. Further, programs should consistently use these templates

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 62
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

across all efforts of ML model development. The final data-model-pipeline-evaluation chain is a cen-
tral piece of the assurance case to support the RAI principle of traceability.

Each model and mission are different, and developers and TEVV personnel will need to define differ-
ent testing thresholds to make sure ML models meet their specific mission goals before developers in-
tegrate the models into a system. However, TEVV personnel can and should reuse testing tools, types,
and strategies between models as much as possible for consistency. There are many examples of
model tests available that TEVV personnel can use and repeat for these purposes, such as those in
MLTE’s test catalog or OECD’s metric’s use cases and [Bower-Sinning 2024; OECD 2025]. TEVV
personnel should give preference to these existing tests over novel approaches when appropriate.

Additionally, in systems with multiple integrated models— which we described in detail in Chapter
S5—testing should be complementary across all models. TEVV personnel should choose measures that
reflect consistent mission goals, while tailoring thresholds per model in the system when appropriate.
However, TEVV personnel must identify differences in model goals such as static classification as op-
posed to motion tracking, and they should test for these different goals separately while keeping in
mind how they contribute to overall system goals. To support these tasks, we discuss system testing in
detail in Chapter 8.

The techniques and approaches are intended to apply to general types of Al not just LAWS. There is
currently no clear guidance on which approaches are most useful for LAWS in general, or for LAWS
in specific mission domains or use cases. Therefore, each program will need to identify in the early
stages of development which metrics are most appropriate to the mission at a system level and then
derive associated model-relevant metrics.

6.2.9 Counter Al

In their whitepaper, Counter AI: What Is It and What Can You Do About It? the authors provide an
overview of where counter Al attacks occur in the technology stack, and they identify three attack
types—Iearn the wrong thing, do the wrong thing, and reveal the wrong thing—along with five differ-
ent threat models [VanHoudnos 2024]. Many of the defenses against these adversarial threats will oc-
cur at the system level through validation checks on sensors, preprocessing steps to mitigate errors,
and hybrid Al and ML, multi-component architectural approaches to mitigate erroneous outputs. We
discuss these approaches in more detail in Chapter 5 and Chapter 8.

Testing efforts must account for adversarial attacks during evaluation, regardless of evolving terminol-
ogy. ISO/IEC 25059:2023 defines robustness as “the presence of unseen, biased, adversarial or invalid
data inputs” [ISO/IED 25059:2023]. By explicitly including "adversarial" in this definition, the stand-
ard now directly incorporates counter Al and expands robustness to include defenses against adversar-
ial machine learning operations. Previously, it was unclear whether such testing should be conducted
as part of security assessments, whether existing reliability or robustness measures were sufficient or
inclusive, or whether these considerations were covered under existing areas at all. Regardless, they
need to be accounted for at all levels of testing.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 63
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Counter Al is an active area of research, and researchers are working on many emerging tools and ap-
proaches to address it. For example, the JATIC tool set includes the Adversarial Robustness Toolbox
(ART), the Hardened Extension of the Adversarial Robustness Toolbox (HEART), and the DARPA
Guaranteeing Al Robustness Against Deception (GARD) program’s Armory platform [CDAO 2025;
Two Six Technologies 2025]. These available tools can prove useful for developers and TEVV per-
sonnel to safeguard the ML models in operation in the LAWS they are developing and testing. Devel-
opers and TEVYV personnel could also benefit from staying informed about the release of any new and
emerging tools or approaches that researchers are currently developing.

From a model perspective, TEVV should look find evidence that training and test datasets prepare the
system to manage adversarial information such as label attacks, adversarial patches, or other mislead-
ing information such as the attack types we mentioned above with respect to the counter Al whitepa-
per. The MLOps pipeline should show evidence that developers have deployed tools to bolster robust-
ness—especially with respect to including defenses against counter Al—and that test results include
metrics that show the effectiveness of the tools and testing included in the system to combat counter
Al

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 64
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

7 System Development

In this chapter, we discuss how developers integrate models into the system during development, and
we address the kinds of challenges that the development of machine learning (ML) and artificial intel-
ligence (Al) for lethal autonomous weapons systems (LAWS) specifically introduces. This chapter
and Chapter 5 work together to bookend the model development portion of this guidebook. In Chapter
3, we discussed concerns about developing LAWS with ML and much of our commentary addressed
how to properly specify and design the systems. As we’ve noted in other parts of this guidebook, we
do not intend to duplicate existing work. Rather, our intention is to provide guidance for integrating
ML systems into LAWS.

Chapter 5 is important for this chapter in two ways: First, the suggested reading we outline in that
chapter applies to our discussions below, and readers should keep those readings top of mind through-
out this discussion. Second, readers should refer to Figure 44 for an overview of our understanding of
ML operations (MLOps) as they reflect on the points we make below.

7.1 Commentary on System Development

In the sections that follow, we highlight specific differences that teams will encounter when develop-
ing ML systems. Understanding these differences will help testing, evaluation, verification, and vali-
dation (TEVYV) personnel to identify potential process gaps that may need additional effort. The fol-
lowing sections outline the main differences we want to highlight to help with that process.

711 Allocate Extra Time for Process and Technology Maturation

ML is still in early development, and the community is rapidly iterating on techniques and technology.
Many tools prioritize getting emerging techniques into the hands of researchers over production use.
Developers that intend to use the latest technology for LAWS will likely end up using experimental
code. Developers should prepare for common maturity challenges such as changing codebase, defects,
minimal diagnostic and debugging support, and incomplete or inaccurate documentation.

71.2 Prepare for Higher Computing Resource Demands

ML models can be very demanding of memory and processor resources. Therefore, developers must
design simulations, development, testing tools, and infrastructure to accommodate for this issue. There
are a variety of efforts to develop smaller and more efficient models, more efficient execution engines,
and even custom hardware designed for specific models to relieve the strain that ML models put on
memory and processors. These projects are under intense development, and each one incurs its own
challenges and impacts on development timelines for ML models.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 65
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

713 Build One to Throw Away (You Will Anyway)

The common software development adage—build one to throw away—holds true for the LAWS de-
velopment process across many dimensions including models, system constructs, pipelines, and test
infrastructure. While we often don’t actually throw these systems away when using iterative and refac-
toring process, we must be prepared to make significant changes from the original design during the
development process. ML systems are particularly prone to needing such adjustments due to how fast
the operational environments in which models are deployed can change.

7.1.4 Team Culture May Not Support Testing

Testability is commonly taught as part of the architecture and design portions of the software engi-
neering curriculum [Clements 2011]. The community of engineers and practitioners working on
LAWS evolved out of the autonomy community and ML communities. Because the LAWS commu-
nity is often not rooted in software engineering practice, it may suffer cultural issues such as robot-
icists not wanting to do testing it which is discussed in detail in the paper “A Study on Challenges of
Testing Robotic Systems” [Afzal 2020]. When beginning the development process, it is important for
development teams to identify organizations’ and teams’ existing challenges to determine what
changes to the development process and team culture are necessary to accommodate the additional de-
mands of ethical development, ethical systems design, and the RAI principles.

7.1.5 Allocate More Time and Effort to Develop and Manage Baseline Tests

Developing baseline tests for autonomous or other non-deterministic systems must account for that
variability, which requires extra planning, effort, and resources. Setting a priority to perform early and
regular experiments and to establish baseline development (one of the tenets of Agile, to deliver early
and often, is relevant) can deliver tremendous rewards. TEVV personnel should focus experiments on
sets of well-understood and controlled changes so that they can compare the output from subsequent
experiments to the previous results. This approach applies to experimentation with models, pipelines,
and data changes. The more precise the experimental set, the better. Obviously, this approach work
will require more training time, but by using smaller, well-crafted sample sets, shorter training times,
and the payback from easier debugging, the experiments will quickly pay off. See Chapter 4 for de-
tails about how to make appropriate sampled sets.

7.1.6 ML Development Tools Have Higher Resource Demands

Configuration management of ML-enabled systems (MLES) as opposed to traditional systems re-
quires significantly more resources to deal with data and model versions. Traditional version-control
systems designed for code are not well-equipped to handle the kind of versioning needed for data and
models due to the large resource demands. In addition, any storage systems must support metadata
tracking for the purpose of establishing provenance. Development teams often overlook or underesti-
mate these needs during project inception because many experienced teams have already created a
well-established environment and are unprepared for the changes that new ML components introduce
to their processes.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 66
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

71.7 Placeholder Components Provide Extra Value During MLES Development

Developers can proceed with system development while model development is still underway by us-
ing placeholder models or mocks. Mocks are well-controlled, test infrastructures with the same API as
the model under development, and developers and TEVV personnel can use them while models are
unavailable because they enable system testing by returning regular and controlled values. While
mocks are useful in normal practice, they are more useful in systems that use probabilistic models.
During development, developers should try to retain the ability to independently configure which
models are mocked so they can diagnose issues and conduct other controlled experiments.

7.1.8 Code Instrumentation Provides Higher ROI for ML Systems

Developers should fully instrument the boundaries of each model. Development code should have
even more instrumentation than validation and checking concepts of runtime code so that developers
can monitor the models, validators, and checkers during development. Developers should pay special
attention to ensure that instrumenting the connection from model to decision-making allows full trace-
ability and governability analysis for transparency. See Chapter 3 and Chapter 5 for details.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 67
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

8 System DT&E

System developmental testing and evaluation (DT&E) focuses on the testing and evaluation of a sys-
tem's design and performance during development before it proceeds to more extensive testing and
operational deployment. DT&E aims to identify potential design and functional issues early in the de-
velopment process, ensuring that machine learning (ML) systems meet stringent operational, security,
and ethical standards before full-scale implementation.

We expect that readers of this guidebook will have a good understanding of systems development and
systems testing, so we don’t focus on the foundational details of those processes. Rather, we focus on
the special considerations that ML brings to the development and testing of LAWS and how these in-
troduce important differences to generally established approaches. This chapter, therefore, focuses on
what those considerations and differences are for DT&E.

Studies that provide significant general knowledge on the development and testing of ML- and artifi-
cial intelligence- (Al)-enabled systems is forthcoming, and our goal is to not replicate those efforts
[Huyen 2022; Bass 2025; Késtner 2025].

Testing, evaluation, verification, and validation (TEVV) personnel can benefit from consulting several
resources that focus on how to adapt existing processes to the special considerations introduced by Al.
One such resource is ISO/IEC 5338, titled “Information technology—Artificial intelligence —AI sys-
tem life cycle processes,” which describes additional tasks and particularities that Al brings to existing
standards like ISO/IEC/IEEE 12207 and ISO/IEC/IEEE 15288. ISO/IEC 5338 contains sections that
address implementation, integration, verification, and validation, to name a few, but these sections ap-
ply only to general Al development. It is up to each program to provide the appropriate foundational
knowledge on Al and then consult this guidebook for details about the particularities of building Al
for LAWS [ISO/IEC/IEEE 12207:2017, ISO/IEC/IEEE 15288:2023, ISO/IEC 5338:2023].

Another important document for TEVV personnel to address is DoDM 5000.101, which provides
high-level guidance on model testing in Section 3.2.b.2 and on model integration testing in Section
3.2.b.3, and we recommend TEVV personnel review this guidance [DODM 5000.101]. In Chapter 6
of this guidebook, we provide an in-depth discussion on model testing. It is important to note that,
while DoDM 5000.101 targets operational testing and evaluation (OT&E) and live fire testing and
evaluation (LFT&E), Section 3.2 of that document specifically addresses how to support these activi-
ties across the entire acquisition lifecycle. However, it has little additional information on the testing
of larger assemblies of models and associated decision-making code, and we will therefore address
some of the issues in this chapter.

From the perspective of system DT&E, the tasks of model development, testing, and evaluation are
like unit testing—a process that refers to testing units of the smallest code. Traditional approaches to
software engineering apply unit testing through various steps of integration and eventually increase
the scope of testing to the full system. This pattern holds for ML-enabled systems (MLES), and we
consider ML components as another unit to be tested. See Chapter 5 for discussions about how models
fit together as part of larger systems.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 68
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

8.1 Recommendations for System DT&E

The following sections provide recommendations that TEVV personnel can follow to adjust their
DT&E processes to the special considerations that arise when developing ML systems to function in
LAWS.

