Will Generative Al Fill the Automation Gap in
Software Architecting?

James Ivers
Software Engineering Institute
Carnegie Mellon University
Pittsburgh, USA
jivers@sei.cmu.edu

Abstract—Researchers are aware that software architects lack
effective automation to support much of their work. Generative
Al (GenAl) is sparking research interest regarding its potential
role in filling this gap, inspired by promising applications of
GenALl to other software engineering activities. In this paper, we
aim to reflect and sharpen this conversation from the vague “how
can GenAl be applied to architecture” to “which architecture
activities are most amenable to application of GenAL” We stress
the importance of considering contributions in the context of
workflows and reflect on the alignment (or lack thereof) of
GenAl with the nature of common architecture tasks through
the discussion of five common architecture activities. We offer
guiding criteria to assist architecture researchers in focusing on
activities that are both amenable to automation and likely to
obtain significant utility from GenAl.

Index Terms—software architecture, generative Al, LLM,
architecture decision making, software architecture automation,
architecting workflows

1. INTRODUCTION

The rapid evolution of generative Al (GenAl) models, along
with the tools and services built on them, is driving renewed
excitement in software engineering to improve automation for
a wide range of software engineering activities. The same
is true for software architecture. Providing architects with
effective automation to support architecting activities has been
a longstanding challenge, significantly complicated by the
abstraction gap between architecture and code [1]. The lack
of effective automation can, in fact, be considered among the
top challenges in software architecture [2] [3], one that has
not received enough research emphasis.

Today’s architects have limited, if any, effective automation
to use either during architecting or after their initial realization,
such as keeping documentation current and monitoring im-
plementations for conformance with the architecture. Instead,
they rely on a lot of manual effort and an ad hoc collection of
general purpose tools such as IDEs, PowerPoint (the ultimate
tool for architects!), spreadsheets, and static analyzers.

GenAl is renewing hopes for better automation for ar-
chitects, but creating tools that meet an appropriate mix of
relevance, reliability, and utility remains a challenge. Architec-
ture knowledge management has already received some early
investigation [4]-[6]. However, preliminary findings on the use
of GenAl assistants in software engineering suggest that while
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these tools can help, ideal improvements in productivity and
quality are unlikely to stem solely from these tools [7]. Instead,
meaningful progress will come from rethinking workflows and
integrating expert judgment or non-Al tools with their use of
GenAl. The case is no different for architecting.

In this paper, we aim to sharpen research focus from the
vague “how can GenAl be applied to architecture” to “which
architecture activities are most amenable to application of
GenAl” by reflecting on the alignment of GenAl and architec-
ture activities. Where would automation be most beneficial for
specific architecting activities? Which architecting activities
naturally align with GenAl competencies? How can sufficient,
high-quality data be accumulated to improve GenAl’s training
corpus? What gaps need to be addressed through further
software architecture research? The answers to these questions
will involve effective and seamless orchestration of automation
and human-in-the-loop workflows. This paper, by bringing the
focus of attention to the architecting process and its automation
challenges, aims to inspire a research roadmap for software
architecture that can take advantage of GenAl where it is
most appropriate, complementing it with other automation and
practices to remove barriers.

The remainder of this paper is structured as follows. Section
II presents an overview of competencies and limitations of
GenAl from the lens of architecture. Section III discusses how
architecting activities align with GenAl. Section IV introduces
fruitful directions for research in GenAl and architecting, and
Section V lays out future directions and concludes the paper.

II. UNPACKING GENAI

GenAl models are deep neural networks trained on vast
datasets (books, code, articles, images, websites, etc.) to
identify and learn underlying patterns and relationships in
their respective domains [8]. GenAl uses a probabilistic and
randomized approach to select the ‘next token’ in its output
sequence, which can mimic correctness and fluency for an end-
user but can also lead to errors and omissions. Large language
models (LLMs), GenAl models trained on textual data, have
found application in software engineering due to their natural
alignment with text-based inputs such as code [9].