8.1.1 Expand Reproducibility to System Tests

In Chapter 6, we discuss how TEVV personnel should apply reproducibility and experimental controls
to models, pipelines, and tests to establish baseline testing, support diagnostics, perform debugging,
and produce after-action analysis. TEVV personnel should extend this approach to system integration
by exposing reproducibility and determinism configurations as well as implementing reproducibility
controls in the integration code. We discuss this topic further in Section 8.2.1.

8.1.2 Capture All Test Configurations and Outputs

From an assurance perspective, it is crucially important for TEVV personnel to document necessary
information about the system during testing. In Section 8.2.7, we provide details about how TEVV
personnel should collect test outputs and configurations at all levels. The collected documentation not
only supports the overall assurance case, but significantly benefits diagnostics, debugging, and after-
mission analysis.

Development and testing teams must be prepared to collect and document a significant amount of
data, and they will need corresponding amounts of accessible storage. These teams should allocate ad-
ditional computational resources to analyze and study the artifacts.

8.1.3 Define an Explicit Maturation Testing Path

Over the course of development and integration, the system should evolve through the technology
readiness levels [Manning 2023]. Early testing may have to rely on small amounts of synthetic data,
while later stages should have access to more representative operational environments. Data and test
scenarios should evolve over time, and TEVV personnel should define what those stages are early in
the DT&E cycle. See Section 8.2.2 for details about this process.

8.2 Commentary on System DT&E

The following sections contain commentary about DT&E and considerations for TEVV personnel to
keep in mind as they reflect on adopting the recommendations we make.

8.2.1 Reproducibility, Determinism, and Statistics

We discussed general system-level and model-level reproducibility challenges in Chapter 6, so readers
can refer to that chapter for more information about how reproducibility applies to ML systems and
LAWS in particular. However, for the purposes of this chapter, it is important to note that, during

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 69
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

system development, we assume that the models themselves have already been trained and therefore
we do not need to account for training variability. During runtime, due to the probabilistic nature of
ML models, it is sometimes desirable for decision-making systems to choose different outcomes when
these outcomes are closely matched. This technique is referred to as “temperature,” and it refers to
how much “risk” the algorithm takes [Wei 2024].

The main goal of standard testing practice, especially during development, is to establish a behavioral
baseline. Establishing a baseline enables developers and TEVV personnel to assess, through subse-
quent testing, the impact that changes to code, features, environment, platform, or usage have on the
system. For example, TEVV personnel can assess the impact of a new feature on general system per-
formance such as memory. They might also use such testing to determine whether a platform change
introduced a defect into one of the systems, or whether the system meets its mission goals when de-
ployed in a new environment.

This approach doesn’t fundamentally change for systems with ML, but TEVV personnel might need
to adjust measurements. Ideally, the system will provide diagnostic modes and ways to control the
variability of the decision logic. Basic model inference is highly repeatable and deterministic given
precise thread control, and the system only needs to control the randomness injected during decision-
making.

For example, PyTorch, an ML research and development platform, provides significant controls and
guidance for controlling reproducibility [PyTorch 2025]. If these sorts of controls are not available,
then TEVV personnel should use statistical measures to define acceptable and detailed distributions of
output metrics during baseline tests. For example, documentation should include details like the ac-
ceptable minimum and maximum ranges of accuracy and the precision and recall of each class. Obvi-
ously, as with any sort of statistical measure, tighter bounds provide better indicators of variance,
which can be especially useful when understanding the impacts of changes.

Ultimately, system-level testing must provide a clear understanding of how and when changes to any
testing outcome are introduced, how they can be controlled for baselines, and how they impact the
mission.

8.2.2 Maturing the Testing

Systems DT&E occurs along two primary dimensions. The first of these dimensions is the module
path, which scales from the smallest piece of testing, such as a unit test, through various levels of inte-
gration tests, to the final system test. The second dimension involves feature maturity, and the testing
along this dimension can happen independently of the end-to-end system development. If they plan for
both dimensions together, TEVV personnel can perform testing more accurately in conjunction with
feature development, which reduces the delays between testing and development and improves overall
development productivity. The following paragraphs give some examples of how product develop-
ment can progress to provide guidance for how to develop evolutionary testing.

Agile uses the term walking skeleton to define the earliest end-to-end version of the system that

demonstrates a useful sequence of the basic features. This process is also commonly referred to as an

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 70
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

alpha test where the main features pass happy path tests. Development progresses iteratively adding
more features through beta festing and into final gamma testing [Cunningham 2008].

NASA has used the idea of technology readiness levels (TRL) since the 1970s to assess technology
readiness, or maturity of technological components [Manning 2023]. This approach has inspired many
similar readiness scales such as human readiness levels (HRL), software readiness levels (SRL), and
now ML technology readiness levels (MLTRL) [Blanchette 2010; See 2021; Lavin 2022].

Like other readiness level scales, MLTRLs provide a framework for defining the various levels of ma-
turity for ML. Each level in the document describes ML-specific needs such as data and review qual-
ity, and the levels progress gradually with each one demanding more from ML. For example, the
MLTRL defines the data at level 1 as “sample data that is representative of downstream real datasets.”
These levels increase up to level 9, where it specifies that “Proper mechanisms for logging and in-
specting data (alongside models) is critical for deploying reliable Al and ML—systems that learn on
data have unique monitoring requirements” [Lavin 2022]. It is important to note that, while level 9 is
about ML deployment, it is limited to single model deployment and therefore offers very little about
multiple models combined with decision-making logic.

The article on MLTRLs goes on to propose TRL cards for ML systems, and we recommend something
similar for LAWS that combines all aspects of traditional TRLs, HRLs, SRLs, and MLTRLs. Each
level should also address the specific mission metrics needed for the models, the calibration levels ex-
pected, the perception demands (see Chapter 3), and the amount of repeatability and determinism ex-
pected (See section 8.2.1).

8.2.3 Reduce, Adapt, and Reuse

In Chapter 6, we discussed the fundamentals of basic model development and testing. Many of the re-
sources we reference in that chapter address the system level and cover deployment to an operational
environment. In the case of LAWS, we expect developers to develop multiple models and “deploy”
them into the system development process for integration. As with the traditional MLOps process, we
expect that the models (with associated data, code, and training pipelines) will need to execute to pro-
duce updated models as part of the larger system development and TEVV processes.

Reviewing existing tests from older systems is an opportunity for reuse that can prove helpful. These
older tests can provide a wealth of information about how to test similar systems in an operational en-
vironment. For example, crewed weapons systems have a wide variety of safety and performance tests
that should be applicable to LAWS. We anticipate that developers will create many of the early
LAWS as automation systems, such as targeting support, that they will then add to an existing system.
Tests from many similar systems are directly applicable for this approach, including weapons, optics,
sensors, and remotely piloted vehicles. The article, “Test & Evaluation Best Practices for Machine
Learning-Enabled Systems,” is a good example that developers and TEVV personnel can reference to
get a better picture of these processes. The article demonstrates how to use common software develop-
ment processes such as combinatorial testing, differential testing, fuzz testing, and metamorphic test-
ing on software models. Developers can also apply these strategies at the system level

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 71
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

[Chandrasekaran 2023]. However, developers can’t apply these techniques directly to LAWS without
some modification to address the special needs and difficulties of LAWS.

Finally, we want to mention replay because it is a common testing technique that can also prove help-
ful. Replay refers to a process in which TEVV personnel replay a set of recorded events through the
system with injected variations to elicit defects. This type of testing is highly valuable because the rec-
orded tests often demonstrate higher fidelity to real environments than synthetic data. The variations
can serve different testing purposes such as edge case, fuzz, combinatorial, and other robustness test-
ing without having to recapture data. In addition, TEVV personnel can easily automate and repeat re-
play testing to reduce the need for human interaction. MOBSTA is an example of a replay framework
that can be used for ROS systems [squaresLab 2025].

8.2.4 Evolve the Tests

The evolution of testing from unit-level testing to system-integration testing may result in similar or
completely different metrics and thresholds. For example, TEVV personnel might use certain accu-
racy metrics for a single image instance for the class tank during basic object detection. However, a
different accuracy threshold may be required for a system that performs positive identification across
multiple frames.

In addition, different metrics may be required for different parts of the system. For example, one part
of the system might need to employ recall metrics while another might employ accuracy metrics. As
TEVYV personnel move to more complex parts of the PTR chain, they might also need to employ new
metrics such “time in view,” which requires that the system “observe” a particular target for a particu-
lar amount of time. Therefore, as TEVV personnel test higher levels of integration, they need to de-
fine, or evolve, test plans for those levels.

8.2.5 Perform Field Testing as Early as Possible

Field tests provide a level of fidelity and feedback unavailable from simulation. Therefore, they are
extremely valuable for TEVV personnel to perform during development, and they should re-execute
them whenever developers make changes to subsystems that interact with autonomous or ML-enabled
subcomponents. MLES are complex and many problems will not emerge until integration testing oc-
curs.

8.2.6 RAIl and DIU Guidelines

The Defense Innovation Unit (DIU) provides a set of responsible Al (RAI) guidelines with worksheets
for planning, development, and deployment. The questions and associated commentary in these work-
sheets contribute to a thoughtful and complete testing and evaluation (T&E) process across most of
the lifecycle. Providing complete and detailed answers to worksheet questions can significantly im-
prove the development process and increase the number of artifacts and outputs that TEVV personnel
can use for testing as well as for the final assurance case. For example, question 4 in the DIU work-
sheet asks, “Have you developed an appropriate plan/interface to verify individual outputs of the

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 72
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

system?” [Dunnmon 2021]. The verification plans that result from this planning can lead to impactful
tests through all stages of maturity. TEVV personnel should pay particular attention to the commen-
tary provided in the worksheets to make sure the planning is as thorough and useful as possible.

8.2.7 Capture and Share Data

Capturing, storing, and sharing of all telemetry, observations, and decision-making is common recom-
mendation for complex systems for evaluation, diagnostic, and debugging purposes and is more im-
portant for MLES. MLES with decision-making components are complex and exhibit many variations
in outputs due to reproducibility difficulties (see Section 8.2.1 for more information on this topic).
They also experience environmental challenges, as we discussed in Chapter 3.

When we conducted human-systems integration (HSI) testing, we noted that operator trust is heavily
influenced by the quantity and breadth of the testing. Capturing test data throughout the entirety of the
project significantly improves the overall body of evidence that TEVV personnel can use to build as-
surance cases, and TEVV personnel can also use that data in longitudinal analysis to project future be-
havior. Capturing data properly for these purposes requires that TEVV personnel capture appropriate
data with every test, such as system SBOMS, and build configurations.

In addition to following standard configuration management practices for the artifacts under testing,
TEVV personnel should also use these practices when handling the collected data. TEVV personnel
should begin planning a complete strategy for capturing all the development configurations and test
output as early as possible, and they should reevaluate it periodically and expand it across the course
of the project. TEVV personnel should make sure to include components such as the following as part
of the comprehensive plan:

e The are a variety of types of cards—data, model, negotiation, eval, and so on—that TEVV per-
sonnel should plan to compile information for throughout the course of the project. Currently,
most involve prose which creates a challenge for automated analysis, but we hope those portions
of the cards will improve over time.

e The article, “Traceability for Trustworthy Al,” proposes a unified, RDF-based format for con-
taining an entire ML build process including data, SBOMs, pipelines, and the like [Mora-Cantal-
lops 2021]. TEVV personnel should be inspired by this format.

e Mole from NIWC Pacific is an example of a system that can support the orchestration, monitor-
ing, and data collection for autonomous experiments and test activities [Mole 2025]. Applying
such a tool is a useful measure for TEVV personnel to manage data.

e The Joint Mission Environment Test Capability (JMETC) enables data collection and sharing
among testing sites, and TEVV personnel should consider making use of its capabilities [JMETC
2025].

e The Test Resource Management Center (TRMC) is actively working to develop a set of Al, ML,
and autonomy tools and integrate them into their extensive tools set, which would enable end-to-
end integration within their test environment [TRMC 2025]. TEVV personnel should assess their
usefulness and applicability to their project.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 73
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

8.2.8 Security

ML introduces the need for added dimensions of security compared to traditional systems. Usually,
standard practices include encryption, monitoring, IDS, and more, and these security measures should
also be included in any ML system as well as the usual aspects that engineers employ to prevent cyber
attacks based on system vulnerabilities, malicious code, and direct systems access. However, in addi-
tion to all these measures, developers of LAWS should consider the addition of ML support.

The deployment of ML models and the significant amount of supporting code they use can prompt
many new opportunities to introduce traditional software vulnerabilities into the system. Faster pro-
cessors, supporting packages, and inference engines are advancing at a rapid pace, and these require
significant testing and evaluation. General cybersecurity skills and practices are well understood cur-
rently, so no new techniques are anticipated to mitigate these challenges. However, the key concern is
that the amount of new code to build ML systems and the rapid change of these systems will require
significant extra testing coverage.

In the following lists, we offer examples of existing security practices that developers should apply for
MLES.

The following items concern measures for data security:

e Encryption: TEVV personnel should test and validate that all data in an ML system is encrypted
with post-quantum cryptography (PQC) encryption protocols. This measure protects against un-
authorized access and data leaks. Developers should document and explain any exception to this
approach, such as use of non-PQC encryption protocols or completely dropping encryption.

e Access controls: Developers should establish a strict access control such as role-based access
controls (RBAC), and they should employ authentication mechanisms to limit access controls to
sensitive data and system functionality.

The following items comprise practices for security testing:

e Penetration testing: Development teams should schedule penetration testing at regular intervals,
and it should be conducted by third-party, external experts. Penetration testing helps identify
real-world vulnerabilities in the system before it is deployed.

e Adversarial testing: We expect that LAWS will be the target of sophisticated cyber threats, so it
is crucial to evaluate how the system handles malicious inputs and tampering attempts.

The following items ensure a secure software development lifecycle:

e Security by design: Developers should design security into the LAWS from the beginning. Se-
curity should be a key component at every stage of the product lifecycle, including design, devel-
opment, testing, and deployment.

e Open-source software: Developers should give priority to well-known and approved open
source software.

e Pre-tuned models: Developers should give priority to preapproved, pretested, and hardened
models.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 74
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

8.2.9 Runtime Measures are Still Applicable

Approaches to and techniques for addressing normal concerns, such as runtime performance and
memory utilization, remain consistent when applied to the development of Al but they can vary
greatly in detail. For example, while ML models often require significantly more resources than sys-
tems without ML components, the same techniques and measures apply when identifying resource and
timing usage.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 75
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

9 System OT&E

This chapter provides guidance for personnel that perform operational testing and evaluation (OT&E)
and live-fire testing and evaluation (LFT&E) of machine learning- (ML)-enabled lethal autonomous
weapons systems (LAWS).

There are recent advances in the policy from DOT&E in DoD Manual 5000.100 and DoD Manual
5000.101 [DODM 5000.100, DODM 5000.101]. These documents, combined with guidance from the
Defense Innovation Unit (DIU) in their Deployment Worksheet, provide a good starting point for the
general deployment and the testing and evaluation (T&E) of LAWS [Dunnmon 2021].

All testing is highly dependent on how well developers specify and design the system. Consequently,
this chapter reflects and resonates with concepts in Chapter 3 and Chapter 5, and we highly recom-
mend reading those chapters before this one. In this chapter, we go beyond policy and higher-level
guidance to provide specific detailed recommendations and observations about how to obtain test data,
develop operational tests, create multi-model interactions, develop ML operations (MLOps) and pro-
cess interactions, field updates, prepare continuous learning, and mitigate counter artificial intelli-
gence (Al).

The introduction of new technologies such as ML-enabled systems (MLES) and LAWS challenge the
approach to “test as we fight.” These systems introduce new capabilities and procedural changes to
how we and our adversaries operate, which means that the notion of “as we fight” is constantly evolv-
ing. This evolution increases the need for risk identification, especially with regard to emergent be-
haviors and human-systems interaction (HSI) in the testing of LAWS. Additionally, novel fighting
methods and corresponding reactions emphasize the responsible Al (RAI) perspective on governabil-
ity and the need for understandability in the systems.

As mentioned throughout this guidebook, data, and consequently sensing, both play a central role in
differentiating how developers build MLES in contrast to existing weapons systems. Understanding
how ML systems sense and analyze the environment becomes the focus of the differences between the
T&E of LAWS and traditional weapons systems. Chapter 3 offers in-depth discussions about the oper-
ational context for these systems and their defining requirements. A key challenge for T&E is con-
structing a relevant operational test environment with sufficient fidelity to support the new operational
uses identified by these requirements.

During our initial evaluation of user trust, we repeatedly heard that these systems required extensive
testing, especially for user interaction [Hale 2025]. Users expect these systems to be thoroughly tested,
and they want evidence of the breadth, depth, and quantity of this testing. From an OT&E perspective,
we expect an increase in demand across all dimensions of testing. DODM 5000.101 emphasizes the
use of science and technology approaches for testing, heavy use of automation, and extensive testing
with humans [DODM 5000.101]. As described above, the novelty of the new capabilities and testing
approaches will require the allocation of additional time and resources.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 76
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

9.1 Recommendations for System OT&E

The following sections outline our recommendations for the OT&E of LAWS.

9.1.1 Allocate Significant Additional Time and Effort to Testing

In some disciplines, testing and quality control personnel can assess quality by using well-established
and well-understood techniques to evaluate the materials, designs, and processes involved in making
products, and the time it takes to test the final device comprises only a small fraction of the final ef-
fort. In comparison, MLES are not well understood, and the engineering discipline that underpins ML
development activities is still developing, so it follows that testing activities are more involved and
time-consuming than they would be for traditional systems that are better understood and less com-
plex. As mentioned above, thorough testing of MLES is also necessary to engender user trust in these
systems. While it is so common for TEVV personnel to ask for more time and resources for testing
that the request is often disregarded, the need for more time and resources in this case is legitimate,
and development teams should take it seriously and plan for it accordingly.

9.1.2 Capture Datasets for Evaluation and Replay

Operational test environments can provide entirely new sources of test “data” in the form of captures
and traces from experiments. Conditions that arise during new tests, even those for use only during
development, will always introduce randomness in the environment through changes to weather, loca-
tions, users, and other stochastic elements that can elicit new risks. This phenomenon is true for ML-
enabled LAWS because the ML components perform with probabilistic outputs measured against
thresholds. Therefore, slight changes in inputs can have significant changes to outputs at boundary
conditions. To address these issues, TEVV personnel should capture sensor data, events, decisions,
and other traces during these tests to perform significant post-test analysis and replay testing. We dis-
cuss these issues in further detail in Section 9.3.1.

9.2 Observations on System OT&E

The following sections offer observations about the recommendations we offer above.

9.21 Testing a Model Is Not the Same as Testing a System

Many tools, papers, and approaches focus on single-model testing including both standalone or incor-

porated. The accuracy of an ML model, which shows the general accuracy of predictions, does not re-

flect the accuracy of an Al system, which includes the surrounding, safety-governed, decision-making
logic. We discuss the difference between testing at the model level as opposed to testing at the system
level in Section 9.3.1, Chapter 3, and Chapter 5.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 77
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

9.2.2 Data Is a Small Reflection of the Test Environment

Advanced autonomous systems use multiple sensors and models to understand their environment and
make decisions, and the number of sensors and models that systems tend to use is rapidly increasing.
Test datasets may only provide small perspectives on the world and do not represent all the conditions
that the system might encounter. We discuss these issues further in Section 9.3.1 on test datasets and
in Section 9.3.5 on model reliability and robustness.

9.2.3 Decision-Making Systems Require Greater Resources to Develop and Test than Previous
Systems

By their nature and because of their purpose, autonomous systems perform more frequent and more
complex decision-making than previous systems. Recording and analyzing data about this decision-
making requires additional data storage, analysis time, and analysis skills, all of which require more
testing time to ensure these elements work properly. We offer further discussion about the additional
resources that development teams need to build these elements in Section 9.3.7, and we also discuss
the importance of transparency and observability for these elements.

9.3 Commentary on System OT&E

The following sections provide commentary about how to carry out the recommendations we outline
above.

9.3.1 Test Datasets and Model Interaction

In Chapter 3 and Chapter 5, we describe how fully autonomous LAWS involve the integration of
many different sensors and algorithms in complex and dynamic environments. Because of the com-
plexity of those environments, there can be no single, definable dataset that—on the one hand—repre-
sents all the conditions that ML components will face and that—on the other hand—TEVV personnel
can use to understand the interactions of the ML components within the overall system.

When developing operational test plans, it is important for TEVV personnel to be aware of how the
environmental conditions impact each piece of ML and the symbolic logic, and how the test condi-
tions need to be varied to cover the necessary permutations. DoDM 5000.101 section 3.2.b.2.c recom-
mends mapping all capabilities to operational and system requirements [DODM 5000.101]. As with
any testing, full combinatorial testing is intractable, and understanding the ML components and their
relationships allows for smarter pairwise and n-way test configuration, but how to broadly map capa-
bilities to requirements is unclear. For example, many object detectors work on static frames, but
tracking algorithms work on the relationship between frames. Frame-to-frame variables such as fram-
erate, therefore, will impact tracking differently but will not impact single frames for an object detec-
tor. Developers and TEVV personnel should use many of the same considerations and thinking that
went into writing (or backfilling) requirements when understanding the basic qualities. We discuss the
various complexities in the perception, targeting, and response (PTR) chain in Section 3.3.7.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 78
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

After TEVV personnel develop and perform preliminary operational tests, they should analyze the
data they captured for alignment with test data, and they can use replay mechanisms to identify poten-
tial failures. TEVV personnel can then use the findings from these activities to develop new opera-
tional tests. For example, TEVV personnel can capture a rosbag on a Robot Operating System (ROS),
which captures all the events for playback [ROS 2025]. Tools such as MOBSTA can play back the
rosbag and generate artificial permutations in the input stream to see system impacts in simulation, re-
ducing cost [squaresLab 2025]. These tools are often employed during DT&E but have their place in
OT&E for rapidly developing better operational tests based on the operational test range of the cap-
tured data. As with traditional real-time systems, timing between components can have tremendous
impacts on autonomy and system performance that only data captured through operational testing can
fully reveal. TEVV personnel should retain full test captures for future reference to support activities
such as diagnostics and field updates.

Section 3.2 of DoD Manual 5000.101 goes into detail about data management, model testing, and inte-
grated model tests. As mentioned above, creating a single dataset for the operational testing is intrac-
table, but using captured representative traces is an option to avoid this challenge. TEVV personnel
should apply the guidance in DoDM 5000.101 to any captured operational datasets using the same cri-
teria they would apply anywhere, including training [DODM 5000.101].

9.3.2 Continuous Learning and Emergent Behavior

We do not discuss continuous learning systems as part of this guidebook because they are beyond its
scope. However, the DoD has shown the intention to use continuous learning systems to augment Al
capabilities for LAWS. For example, Section 3.2.b.3.f of DODM 5000.101 describes systems capable
of “Characterize[ing] [...] emergent behavior and negative test results as the Al-enabled or autono-
mous DoD system learns and changes its behavior based on the input data it operates within” [DODM
5000.101]. That passage describes capabilities that are like the kind provided by continuous learning
systems or by a kind of runtime adjustment that can change system behavior over time. Because the
passage implies the use of continuous learning systems, we thought it necessary to provide some com-
mentary about them in this section even though we don’t cover them in detail in this guidebook.