Architecture research has faced several challenges for years:
1) Publicly available documented architectures are scarce,
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and examples differ significantly in form and semantics.
Generating clean, consistent training data from this input
requires significant effort. 2) Publicly available architectures
skew towards small examples (e.g., open-source libraries) or
highly precedented examples (e.g., web-based interfaces) over
industry scale and unprecedented systems. 3) Validating the
effectiveness of automation for several architecture activities
relies on the subjective opinions of representative stakeholders,
which is difficult to reflect in simulated or classroom exercises.
GenAl research for architecture, with its reliance on high-
quality training data exacerbates these challenges. This dis-
connect suggests that architects should moderate their expecta-
tions for the utility of today’s GenAl for architecting. However,
architecture research can still achieve meaningful progress by
focusing on alignment of GenAl’s competencies and limita-
tions with the sub-tasks of architecting workflows. Tasks that
align with limitations, such as analysis or problem solving,
suggest a need to focus on compensating approaches that
mitigate these limitations, such as static analyses, in-context
learning, retrieval-augmentation generation (RAG), and other
tools, to make integrated workflows useful in practice.

A. Competencies of GenAl

Brainstorming, summarization, and application of patterns
are natural uses of GenAl that are also integral parts of many
architecting activities.

Brainstorming is an act of generating ideas or alternatives.
When brainstorming, drawing on common wisdom is generally
a helpful way to avoid missing ideas, as long as the signal-to-
noise ratio is reasonable. GenAl models help brainstorming
because they have been trained on data such as common
descriptions of systems, technologies, and requirements.

Summarization involves expressing the most important
ideas in a clear and concise way. For example, providing a list
of transaction types mentioned in a requirements document
and classifying requirements into categories (e.g., quality
attributes) are two forms of summarization. GenAl works well
for summarization because in addition to being trained on
very large amounts of data, their models take into account
the context of surrounding text.

Applying patterns is conversion of potentially unstructured
inputs to well-formed outputs. Several activities apply patterns,
such as converting problem domain descriptions to architec-
turally significant requirements (ASRs) expressed as quality
attribute scenarios. Code generation also relies on pattern
matching. Theoretically, multi-modal GenAl could generate
code to match visual diagrams and vice versa [10], but quality
of the output for architecture will depend on contextualization
and availability of a higher-quality training corpus.

B. Limitations of GenAl

Many architecting activities involve conceptual reasoning
such as applying abstractions in context, comparing and ana-
lyzing options, and reasoning about collections of decisions.
Successfully performing these activities is highly dependent
on system context and requires combinations of analytical

reasoning models to draw objective conclusions, subjective
assessment, contextualization, high-fidelity representation, and
fact checking, none of which are natural uses of GenAl.

Objective analysis applies some kind of analytic model
(e.g., queueing theory or dependency analysis) to generate
results that are categorically true or false, without room
for opinion. Given robust quantitative models, accuracy or
correctness of results is achievable and repeatable. Objective
analysis is neither a pattern matching activity nor probabilistic,
hence a misfit for GenAl

Subjective assessment is a form of analysis whose focus
is generating answers to represent the opinions of subject
matter experts (SMEs), such as their priorities. Predictions of
a GenAl model might accidentally match a subjective opinion,
but there is little reason to believe that this would be consistent.
Local training or fine-tuning could help (e.g., getting to know
SME personalities based on prior projects), but extrapolation
of opinions in one context to another is dubious.

Contextualization is projection of architecture knowledge
onto a high-fidelity representation that is appropriate for the
given context. For example, using the publish/subscribe pattern
is a general decision. Determining which specific communica-
tion paths within a system of hundreds of components employ
publish/subscribe and which do not involves analysis of a
complete communication topology. GenAl does not support
such high-fidelity representation.

Fact checking involves reporting objective information
about an input or determining whether a statement is objec-
tively true. For example, determining whether a list of API
changes accompanying a new version of a library is correct and
complete is a fact checking problem. There is an objectively
correct answer, based on examination of the old and new
versions of that library’s API. Even if GenAl is provided with
the correct inputs (e.g., for summarization), it will not create
the same response every time. The need to fact check the fact
check undermines practical value.

Early research findings are aligned with this discussion.
For example, Jahic and Sami report from their industry
study [11] that ChatGPT 4 mixed high-level and low-level
architecture concepts inappropriately and missed the hierarchy
and dependencies among components. However, the architects
interviewed appreciated the brainstorming help in identifying
the requirements and design patterns they had not considered.

III. ARCHITECTING ACTIVITIES AND GENAI

In this section, we describe five common architecture activ-
ities and their alignment with GenAl. For each, we identify
common sub-tasks and challenges to their execution. Note that

this discussion is not intended to depict a specific process or
flow. It simply exemplifies the work conducted in the course of
architecting software to highlight opportunities for automation.