First, we want to stress that, if continuous learning is part of the operation system, TEVV personnel
should prepare for significant, even major, impact on testing effort. The reason for the increase in test-
ing effort is that cumulative side effects of systems, whether intentional or accidental, add significant
complexity to testing. To determine long-term impacts from use, TEVV personnel must develop test
plans that evaluate factors such as when to restart and reinitialize, how long to run tests, what kind of
impacts might occur between tests, how to sequence tests, and so on. After diagnosing failures and
risk, TEVV personnel must then consider all the previous activity when developing reproducibility
steps and understanding potential operational impact.

Designing tests for continuous learning or self-adaptive systems will also require more effort. TEVV
personnel must consider how the effects of one test will affect future tests. Tests are no longer inde-
pendent, and changes to the model can be obvious or subtle. In addition, TEVV personnel might need
to consider performing complex testing for counter-Al strategies such as data poisoning. However, a

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 79
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

full discussion of how to construct well-sequenced tests and the impact of continuous learning is cur-
rently beyond the scope of this guidebook.

9.3.3 Field Updates

Over the course of operation, it will be important to update the system’s ML models as well as its soft-
ware. ML models may need updates for several reasons such as to deploy increased capability, to fix
defects, or to patch vulnerabilities. Depending on what changes developers want to deploy, approval
for updates may require a full senior review of the system based on the requirements of DODD
3000.09. If the updates significantly change the scope of the system’s functions, then TEVV personnel
might need to devise additional tests, and they might need to fully re-execute operational testing.

When testing minor updates, the test plans may need only minor alterations based on the intended
changes, such as adjustments to accuracy or recall metrics. TEVV personnel can replay captured test
runs (as we discussed in Section 9.3.1) to identify variations that the updates introduced, and TEVV
personnel can also use those results to identify new testing needs.

TEVYV personnel should also test the features of field updates and rollback. ML models are like any
software, so TEVV personnel should test the access required to modify the system as well as for secu-
rity vulnerabilities and other system-access vulnerabilities. Updates to ML models may be larger than
updates for other systems, and development teams should therefore allocate additional time for testing
than they would allocate for traditional software systems.

9.34 Iteration and MLOps

DevOps is the common term for the tight, iterative integration of development and operations. This
tightly integrated and iterative model has progressed through many variations and expansions over the
years, including a version for ML known as MLOps.

Like field updates, MLOps aims for tight integration of model development and operational deploy-
ment. DODM 5000.101 does not identify MLOps directly, but the document mentions concepts simi-
lar to those practiced by MLOps. For example, in Section 3.2.a, it states that “the acquisition life cycle
must keep pace with the development cadence of the Al model.” In Section 3.2.b.2.d, the document
states the requirement to “Repeat[s] [...] the training phase and its V&V until the trained model
reaches the required performance” [DODM 5000.101]. While these requirements are similar to those
for field updates, developers must also consider the pipeline itself and development process as part of
the operational model when implementing an MLOps approach. In these cases, training, retraining,
tuning and testing—which were traditionally DT&E and contractor activities—may now form part of
the operational model. Until such time as fully integrated testing (i.e., through the integration of CT,
DT, and OT) exists, developers and TEVV personnel should consider adopting these development-
like activities.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 80
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

9.3.5 Reliability and Robustness: Uncertainty Quantification

Under the current state-of-the-practices for ML, trained models are not directly calibrated to the data
set they are trained against and must be calibrated after training. TEVV personnel should look for evi-
dence of model calibration and what particular type of model calibration development teams per-
formed. A Guide to Failure in Machine Learning: Reliability and Robustness from Foundations to
Practice provides a detailed examination of the subject [Heim 2025]. The GitHub project “General-
ized Calibration Error Python Package” provides an example Python tool that provides a way to deter-
mine if a model has been calibrated. We recommend that TEVV personnel make use of such a tool
[GCE 2025].

9.3.6 Counter Al

Counter Al refers to attacks on Al systems that employ techniques for making the Al “learn the wrong
thing,” “do the wrong thing,” or “reveal the wrong thing”—all of which we discuss in the sections that
follow. However, as a side note, we want to make an important distinction: the processes associated
with preventing or mitigating counter Al should not be confused with security. General security prac-
tices for software intensive systems comprise a different area and, therefore, a different set of consid-
erations, and we want to stress that developers should implement all of them for use in ML-enabled
LAWS.

The whitepaper, Counter AI: What Is It and What Can You Do About It? offers a good place to start
thinking about counter Al In that whitepaper, the authors provide an overview of where Al attacks
occur in the technology stack, and they introduce the three attack types that we mentioned above:
learn the wrong thing, do the wrong thing, and reveal the wrong thing. They also discuss five different
threat models [VanHoudnos 2024]. We provide an overview of that whitepaper in this section to intro-
duce and discuss some of its terms and how counter Al can impact LAWS and the OT&E process.

Learn the wrong thing attacks occur during training or retraining, generally as a type of modification
to the inputs affecting a specific part of the system or function of the system that attackers want to dis-
rupt. These inputs usually target a narrow, mission-specific purpose. For example, the result of such
attacks might result in the system misclassifying a particular military asset as civilian. These input
modifications may be subtle and therefore not obvious to human inspectors. During normal training,
this attack might progress through a compromised supply chain or through another path that results in
the modification of the source data, perhaps even though an attack on the training pipeline. While this
type of attack occurs during what is normally part of the development lifecycle, it can also occur dur-
ing tuning or retraining when preparing updates to the system. TEVV personnel should therefore test
the system when any change occurs to the model or system as we discussed in section 9.3.4. Emerging
research shows that, for certain attack types, even small amounts of data can significantly impact the
performance of the model. If the system employs continuous learning or adaptive systems, then the
problem can become significantly more complex. Preventing or mitigating this type of attack for sys-
tems with continuous learning or adaptive systems is beyond the current scope of this guidebook.

Do the wrong thing attacks on LAWS occur by modifying the sensor inputs to exploit weaknesses in
the ML algorithm. This attack can progress by means of a cybersecurity attack or changes to real-

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 81
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

world artifacts perceived by the sensors where attackers make changes to the inputs that the software
is assessing. For example, attackers discovered during the early development of self-driving cars that
placing tape on a stop sign in a certain pattern caused the car’s software to misidentify the stop sign as
something else. TEVV personnel can test for these types of attacks during security testing by making
various modifications to input data such as partial obstruction, smudging, or other data distortions.
The JATIC toolset provides some tools to help develop counter-Al test sets [CDAO 2025].

Another method for perpetrating this type of attack is through the placement of specifically created
physical items, often referred to as patches, in the environment, which cause the ML to function incor-
rectly [Sharif 2016]. Construction of effective patches requires an understanding of the ML models
and the system to some degree as well as the right tools and significant time.

Finally, reveal the wrong thing attacks—often referred to as model inversion or membership inference
attacks—involve getting the ML model to reveal data about how it is trained, or even to reveal spe-
cific images. The information that attackers extract can be particularly useful when trying to under-
stand how and why a model was developed. This type of attack usually requires the ability to repeat-
edly interrogate a model, which is not an issue with a weapon system unless the model is extracted
from the weapon system through a cyber attack or through direct access.

9.3.7 Transparency, Observability, and Governability

One of the key ways in which LAWS are different from other weapons systems is that they make
many decisions autonomously, and, crucially, humans must understand how and why they made them.
Systems, therefore, must be fully transparent about how they made decisions, providing clarity about
each step of the decision-making process from acquiring initial data from sensors through the PTR
chain to final fire control. Knowing why the device behaved the way it did and how directions from
operators can affect that decision-making process is fundamental to developing operator trust.

DoDD 3000.09 specifies a variety of ways the systems should be transparent and auditable by relevant
personnel during design, development, and testing as well as during use [DoDD 3000.09]. Previously,
OT&E testing was less about observing feedback and promoting transparency during development ex-
cept as a source of evidence, but this focus will change with the inclusion of iterative processes and
the potential for field updates. For example, understanding the properties of additional data for retrain-
ing or tuning, and what biases might exist in it, adds additional demands on the T&E process, making
transparency crucial to the process.

Ultimately, development and testing processes should expose how configuration settings translate into
operator control and changes to system behavior. Chapter 5 of this document and the Reference Archi-
tecture for Ethical Conduct in LAWS describe how different controls introduced to a system architec-
ture ultimately affect its behavior [Mellinger 2025]. Developers should make these pathways visible in
design documents and through the various monitoring tools and logging tools.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 82
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

References

URLs are valid as of the publication date of this report.

[ACM 2020]
Artifact Review and Badging. 4Associate for Computing Machinery (ACM) Website. August 2020.
https://www.acm.org/publications/policies/artifact-review-and-badging-current

[Afzal 2020]

Afzal, Afsoon; Goues, Claire Le; Hilton, Michael and Timperley, Christopher Steven. A Study on
Challenges of Testing Robotic Systems. Pages 96-107. 2020 IEEE 13th International Conference on
Software Testing, Validation and Verification (ICST). October 2020,
https://doi.org/10.1109/1CST46399.2020.00020

[Bass 2021]

Bass, Len; Clements, Paul & Kazman, Rick, Software Architecture in Practice, 4th Edition. Addison-
Wesley Professional. 2021. 978-0-13-688609-9. https://www.pearson.com/en-us/subject-cata-
log/p/software-architecture-in-practice/P200000000111/9780137468218

[Bass 2025]

Bass, Len; Lu, Qinghua; Weber, Ingo & Zhu, Liming. Engineering Al Systems: Architecture and
DevOps Essentials. Addison-Wesley Profession. March 2025. ISBN-13 978-0138261412.
https://www.pearson.com/en-us/subject-catalog/p/engineering-ai-systems-devops-and-architecture-

approaches/P200000011757/9780138261450

[Blanchette 2010]

Blanchette, Jr., Stephen; Albert, Cecilia; & Miller, Suzanne. Beyond Technology Readiness Levels for
Software: U.S. Army Workshop Report. CMU/SEI-2010-TR-044. Software Engineering Institute.
2010. https://insights.sei.cmu.edu/library/beyond-technology-readiness-levels-for-software-us-army-
workshop-report/

[Bower-Sinning 2024]

Brower-Sinning, Rachel; Lewis, Grace A.; Echeverria, Sebastian & Ozkaya, Ipek. Using Quality At-
tribute Scenarios for ML Model Test Case Generation. Pages 307-310. 2024 IEEE 2 st International
Conference on Software Architecture Companion (ICSA-C). June 2024.
https://arxiv.org/abs/2406.08575

[Brooke 2013]
Brooke, John. SUS: A retrospective. Journal of User Experience. Volume 8, Issue 2. February 2013.
Page 29-40. https://uxpajournal.org/sus-a-retrospective

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 83
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1109/ICST46399.2020.00020
https://www.pearson.com/en-us/subject-catalog/p/software-architecture-in-practice/P200000000111/9780137468218
https://www.pearson.com/en-us/subject-catalog/p/software-architecture-in-practice/P200000000111/9780137468218
https://www.pearson.com/en-us/subject-catalog/p/engineering-ai-systems-devops-and-architecture-approaches/P200000011757/9780138261450
https://www.pearson.com/en-us/subject-catalog/p/engineering-ai-systems-devops-and-architecture-approaches/P200000011757/9780138261450
https://insights.sei.cmu.edu/library/beyond-technology-readiness-levels-for-software-us-army-workshop-report/
https://insights.sei.cmu.edu/library/beyond-technology-readiness-levels-for-software-us-army-workshop-report/
https://arxiv.org/abs/2406.08575
https://uxpajournal.org/sus-a-retrospective

[CDAO 2024]

CDAO. Test and Evaluation of Artificial Intelligence Models. CDAO. April 2024.
https://www.ai.mil/Portals/137/Documents/Resources%20Page/Test%20and%20Evalua-
tion%200f%20Artificial%20Intelligence%20Models%20Framework.pdf

[CDAO 2024b]

CDAO. Human Systems Integration Test and Evaluation of Artificial Intelligence Enabled Capabili-
ties: What to Consider in a Test & Evaluation Strategy. CDAO. April 2024. https://www.ai.mil/Por-
tals/137/Documents/Resources%20Page/Human%20Systems%20Integra-
tion%20Test%20and%20Evaluation%200f%20Al-Enabled%20Capabilities%20Framework.pdf

[CDAO 2025]
Welcome to the JATIC docs! CDAO JATIC Documentation Website. March 4, 2025. [accessed].
https://cdao.pages.jatic.net/public/

[Chandrasekaran 2023]

Chandrasekaran, Jaganmohan; Cody, Tyler; McCarthy, Nicola; Lanus, Erin & Freeman, Laura. Test &
Evaluation Best Practices for Machine Learning-Enabled Systems. 2023. arXiv.
https://arxiv.org/abs/2310.06800

[Clemens-Sewall 2024]

Clemens-Sewall Mary Versa; Rafkin, Emma and Cervantes, Christopher. Domain Knowledge Eli
for Data Curation to Promote Trustworthiness in Artificial Intelligence. Pages 21-30. In Proceedings
of the 2024 International Conference on Assured Autonomy (ICAA). 2024 Oct 10. https://iceex-
plore.ieee.org/abstract/document/10765964

[Clemens-Sewall 2025]

Clemens-Sewall, Mary Versa; Cervantes, Christopher; Rafkin, Emma; Otte, J. Neil; Magelinski, Tom;
Lewis, Libby; Liu, Michelle; Udwin, Dana & Kirkman-Bey, Monique. CaTE Data Curation for Trust-
worthy Al. Carnegie Mellon University and JHU APL, March 2025. [Link Pending]

[Clements 2011]

Clements, Paul. Improving Testing Outcomes Through Software Architecture [blog post]. SEI In-
sights. August 2011. https://insights.sei.cmu.edu/blog/improving-testing-outcomes-through-software-
architecture/

[Comella-Dorda 2004]

Comella-Dorda, Santiago; Dean, John; Lewis, Grace; Morris, Edwin; Oberndorf, Patricia; & Harper,
Erin. 4 Process for COTS Software Product Evaluation. CMU/SEI-2003-TR-017. Software Engineer-
ing Institute. 2004. https://doi.org/10.1184/R1/6571721.v1

[Cox 2016]

Cox, James C.; Kerschbamer, Rudolf; & Neururer, Daniel. “What is trustworthiness and what drives
it?” Games and Economic Behavior. Volume 98. July 2016. Pages 197-218.
https://doi.org/10.1016/j.geb.2016.05.008

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 84
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

https://www.ai.mil/Portals/137/Documents/Resources%20Page/Test%20and%20Evaluation%20of%20Artificial%20Intelligence%20Models%20Framework.pdf
https://www.ai.mil/Portals/137/Documents/Resources%20Page/Test%20and%20Evaluation%20of%20Artificial%20Intelligence%20Models%20Framework.pdf
https://cdao.pages.jatic.net/public/
https://arxiv.org/abs/2310.06800
https://ieeexplore.ieee.org/abstract/document/10765964
https://ieeexplore.ieee.org/abstract/document/10765964
https://insights.sei.cmu.edu/blog/improving-testing-outcomes-through-software-architecture/
https://insights.sei.cmu.edu/blog/improving-testing-outcomes-through-software-architecture/
https://doi.org/10.1184/R1/6571721.v1
https://doi.org/10.1016/j.geb.2016.05.008

[Cunningham 2008]
Cunningham, Ward. Walking Skeleton. August 22, 2008. https://wiki.c2.com/?WalkingSkeleton

[CVAT 2025]
Computer Vision Annotation Tool (CVAT). GitHub. March 27, 2024. [accessed].
https://github.com/cvat-ai/cvat

[DAU 2024]

DAU. DoD AI Definition Reference Chart. DAU. December 2024. https://www.dau.edu/sites/de-
fault/files/Migrated/CopDocuments/DAI%20A1%20Toolkit%20-
%20A1%20Descriptors%20and%20Definitions%20Reference%20Charts.pdf

[DoD 2021a]

Deputy Secretary of Defense. Memorandum: Implementing Responsible Artificial Intelligence in the
Department of Defense. Department of Defense. May 2021. https://media.de-
fense.gov/2021/May/27/2002730593/-1/-1/0/IMPLEMENTING-RESPONSIBLE-ARTIFICIAL-
INTELLIGENCE-IN-THE-DEPARTMENT-OF-DEFENSE.PDF

[DoD 2022a]

DoD Responsible AI Working Council. Responsible Artificial Intelligence Strategy and Implementa-
tion Pathway. Department of Defense. June 2022. https://media.de-
fense.gov/2022/Jun/22/2003022604/-1/-1/0/Department-of-Defense-Responsible-Artificial-Intelli-
gence-Strategy-and-Implementation-Pathway.PDF

[DoDD 3000.09]

Office of the Under Secretary of Defense for Policy. Autonomy in Weapon Systems. DoD Directive
3000.09. January 2023 https://www.esd.whs.mil/Portals/54/Docu-
ments/DD/issuances/dodd/300009p.pdf?ver=2019-02-25-104306-377

[DoDI 3000.17]

Office of the Under Secretary of Defense for Policy. Civilian Harm Mitigation and Response. DoD
Instruction 3000.17. December 21, 2023. https://www.esd.whs.mil/Portals/54/Docu-
ments/DD/issuances/dodi/300017p.pdf

[DoDI 5000.98]

Office of the Director, Operational Test and Evaluation. Operational Test and Evaluation and Live
Fire Test and Evaluation. DOD Instruction 5000.98. December 9, 2024. https://www.esd.whs.mil/Por-
tals/54/Documents/DD/issuances/dodi/500098p.PDF

[DoDM 5000.100]

Office of the Director, Operational Test and Evaluation. Test and Evaluation Master Plans and Test
and Evaluation Strategies. DOD Manual 5000.100. December 9, 2024. https://www.esd.whs.mil/Por-
tals/54/Documents/DD/issuances/dodm/5000100m.PDF

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 85
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

https://github.com/cvat-ai/cvat
https://www.dau.edu/sites/default/files/Migrated/CopDocuments/DAI%20AI%20Toolkit%20-%20AI%20Descriptors%20and%20Definitions%20Reference%20Charts.pdf
https://www.dau.edu/sites/default/files/Migrated/CopDocuments/DAI%20AI%20Toolkit%20-%20AI%20Descriptors%20and%20Definitions%20Reference%20Charts.pdf
https://www.dau.edu/sites/default/files/Migrated/CopDocuments/DAI%20AI%20Toolkit%20-%20AI%20Descriptors%20and%20Definitions%20Reference%20Charts.pdf
https://media.defense.gov/2021/May/27/2002730593/-1/-1/0/IMPLEMENTING-RESPONSIBLE-ARTIFICIAL-INTELLIGENCE-IN-THE-DEPARTMENT-OF-DEFENSE.PDF
https://media.defense.gov/2021/May/27/2002730593/-1/-1/0/IMPLEMENTING-RESPONSIBLE-ARTIFICIAL-INTELLIGENCE-IN-THE-DEPARTMENT-OF-DEFENSE.PDF
https://media.defense.gov/2021/May/27/2002730593/-1/-1/0/IMPLEMENTING-RESPONSIBLE-ARTIFICIAL-INTELLIGENCE-IN-THE-DEPARTMENT-OF-DEFENSE.PDF
https://media.defense.gov/2022/Jun/22/2003022604/-1/-1/0/Department-of-Defense-Responsible-Artificial-Intelligence-Strategy-and-Implementation-Pathway.PDF
https://media.defense.gov/2022/Jun/22/2003022604/-1/-1/0/Department-of-Defense-Responsible-Artificial-Intelligence-Strategy-and-Implementation-Pathway.PDF
https://media.defense.gov/2022/Jun/22/2003022604/-1/-1/0/Department-of-Defense-Responsible-Artificial-Intelligence-Strategy-and-Implementation-Pathway.PDF
https://www.esd.whs.mil/Portals/54/Documents/DD/issuances/dodd/300009p.pdf?ver=2019-02-25-104306-377
https://www.esd.whs.mil/Portals/54/Documents/DD/issuances/dodd/300009p.pdf?ver=2019-02-25-104306-377
https://www.esd.whs.mil/Portals/54/Documents/DD/issuances/dodi/300017p.pdf
https://www.esd.whs.mil/Portals/54/Documents/DD/issuances/dodi/300017p.pdf
https://www.esd.whs.mil/Portals/54/Documents/DD/issuances/dodi/500098p.PDF
https://www.esd.whs.mil/Portals/54/Documents/DD/issuances/dodi/500098p.PDF
https://www.esd.whs.mil/Portals/54/Documents/DD/issuances/dodm/5000100m.PDF
https://www.esd.whs.mil/Portals/54/Documents/DD/issuances/dodm/5000100m.PDF

[DoDM 5000.101]

Office of the Director of Operational Test and Evaluation. Operational Test and Evaluation and Live
Fire Test and Evaluation of Artificial Intelligence-Enabled and Autonomous Systems. DOD Manual
5000.101. December 9, 2024. https://www.esd.whs.mil/Portals/54/Docu-
ments/DD/issuances/dodm/5000101p.PDF

[Dunnmon 2021]
Dunnmon, Jared; Goodman, Bryce; Kirechu, Peter; Smith, Carol & Van Deusen, Alex. Responsible Al
Guidelines in Practice. Defense Innovation Unit. 2021. https://www.diu.mil/responsible-ai-guidelines

[Gardner 2023]

Gardner, Carrie; Robinson, Katherine-Marie; Smith, Carol & Steiner, Alexandrea. Contextualizing
End-User Needs: How to Measure the Trustworthiness of an Al System [blog post]. SEI Blog (blog).
July 17, 2023. https://doi.org/10.58012/8b0v-mq84.

[GCE 2025]
Generalized Calibration Error Python Package. GitHub. April 2025. [accessed].
https://github.com/cmu-sei/gce

[Gray 2016]

Gray, Doug. Applying the Goal-Question-Indicator-Metric (GQIM) Method to Perform Military Situ-
ational Analysis. Software Engineering Institute. 2016. https://insights.sei.cmu.edu/library/applying-
the-goal-question-indicator-metric-gqim-method-to-perform-military-situational-analysis/

[Hale 2025]

Hale, Matt. Measuring Trust: Concept Testing and User Trust Evaluation in Autonomous Systems.
Software Engineering Institute. 2025. [Link Pending]

[Harper 2023]

Harper, John. Pentagon to launch pilot focused on “calibrated trust” in Al. DefenseScoop. August 29.
2023. https://defensescoop.com/2023/08/29/pentagon-to-launch-pilot-focused-on-calibrated-trust-in-
ai/

[Hart 1986]
Hard, Sandra G. NASA Task Load Index (TLX): Paper and Pencil Package — Volume 1.0. NASA
1986. https://ntrs.nasa.gov/citations/20000021488

[Heim 2025]
Heim, Eric; Wright, Oren; & Shriver, David. 4 Guide to Failure in Machine Learning: Reliability and
Robustness from Foundations to Practice. March 2025. https://arxiv.org/abs/2503.00563

[Hicks 2023]

Hicks, Kathleen. Data, Analytics, and Artificial Intelligence Adoption Strategy. Department of De-
fense. 2023. https://media.defense.gov/2023/Nov/02/2003333300/-1/-
1/1/DOD_DATA_ANALYTICS Al ADOPTION_STRATEGY.PDF.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 86
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

https://www.esd.whs.mil/Portals/54/Documents/DD/issuances/dodm/5000101p.PDF
https://www.esd.whs.mil/Portals/54/Documents/DD/issuances/dodm/5000101p.PDF
https://www.diu.mil/responsible-ai-guidelines
https://doi.org/10.58012/8b0v-mq84
https://insights.sei.cmu.edu/library/applying-the-goal-question-indicator-metric-gqim-method-to-perform-military-situational-analysis/
https://insights.sei.cmu.edu/library/applying-the-goal-question-indicator-metric-gqim-method-to-perform-military-situational-analysis/
https://defensescoop.com/2023/08/29/pentagon-to-launch-pilot-focused-on-calibrated-trust-in-ai/
https://defensescoop.com/2023/08/29/pentagon-to-launch-pilot-focused-on-calibrated-trust-in-ai/
https://arxiv.org/abs/2503.00563
https://media.defense.gov/2023/Nov/02/2003333300/-1/-1/1/DOD_DATA_ANALYTICS_AI_ADOPTION_STRATEGY.PDF
https://media.defense.gov/2023/Nov/02/2003333300/-1/-1/1/DOD_DATA_ANALYTICS_AI_ADOPTION_STRATEGY.PDF