Table I presents the sub-tasks and a rough assessment of
the GenAl fit for each. The authors independently reviewed
each sub-task based on the competencies and limitations sum-
marized in Section II before consolidating their assessments.
We erred on the generous side by assuming that suitable inputs
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are available to each activity and that end-users have sufficient
knowledge and experience to execute the activities effectively.
We do anticipate changes to some of these assessments as
GenAl evolves. This assessment focuses on approximating the
current state, not predicting the future.

TABLE I
COMMON ARCHITECTURE ACTIVITIES
Activity Sub-tasks GenAl
Fit
Define ASRs Identify relevant stakeholders +
Identify stakeholders’ concerns +
Generate well-formed ASRs +
Assess correctness & relevance of ASRs -
Assess coverage of qualities and -
stakeholder concerns across ASRs
Prioritize ASRs e
Design an Identify collection of decisions needed +
architecture Identify dependencies among decisions -
Identify alternatives +
Compare alternatives (in general) .
Select and refine alternative (e.g., place a -
decision in system context)
Assess goodness of alternative in context --
Prototype to support comparison and +
assessment of alternatives
Evaluate an Enumerate new architecture decisions
architecture Enumerate prior architecture decisions +
Align decisions with their placement in the e
architecture
Identify any conflicts among decisions e
Assess satisfaction of each ASR -=
Document an Enumerate architecture decisions
architecture Decide on best representation for each +
decision (e.g., diagrams or prose)
Decide on best view(s) for each decision +
Generate views and supporting text --
Determine which decisions merit rationale -
Generate rationale +
Reconstruct an | Extract facts from artifacts -
architecture Identify architecture abstractions from facts +
Assemble architecture views --
Test correctness of architecture views --

A. Defining Architecturally Significant Requirements (ASRs)

Defining ASRs is typically a human-centered activity that
involves engaging stakeholders to elicit their needs, understand
their priorities, and reconcile their differences [12]. The core
automation challenge is that acceptable results depend on the
subjective opinions of stakeholders rather than any analytic
theory that can be programmed.

Several ASR sub-tasks can exploit competencies of GenAl
(noted with + in Table I). Sub-tasks like identifying types
of stakeholders or their common concerns align with the
brainstorming competency of GenAl. GenAl responses that

reflect common answers can provide helpful starting points or
missing topics to an architect [11]. While these suggestions
may not be correct or precise with respect to organizational
specifics, they are easily reviewable by an architect.

Other sub-tasks require representation of stakeholders’ sub-
jective and perhaps idiosyncratic opinions (noted with —- in
Table I). For example, while a starting point for an ASR might
be a latency requirement for generating a report, assessing the
correctness of an ASR requires assessing whether a specific
quantified goal makes sense for that system (N seconds,
minutes, or hours). This work is more reliant on subjective
assessment than on summarization of common knowledge
available in a training corpus, and its effectiveness is signifi-
cantly hampered by the limitations of GenAl.

Assessing the quality and coverage of ASRs is a mixed
case (noted with — in Table I). An aspect of this sub-task
is categorizing ASRs in one or more dimensions (e.g., by
quality attribute), which is a reasonable match to GenAlI’s
summarization competency. However, determining whether
enough ASRs exist for each category is another task that is
more reliant on subjective assessment.

B. Designing an Architecture

To design an architecture, an architect needs to make a
collection of decisions that collectively satisfy the ASRs. This
technical activity involves refining general decisions (e.g.,
deploy in the cloud) to system-specific details (e.g., which
services will be replicated and what protocols will be used for
run-time interactions) and system-specific conclusions (e.g., a
good decision for one system can be an awful one for another).
Multiple design sub-tasks can productively exploit the brain-
storming potential of GenAl. Responses that provide general
advice, including advantages and disadvantages, on common
decisions and alternatives are useful starting points. GenAl
can also suggest alternatives that are most commonly related
to those used in systems with similar ASRs. While comparing
alternatives is partially supported by this summarization of
alternatives, GenAl lacks true analytic reasoning for detailed
comparison beyond what it can summarize from training
material (meriting a — in Table I).

Most design sub-tasks rely on contextualization and objec-
tive analysis, running into the limitations of GenAl. Contex-
tualization of abstract design alternatives to system specifics
relies on high fidelity representations that must remain consis-
tent across multiple decisions, a trait that is not guaranteed by
the stochastic nature of GenAl, and objective analyses to rea-
son about system-specific consequences of design decisions.
Although GenAl can provide general suggestions based on the
“wisdom of the masses” derived from conclusions most widely
cited in the training corpus, it is poorly suited to drawing
context-specific conclusions.