[Horneman 2019]

Horneman, Angela; Mellinger, Andrew & Ozkaya, Ipek. Al Engineering: 11 Foundational Practices.
Software Engineering Institute. 2019. https://insights.sei.cmu.edu/docu-
ments/582/2019 019 001 _634648.pdf

[Hugging Face 2025]
Model Cards. Hugging Face. January 30, 2025. https://huggingface.co/docs/hub/en/model-cards

[Huyen 2022]

Huyen, Chip. Designing Machine Learning Systems: An Iterative Process for Production-ready Appli-
cations. ISBN: 9781098107963. O'Reilly Media, Incorporated. 2022. https://www.oreilly.com/li-
brary/view/designing-machine-learning/9781098107956

[IEEE 7000-2021]
IEEE. IEEE Standard Model Process for Addressing Ethical Concerns during System Design. IEEE
Std 7000-2021. September 2021. https://doi.org/10.1109/IEEESTD.2021.9536679

[IEEE 7001-2021]
IEEE. IEEE Standard for Transparency of Autonomous Systems. IEEE Std 7001-2021. December
2021. https://doi.org/10.1109/IEEESTD.2022.9726144

[IEEE 2025]
IEEE Code of Ethics. IEEE Website. April 7,2025. [accessed]. https://www.ieee.org/about/corpo-
rate/governance/p7-8.html

[ImageNet 2025]
ImageNet. ImageNet Website. March 3, 2025. [accessed]. https://www.image-net.org/

[Institute for Ethical Al & Machine Learning 2025]
The Responsible Machine Learning Principles. The Institute for Ethical AI & Machine Learning Web-
site. February 25, 2025. [accessed]. https://ethical.institute/principles.html

[ISO/IEC 5338:2023]
ISO/IEC. Information technology — Artificial intelligence — Al system life cycle processes. ISO/IEC
Standard 5338:2023. December 2023. https://www.iso.org/standard/81118.html

[ISO/IEC/IEEE 12207:2017]
ISO/IEC/IEEE. Systems and software engineering — Software life cycle processes. ISO/IEC Standard
12207:2017. November 2017. https://www.iso.org/standard/63712.html

[ISO/IEC/IEEE 15288:2023]
ISO/IEC/IEEE. Systems and software engineering — System life cycle processes. ISO/IEC Standard
15288:2017. May 2023. https://www.iso.org/standard/81702.html

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 87
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

https://insights.sei.cmu.edu/documents/582/2019_019_001_634648.pdf
https://insights.sei.cmu.edu/documents/582/2019_019_001_634648.pdf
https://huggingface.co/docs/hub/en/model-cards
https://www.oreilly.com/library/view/designing-machine-learning/9781098107956
https://www.oreilly.com/library/view/designing-machine-learning/9781098107956
https://doi.org/10.1109/IEEESTD.2021.9536679
https://doi.org/10.1109/IEEESTD.2022.9726144
https://www.ieee.org/about/corporate/governance/p7-8.html
https://www.ieee.org/about/corporate/governance/p7-8.html
https://www.image-net.org/
https://ethical.institute/principles.html
https://www.iso.org/standard/81118.html
https://www.iso.org/standard/63712.html
https://www.iso.org/standard/81702.html

[Jeffries 2022]

Jeffries, Daniel. Why We Started the AITA and What It Means for the Rapid Evolution of the Canoni-
cal Stack of Machine Learning. Al Infrastructure Alliance. Jan 7,2022. https://ai-infrastruc-
ture.org/why-we-started-the-aiia-and-what-it-means-for-the-rapid-evolution-of-the-canonical-stack-of-
machine-learning/

[JMETC 2025]
Joint Mission Environment Test Capability JMETC). JMET Website. March 11, 2025. [accessed].
https:// www.trmc.osd.mil/jmetc-home.html

[Joseph 2022]

Joseph, VR. Optimal ratio for data splitting. Statistical Analysis and Data Mining: The ASA Data Sci-
ence Journal. Volume 15. Number 4. August 2022. Page 531-538. https://onlineli-
brary.wiley.com/doi/full/10.1002/sam.11583

[JP 3-60]

Chairman of the Joint Chiefs of Staff. Joint Targeting. Joint Publication 3-60. September 2018.
https://www.esd.whs.mil/Portals/54/Documents/FOID/Reading%20Room/Joint Staff/21-F-

0520 JP 3-60 9-28-2018.pdf

[Kastner 2025]
Kaster, Christian. Machine Learning in Production: From Models to Products. MIT Press. April
2025. https://mlip-cmu.github.io/book/

[Krafft 2020]
Krafft, Tobias; Hauer, Marc; Fetic, Lajla; Kaminski, Andreas; Puntschuh, Michael; Otto, Philipp; et
al. From Principles to Practice - An interdisciplinary framework to operationalise Al ethics. Artificial

Intelligence Ethics Impact Group. April 2020. https://www.bertelsmann-stiftung.de/filead-
min/files/BSt/Publikationen/GrauePublikationen/WKIO 2020 _final.pdf

[Lacey 2000]

Lacey, Mike O.; Bill, Brian J.; Berrigan, Michael J.; Boechman, Michael P. & Chiarella, Louis A. Op-
erational Law Handbook. Judge Advocate General’s School Charlottesville VA. 2000.
https://apps.dtic.mil/sti/citations/tr/ADA377522

[Martinez 2024]

Martinez , David R. & Kifle, Bruke M. Artificial Intelligence: A Systems Approach from Architecture
Principles to Deployment. MIT Lincoln Laboratory Series. The MIT Press 2024.
https://doi.org/10.7551/mitpress/14806.001.0001

[Maffey 2023]

Maffey, Katherine R; Dotterrer, Kyle; Niemann, Jennifer; Cruickshank, Iain; Lewis, Grace A &
Kaéstner, Christian. MLTEing models: Negotiating, Evaluating, and Documenting Model and System
Qualities. Pages 31-36. IEEE/ACM 45th International Conference on Software Engineering: New
Ideas and Emerging Results (ICSE-NIER). May 2023. https://arxiv.org/abs/2303.01998

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 88
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

https://ai-infrastructure.org/why-we-started-the-aiia-and-what-it-means-for-the-rapid-evolution-of-the-canonical-stack-of-machine-learning/
https://ai-infrastructure.org/why-we-started-the-aiia-and-what-it-means-for-the-rapid-evolution-of-the-canonical-stack-of-machine-learning/
https://ai-infrastructure.org/why-we-started-the-aiia-and-what-it-means-for-the-rapid-evolution-of-the-canonical-stack-of-machine-learning/
https://www.trmc.osd.mil/jmetc-home.html
https://onlinelibrary.wiley.com/doi/full/10.1002/sam.11583
https://onlinelibrary.wiley.com/doi/full/10.1002/sam.11583
https://www.esd.whs.mil/Portals/54/Documents/FOID/Reading%20Room/Joint_Staff/21-F-0520_JP_3-60_9-28-2018.pdf
https://www.esd.whs.mil/Portals/54/Documents/FOID/Reading%20Room/Joint_Staff/21-F-0520_JP_3-60_9-28-2018.pdf
https://mlip-cmu.github.io/book/
https://www.bertelsmann-stiftung.de/fileadmin/files/BSt/Publikationen/GrauePublikationen/WKIO_2020_final.pdf
https://www.bertelsmann-stiftung.de/fileadmin/files/BSt/Publikationen/GrauePublikationen/WKIO_2020_final.pdf
https://apps.dtic.mil/sti/citations/tr/ADA377522
https://doi.org/10.7551/mitpress/14806.001.0001
https://arxiv.org/abs/2303.01998

[Mitchell 2018]

Mitchell, Margaret; Wu, Simone; Zaldivar, Andrew; and Barnes, Parker; Vasserman, Lucy;
Hutchinson, Ben; Spitzer, Elena; Raji, Inioluwa Deborah & Gebru, Timnit. Model Cards for Model
Reporting. Proceedings of the Conference on Fairness, Accountability, and Transparency, pages 220-
229. ACM. 2018 https://arxiv.org/abs/1810.03993

[MLTE 2025]
MLTE Documentation. January 30, 2025. [accessed]. https://mlte.readthedocs.io/en/latest/

[Mole 2025]
Mole. GitHub. March 11, 2025. [accessed]. https://github.com/niwcpac/mole

[squaresLab 2025]
squaresLab. MOBSTA. March 10, 2025. [accessed]. https://github.com/squaresL.ab/MOBSTA

[Mora-Cantallops 2021]

Mora-Cantallops, Margal; Sanchez-Alonso, Salvador; Garcia-Barriocanal, Elena & Sicilia, Miguel-
Angel. Traceability for Trustworthy Al: A Review of Models and Tools. Big Data and Cognitive
Computing. Volume 5, number 2. 2021. https://www.mdpi.com/2504-2289/5/2/20

[Lavin 2022]

Lavin, Alexander; Gilligan-Lee, Ciaran M.; Visnjic, Alessya; Ganju, Siddha; Newman, Dava; Gan-
guly, Sujoy; Lange, Danny; Baydin, Atilim Giines; Sharma, Amit; Gibson, Adam; Zheng, Stephan;
Xing, Eric P.; Mattmann, Chris; Parr, James & Gal, Yarin. Technology readiness levels for machine
learning systems. Nature Communications 13, Article 6039 (2022). https://doi.org/10.1038/s41467-
022-33128-9. https://doi.org/10.1038/s41467-022-33128-9

[Mellinger 2025]
Mellinger, Andrew O, et.al Reference Architecture for Assuring Ethical Conduct in LAWS. Software
Engineering Institute. 2025. [TODO: DOI Link Pending.]

[Mellinger 2025b]

Mellinger, Andrew; Justice, Daniel; Connor, Marissa; Gallagher, Shannon & Brooks, Tyler. The Myth
of Machine Learning Reproducibility and Randomness for Acquisitions and Testing, Evaluation, Veri-
fication, and Validation [blog post]. SEI Blog. January 13, 2025. https://doi.org/10.58012/g17y-gp09.

[Manning 2023]

Manning, Catherine G. Technology Readiness Levels. NASA Website. September 27, 2023.
https://www.nasa.gov/directorates/somd/space-communications-navigation-program/technology-read-
iness-levels/

[NSLD 2022]
National Security Law Department (NSLD). Law of Armed Conflict Documentary Supplement. The
Judge Advocate General’s Legal Center & School. 2022. https://www.loc.gov/item/2009210362

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 89
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

https://arxiv.org/abs/1810.03993
https://mlte.readthedocs.io/en/latest/
https://github.com/niwcpac/mole
https://github.com/squaresLab/MOBSTA
https://www.mdpi.com/2504-2289/5/2/20
https://doi.org/10.1038/s41467-022-33128-9
https://doi.org/10.1038/s41467-022-33128-9
https://doi.org/10.1038/s41467-022-33128-9
https://doi.org/10.58012/g17y-gp09
https://www.nasa.gov/directorates/somd/space-communications-navigation-program/technology-readiness-levels/
https://www.nasa.gov/directorates/somd/space-communications-navigation-program/technology-readiness-levels/

[Nichols 2023]

Nichols, Bill; Weinstock, Chuck; Goodenough, John; Woody, Carol & Ellison, Bob. GOIM and As-
surance Cases. Software Engineering Institute. 2023. https://apps.dtic.mil/sti/cita-
tions/trecms/AD1193672

[NIST 2024]
NIST. “Assurance.” NIST Computer Security Resource Center Website. December 2, 2024 [accessed].
https://csrc.nist.gov/glossary/term/assurance

[NIST 2025]
NIST. “Trust.” NIST Computer Security Resource Center Website. February 10, 2025 [accessed].
https://csrc.nist.gov/glossary/term/trust

[Norquist 2020]
Norquist, David. DoD Data Strategy. Department of Defense. 2020. https://media.de-
fense.gov/2020/0¢t/08/2002514180/-1/-1/0/DOD-DATA-STRATEGY.PDF.

[NSSF 2024]
4 Primary Rules for Gun Safety. The Firearm Industry Trade Association Website. December 10,
2024 [accessed]. https://www.nssf.org/articles/4-primary-rules-of-firearm-safety/

[Nvidia 2024]
PeopleNet Model Card. Nvidia Website. November 12, 2024. https://cata-
log.ngc.nvidia.com/orgs/nvidia/teams/tao/models/peoplenet

[Mohseni 2022]

Mohseni, Sina, Haotao Wang, Chaowei Xiao, Zhiding Yu, Zhangyang Wang, and Jay Yadawa. Tax-
onomy of machine learning safety: A survey and primer. ACM Computing Surveys. Volume 55. Num-
ber 8. December 2022. Pages 1-38. https://dl.acm.org/doi/full/10.1145/3551385

[OECD 2025]
OECD. Catalogue of Tools & Metrics for Trustworthy Al (Metrics Tab). OECD.AI Policies, data and
analysis for trustworthy artificial intelligence. 2024. https://oecd.ai/en/catalogue/metrics

[OGC 2023]

Office of General Counsel, Department of Defense. Department of Defense Law of War Manual. July
2023. https://ogc.osd.mil/Portals/99/L aw%200f%20War%202023/DOD-LAW-OF-WAR-MANUAL-
JUNE-2015-UPDATED-JULY%202023.pdf

[Olechowski 2020]

Olechowski, Alison L; Eppinger, Steven D; Joglekar, Nitin & Tomaschek, Katharina. Technology
readiness levels: Shortcomings and improvement opportunities. Systems engineering: the journal of
the International Council on Systems Engineering, 2020, Vol.23(4), p.395-408. https://incose.onlineli-
brary.wiley.com/doi/10.1002/sys.21533

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 90
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

https://apps.dtic.mil/sti/citations/trecms/AD1193672
https://apps.dtic.mil/sti/citations/trecms/AD1193672
https://csrc.nist.gov/glossary/term/assurance
https://csrc.nist.gov/glossary/term/trust
https://media.defense.gov/2020/Oct/08/2002514180/-1/-1/0/DOD-DATA-STRATEGY.PDF
https://media.defense.gov/2020/Oct/08/2002514180/-1/-1/0/DOD-DATA-STRATEGY.PDF
https://www.nssf.org/articles/4-primary-rules-of-firearm-safety/
https://catalog.ngc.nvidia.com/orgs/nvidia/teams/tao/models/peoplenet
https://catalog.ngc.nvidia.com/orgs/nvidia/teams/tao/models/peoplenet
https://dl.acm.org/doi/full/10.1145/3551385
https://oecd.ai/en/catalogue/metrics
https://ogc.osd.mil/Portals/99/Law%20of%20War%202023/DOD-LAW-OF-WAR-MANUAL-JUNE-2015-UPDATED-JULY%202023.pdf
https://ogc.osd.mil/Portals/99/Law%20of%20War%202023/DOD-LAW-OF-WAR-MANUAL-JUNE-2015-UPDATED-JULY%202023.pdf
https://incose.onlinelibrary.wiley.com/doi/10.1002/sys.21533
https://incose.onlinelibrary.wiley.com/doi/10.1002/sys.21533

[Pushkarna 2022]

Pushkarna M, Zaldivar A, Kjartansson O. Data cards: Purposeful and transparent dataset documenta-
tion for responsible ai. Pages 1776-1826. In Proceedings of the 2022 ACM Conference on Fairness,
Accountability, and Transparency. 2022 Jun 21. https://arxiv.org/abs/2204.01075

[PyTorch 2025]
Reproducibility. PyTorch Website. March 10, 2025. [accessed]. https://pytorch.org/docs/sta-
ble/notes/randomness.html

[Rigsbee 2025]

S. Rigsbee, S; Felsen, C. R.; Kerbel, K. R.; Kang, R. M. & Camacho, B. Human-Centric, Teaming-
Focused Approach for Design and Development of Non-Deterministic Systems : A Human Machine
Teaming Design Framework. Carnegie Mellon University. March 2025. [link pending]

[Roboflow 2024]
Roboflow. What is YOLO? The Ultimate Guide [2025] [blog post]. Roboflow blog. January 9, 2025.
https://blog.roboflow.com/guide-to-yolo-models

[ROS 2025]
Rosbag. Robot Operating System (ROS) Website. March 11, 2025. [accessed].
http://wiki.ros.org/rosbag

[Rosebrock 2020]

Rosebrock, Adrian. “YOLO and Tiny-YOLO object detection on the Raspberry Pi and Movidius
NCS.” Pyimagesearch. January 27, 2020. https://pyimagesearch.com/2020/01/27/yolo-and-tiny-yolo-
object-detection-on-the-raspberry-pi-and-movidius-ncs/

[SAE 2021]
SAE. Taxonomy and Definitions for Terms Related to Driving Automation Systems for On-Road Mo-
tor Vehicles. J3016_202104. April 2021.

[SAE ARP4754b]
SAE. Guidelines for Development of Civil Aircraft and Systems. ARP4754b. December 2023.
https://www.sae.org/standards/content/arp4754b/

[SAE ARP4761a]
SAE. Guidelines for Conducting the Safety Assessment Process on Civil Aircraft, Systems, and Equip-
ment. ARP4761a. December 2023. https://www.sae.org/standards/content/arp4761a/

[Schafer 2024]

Schéfer, Arndt; Esterbauer, Reinhold & Kubicek, Bettina. Trusting robots: a relational trust definition
based on human intentionality. Humanities Social Science Communications 11, Article 1412. October
2024. https://doi.org/10.1057/541599-024-03897-3

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 91
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

https://arxiv.org/abs/2204.01075
https://pytorch.org/docs/stable/notes/randomness.html
https://pytorch.org/docs/stable/notes/randomness.html
https://blog.roboflow.com/guide-to-yolo-models
http://wiki.ros.org/rosbag
https://pyimagesearch.com/2020/01/27/yolo-and-tiny-yolo-object-detection-on-the-raspberry-pi-and-movidius-ncs/
https://pyimagesearch.com/2020/01/27/yolo-and-tiny-yolo-object-detection-on-the-raspberry-pi-and-movidius-ncs/
https://www.sae.org/standards/content/arp4754b/
https://www.sae.org/standards/content/arp4761a/
https://doi.org/10.1057/s41599-024-03897-3

[See 2021]
See, Judi E. Human Readiness Levels Explained. SAND2021-4299]. Sandia National Laboratories,
2021. https://www.osti.gov/servlets/purl/1787523

[Sharif 2016]

Sharif, Mahmood; Bhagavatula, Sruti; Bauer, Lujo & Reiter, Michael K. Accessorize to a Crime: Real
and Stealthy Attacks on State-of-the-Art Face Recognition. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security (CCS '16). Association for Computing Ma-
chinery. 2016. https://doi.org/10.1145/2976749.2978392

[Solingen 1999]

Solingen, Rini & Berghout, Egon. (1999). The Goal/Question/Metric Method: A Practical Guide for
Quality Improvement of Software Development. The McGraw-Hill Companies. 1999. ISBN 007
709553 7 https://www.researchgate.net/publication/243765439 The GoalQuestionMet-

ric Method A Practical Guide for Quality Improvement of Software Development

[Stewart 2015]

Stewart, Katie; Allen, Julia; Valdez, Michelle; & Young, Lisa. Measuring What Matters Workshop
Report. CMU/SEI-2015-TN-002. Software Engineering Institute. 2015.
https://doi.org/10.1184/R1/6575462.v1

[Stumborg 2021]

Stumborg, Michael F; Roh, Becky & Rosen, Mark. Dimensions of Autonomous Decision-making.
DRM-2021-U-030642-1Rev. Center for Naval Intelligence. 2021. https://www.cna.org/re-
ports/2022/01/Dimensions-of-Autonomous-Decision-making.pdf

[Teare 2025]
Teare, Gené. Startup Funding Regained Its Footing in 2024 as Al Became the Star of the Show.
Crunchbase News. January 7, 2025. https://news.crunchbase.com/venture/global-funding-data-analy-

sis-ai-eoy-2024/

[Timperley 2023]
Timperley, Chris. Breaking Bots: Robustness Testing for ROS. RosCON 23, New Orleans. October
2023. https://roscon.ros.org/2023/talks/Breaking_Bots Robustness Testing for ROS.pdf

[TRMC 2025]
Test Resource Management Center (TRMC). TRMC Website. March 11, 2025. [accessed].
https://www.trmc.osd.mil/

[Trusted-Al 2025]
Al Fairness 360. Trusted-Al. GitHub. April 8, 2025. [accessed]. https://github.com/Trusted-
AI/AIF360

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 92
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

https://www.osti.gov/servlets/purl/1787523
https://doi.org/10.1145/2976749.2978392
https://www.researchgate.net/publication/243765439_The_GoalQuestionMetric_Method_A_Practical_Guide_for_Quality_Improvement_of_Software_Development
https://www.researchgate.net/publication/243765439_The_GoalQuestionMetric_Method_A_Practical_Guide_for_Quality_Improvement_of_Software_Development
https://doi.org/10.1184/R1/6575462.v1
https://www.cna.org/reports/2022/01/Dimensions-of-Autonomous-Decision-making.pdf
https://www.cna.org/reports/2022/01/Dimensions-of-Autonomous-Decision-making.pdf
https://news.crunchbase.com/venture/global-funding-data-analysis-ai-eoy-2024/
https://news.crunchbase.com/venture/global-funding-data-analysis-ai-eoy-2024/
https://roscon.ros.org/2023/talks/Breaking_Bots_Robustness_Testing_for_ROS.pdf
https://www.trmc.osd.mil/
https://github.com/Trusted-AI/AIF360
https://github.com/Trusted-AI/AIF360

[Turri 2022]

Turri, Violet & Heim, Eric. Bridging the Gap Between Requirements Engineering and Model Evalua-
tion in Machine Learning [blog post]. SEI Blog. December 2022. https://in-
sights.sei.cmu.edu/blog/bridging-the-gap-between-requirements-engineering-and-model-evaluation-
in-machine-learning/

[Two Six Technologies 2025]
Two Six Technologies. Armory. GitHub. February 7, 2025. [accessed]
https://github.com/twosixlabs/armory-library

[UL 4600]
Underwriters Laboratories. Standard for Evaluation of Autonomous Products. ANSI/UL 4600. 2020.
https://www.shopulstandards.com/ProductDetail.aspx ?productid=UL4600

[UMAA 2019]

Unmanned Maritime Autonomy Architecture (UMAA) Architecture Design Description (ADD). Ver-
sion 1.1a, UMAA-INF-ADD. AUVSI, December 19, 2019. https://www.auvsi.org/sites/de-
fault/files/PDFs/UMAA/UMAA%20ADD%20Dec%2019%2C%202019%20v1.1.pdf

[VanHoudnos 2024]

VanHoudnos, Nathan M.; Smith, Carol J.; Churilla, Matt; Lau, Shing-hon; Mcllvenny, Lauren; &
Touhill, Greg. Counter Al: What Is It and What Can You Do About It? Software Engineering Institute,
Carnegie Mellon University. October 7, 2024. https://insights.sei.cmu.edu/library/counter-ai-what-is-
it-and-what-can-you-do-about-it/

[VDE 2022]

VCIO based description of systems for Al trustworthiness characterization. VDE SPEC 90012 V1.0.
VDE 2022. https://www.vde.com/resource/blob/2242194/a24b13db01773747e6b7bbadce20ea60/vcio-
based-description-of-systems-for-ai-trustworthiness-characterisationvde-spec-90012-v1-0--en--

data.pdf

[Vincent 2024]
Vincent, Brandi. Why the Pentagon didn’t request higher funding for Al in fiscal 2025. DefenseScoop.
March 11, 2024. https://defensescoop.com/2024/03/11/pentagon-ai-budget-request-2025/

[Wei 2024]

Wei, Dangang. Demystifying Temperature in Machine Learning [blog post]. Demystifying Machine
Learning. May 9, 2024. https://medium.com/@weidagang/demystifying-temperature-in-machine-
learning-ef6828ad4e2d

[White House 2021]
The White House. Interim National Security Strategic Guidance. The White House. March 2021.
https://www.whitehouse.gov/wp-content/uploads/2021/03/NSC-1v2.pdf

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 93
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

https://insights.sei.cmu.edu/blog/bridging-the-gap-between-requirements-engineering-and-model-evaluation-in-machine-learning/
https://insights.sei.cmu.edu/blog/bridging-the-gap-between-requirements-engineering-and-model-evaluation-in-machine-learning/
https://insights.sei.cmu.edu/blog/bridging-the-gap-between-requirements-engineering-and-model-evaluation-in-machine-learning/
https://github.com/twosixlabs/armory-library
https://www.shopulstandards.com/ProductDetail.aspx?productid=UL4600
https://www.auvsi.org/sites/default/files/PDFs/UMAA/UMAA%20ADD%20Dec%2019%2C%202019%20v1.1.pdf
https://www.auvsi.org/sites/default/files/PDFs/UMAA/UMAA%20ADD%20Dec%2019%2C%202019%20v1.1.pdf
https://insights.sei.cmu.edu/library/counter-ai-what-is-it-and-what-can-you-do-about-it/
https://insights.sei.cmu.edu/library/counter-ai-what-is-it-and-what-can-you-do-about-it/
https://www.vde.com/resource/blob/2242194/a24b13db01773747e6b7bba4ce20ea60/vcio-based-description-of-systems-for-ai-trustworthiness-characterisationvde-spec-90012-v1-0--en--data.pdf
https://www.vde.com/resource/blob/2242194/a24b13db01773747e6b7bba4ce20ea60/vcio-based-description-of-systems-for-ai-trustworthiness-characterisationvde-spec-90012-v1-0--en--data.pdf
https://www.vde.com/resource/blob/2242194/a24b13db01773747e6b7bba4ce20ea60/vcio-based-description-of-systems-for-ai-trustworthiness-characterisationvde-spec-90012-v1-0--en--data.pdf
https://defensescoop.com/2024/03/11/pentagon-ai-budget-request-2025/
https://medium.com/@weidagang/demystifying-temperature-in-machine-learning-ef6828ad4e2d
https://medium.com/@weidagang/demystifying-temperature-in-machine-learning-ef6828ad4e2d
https://www.whitehouse.gov/wp-content/uploads/2021/03/NSC-1v2.pdf

Legal Markings
Copyright 2025 Carnegie Mellon University.

This material is based upon work funded and supported by the Department of Defense under Contract
No. FA8702-15-D-0002 with Carnegie Mellon University for the operation of the Software Engineer-
ing Institute, a federally funded research and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not
be construed as an official Government position, policy, or decision, unless designated by other docu-
mentation.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE
ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE
MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR
IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF
FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS
OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT
MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT,
TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited
distribution. Please see Copyright notice for non-US Government use and distribution.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Li-
cense. Requests for permission for non-licensed uses should be directed to the Software Engineering
Institute at permission@sei.cmu.edu.

DM?25-0496

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 94
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

mailto:permission@sei.cmu.edu

Contact Us

Software Engineering Institute
4500 Fifth Avenue, Pittsburgh, PA 15213-2612

Phone: 412/268.5800 | 888.201.4479
Web: www.sei.cmu.edu
Email: info@sei.cmu.edu

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

95

	1 CaTE Guidebook Overview
	1.1 Rationale and Background: Trustworthiness in ML
	1.2 Focus Areas
	1.2.1 Science and Technologies
	1.2.2 Engineering Tools and Practices
	1.2.3 Human-Machine Teaming (HMT), Tools, and Practices Evaluation Lab
	1.2.4 Workforce Development

	1.3 Scoping: AI Versus ML
	1.4 How to Read This Guidebook
	1.5 Key Findings
	1.5.1 Defining Systems (From Models to Systems)
	1.5.2 The Need for Concreteness
	1.5.3 System Scope: Working from Small to Large
	1.5.4 Conflating AI and ML
	1.5.5 Continuous Learning
	1.5.6 Trust, Ethics, and Conflict
	1.5.7 Bootstrapping the Operationally Relevant Tests
	1.5.8 Ops Cycles and Deployment

	2 Trust, Ethics, and Human Systems Integration
	2.1 Setting the Groundwork of Trust, Ethics, and HSI
	2.1.1 Trust
	2.1.2 Calibrated Trust
	2.1.3 Trustworthiness
	2.1.4 Ethics
	2.1.5 Human-Systems Integration (HSI) and Human-Machine Teaming (HMT)

	2.2 Trust, Ethics, and HSI Across the Product Lifecycle
	2.2.1 Ethical Requirements May Not Be Explicit
	2.2.2 Data Is Central to Ethics and Trust
	2.2.3 Methods for Ethical Measurements May Be Inconsistent, If They Exist at All
	2.2.4 Process May Not Align with Goals
	2.2.5 You May Need to Update Test Plans to Deal with Ethics

	2.3 Measuring Trust: Key Elements of a Trustworthy System
	2.3.1 System Trustability Scale: How to Measure Trust
	2.3.2 Key Findings from the SEI’s Trust Study
	2.3.3 Discussion of the SEI’s Trust Study
	2.3.3.1 Human: Oversight and Decision Support
	2.3.3.2 System: Reliability, Robustness, and Continuous Improvement
	2.3.3.3 Framework: Ethical and Autonomous Behavior

	3 System Context and Requirements
	3.1 Recommendations for System Context and Requirements
	3.1.1 Use the Defense Innovation Unit Worksheets When Defining Mission Use
	3.1.2 Use Checklists Such as Dimensions of Autonomous Decision Making (DADs) to Identify and Elicit undocumented TEVV Needs
	3.1.3 Choose and Consolidate Analytic Methods to Identify Appropriate Metrics
	3.1.4 Check If the System Safety Analysis Factors in the Function of ML Faults
	3.1.5 Integrate Context-Specific Emergency Stop Mechanisms
	3.1.6 Leverage Post-Event and Live-Logging Mechanisms to Provide Traceability for ML-Dependent Processes
	3.1.7 Test the System in All Conditions Outlined by Performance Requirements

	3.2 Observations About Model Metrics
	3.3 Commentary on System Context and Requirements
	3.3.1 DIU Responsible AI Guidelines in Practice
	3.3.2 ML Throughout the System
	3.3.3 Cognitive Dissonance in the PTR Chain
	3.3.3.1 Evaluation Criteria

	3.3.4 Incorporating and Evaluating Fail-Safe Designs
	3.3.5 Fault Detection
	3.3.6 Goal Question (Indicator) Metric (GQM and GQIM)
	3.3.7 Perception, Targeting, and Environmental Difficulty
	3.3.7.1 How difficult is it to identify the entities in a still frame?
	3.3.7.2 What is the composition of entities within the scene?
	3.3.7.3 What confounding qualities exist in the scene?
	3.3.7.4 How many classes of each AFN type are to be identified?
	3.3.7.5 How many entities are expected to be in the scene?
	3.3.7.6 What mixture of entity types is expected in the scene?
	3.3.7.7 Does AFN determination require tracking or assessment of behavior?
	3.3.7.8 How much trajectory crossover is allowed?
	3.3.7.9 Are IFF detectors employed?

	3.3.8 Levels of Autonomy from Human Control to Full Autonomous Systems
	3.3.9 Timing
	3.3.10 Operator Task and Cognitive Loading
	3.3.11 Dimensions of Autonomous Decision Making (DADs)
	3.3.12 Values Criterion Indicator Observables (VCIO)
	3.3.13 Emergency Stops
	3.3.14 Automated Decision Transparency and Traceability
	3.3.15 Replicable Tests for ML Components and Use Cases

	4 Data Collection, Curation, and Management
	4.1 Recommendations for Data Management
	4.1.1 Assess Data Management and Datasets
	4.1.2 Incorporate Data Provenance into Dataset Evaluation
	4.1.3 Establish Data Governance and Compliance
	4.1.4 Evaluate Data for Its Current Quality
	4.1.5 Validate That Datasets Provide Full Coverage of the Operational Design Domain
	4.1.6 Test That the System Accurately Detects Data Drift

	4.2 Commentary on Data Management
	4.2.1 Data and Ethical Principles for AI
	4.2.2 Data Splitting
	4.2.3 Verifying Dataset Relevancy
	4.2.4 Data Augmentation for Training and Testing
	4.2.5 Data Labeling

	5 ML System Design
	5.1 Commentary on ML System Design Testing

	6 Model Design, Development, and Testing
	6.1 Recommendations for Model Design, Development, and Testing
	6.1.1 Start with Good, Appropriate Models and Metrics
	6.1.2 Tailor the Pipeline to the Mission Need
	6.1.3 Get Control of Probabilistic Software Development Experiments
	6.1.4 Confirm Through Testing That Processes Are Effective
	6.1.5 Consider Robustness and Model Calibration When Designing the System
	6.1.6 Segment Testing for Performance Insights

	6.2 Commentary on Model Design, Development, and Testing
	6.2.1 Repeatability, Reproducibility, and Replicability
	6.2.2 Base Model Selection
	6.2.3 Training Practices
	6.2.4 Metric Selection
	6.2.5 Overfitting
	6.2.6 Designing Model Tests
	6.2.7 Responsible Engineering Practices, Processes, and Tools
	6.2.8 Model Cards, Outputs, and Standardization
	6.2.9 Counter AI

	7 System Development
	7.1 Commentary on System Development
	7.1.1 Allocate Extra Time for Process and Technology Maturation
	7.1.2 Prepare for Higher Computing Resource Demands
	7.1.3 Build One to Throw Away (You Will Anyway)
	7.1.4 Team Culture May Not Support Testing
	7.1.5 Allocate More Time and Effort to Develop and Manage Baseline Tests
	7.1.6 ML Development Tools Have Higher Resource Demands
	7.1.7 Placeholder Components Provide Extra Value During MLES Development
	7.1.8 Code Instrumentation Provides Higher ROI for ML Systems

	8 System DT&E
	8.1 Recommendations for System DT&E
	8.1.1 Expand Reproducibility to System Tests
	8.1.2 Capture All Test Configurations and Outputs
	8.1.3 Define an Explicit Maturation Testing Path

	8.2 Commentary on System DT&E
	8.2.1 Reproducibility, Determinism, and Statistics
	8.2.2 Maturing the Testing
	8.2.3 Reduce, Adapt, and Reuse
	8.2.4 Evolve the Tests
	8.2.5 Perform Field Testing as Early as Possible
	8.2.6 RAI and DIU Guidelines
	8.2.7 Capture and Share Data
	8.2.8 Security
	8.2.9 Runtime Measures are Still Applicable

	9 System OT&E
	9.1 Recommendations for System OT&E
	9.1.1 Allocate Significant Additional Time and Effort to Testing
	9.1.2 Capture Datasets for Evaluation and Replay

	9.2 Observations on System OT&E
	9.2.1 Testing a Model Is Not the Same as Testing a System
	9.2.2 Data Is a Small Reflection of the Test Environment
	9.2.3 Decision-Making Systems Require Greater Resources to Develop and Test than Previous Systems

	9.3 Commentary on System OT&E
	9.3.1 Test Datasets and Model Interaction
	9.3.2 Continuous Learning and Emergent Behavior
	9.3.3 Field Updates
	9.3.4 Iteration and MLOps
	9.3.5 Reliability and Robustness: Uncertainty Quantification
	9.3.6 Counter AI
	9.3.7 Transparency, Observability, and Governability

	References
	Legal Markings
	Contact Us