C. Evaluating an Architecture

Architecture evaluation involves predicting whether a col-
lection of decisions will support the ASRs [13]. Predictions
can be qualitative (based on expert opinion) or quantitative
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(based on analytic models), the latter of which derive greater
benefit from automation. For this paper, we bias discussion
towards repeatable forms of evaluation that produce high
confidence results.

Evaluation is a detailed technical activity that requires
understanding how all decisions are allocated to elements,
relations, and properties within architecture views, reasoning
over the precise semantics of each decision, and interactions
among decisions. As such, most sub-tasks of evaluation rely
heavily on contextualization, high fidelity representation, and
some form of analytic reasoning, all of which are challeng-
ing concepts for GenAl. Mapping architecture decisions to
ASRs poses additional challenges because ASRs often lack
identifiers of specific interfaces or components, complicating
correlation with high fidelity architecture representations.

The most promising evaluation sub-steps for GenAl involve
preparation tasks, like enumerating decisions for inclusion in
the evaluation. Given availability of sufficiently rich source
material (documentation, decision records, or notes from de-
sign meetings), summarization helps to quickly identify the
presence of design concepts like patterns and tactics and elicit
nearby context from the source material. In practice, while
new decisions are often recorded, it can be more challenging
to identify material that contains prior decisions when evolving
an existing system, and effective evaluation needs to consider
both sets of decisions together.

D. Documenting an Architecture

Documentation is a necessary evil. Its essence is to con-
cisely capture architecture decisions and rationale with suffi-
cient clarity and detail to support the needs of stakeholders
like developers and test engineers [14]. It requires precision
and accuracy to convey an architect’s intent and ultimately
help ensure that the right software is built and deployed.

Use of GenAl is best aligned with the getting started
portions of documentation, such as providing textbook like
guidance for how to organize documentation, which views
and representations to use, and where each decision is best
conveyed (e.g., in a diagram or supporting text). Essentially,
GenAl can provide tutor-like guidance on how such decisions
are typically handled in publicly available examples.

Generating actual views, however, requires high fidelity
representation of project-specific decisions, using labels and
symbols that convey unambiguous semantics, and maintaining
consistency across views and their supporting text. This con-
textualization is poorly aligned with the predictive nature of
GenAl, as is the fact checking required to ensure consistency
across generated artifacts.

E. Reconstructing an Architecture

Recovering the architecture of existing software through
study of available artifacts is referred to as architecture recon-
struction [15]. The essence of this activity is analyzing artifacts
(primarily source code) to infer the architecture that they
realize, a task that typically requires judgment and expertise
to span the abstraction gap between architecture and code [1].

Reconstruction activities range from building a general idea
to constructing representations that allow architects to draw
precise conclusions about proposed changes. GenAl is more
helpful with the former. Summarization can be effective at
providing an overview of the concepts found in artifacts like
source code. For example, using GenAl to summarize a sys-
tem’s fault management strategy could result in a reasonable
list of exceptions that are raised. However, using GenAl to
summarize how the MVC pattern is employed could generate
a great deal of noise, as terms like model and view can be
widely used throughout a codebase with different meanings.

Architecture abstractions can be implemented in many dif-
ferent ways within the same programming language, let alone
across programming languages. Some concepts are imple-
mented directly by developers, while others are implemented
by libraries and frameworks. This diversity of options hampers
the effectiveness of GenAl’s ability to recognize and apply
patterns. Effectiveness of applying patterns or summarization
for such tasks is more often dependent on the choice of
names used in project artifacts, with more intentional use of
architecture terms and abstractions likely to yield more useful
results in practice.

While there is potential for extracting some architecture
information from artifacts, assembling that information into
a well-structure architecture view is a more challenging task,
as described in the discussion on documenting an architecture.
Assessing the correctness of generated architecture views is a
similarly poor fit for GenAl as it relies on fact checking and
subjective assessment of the captured architectural intent.

IV. DISCUSSION

Our analysis of the alignment between architecture activities
and GenAl in Section III clearly shows that expecting out-of-
the-box GenAl to solve automation challenges in architecting
is overly optimistic. However, researchers still have significant
opportunities ahead of them. Although some architecture re-
search has focused on automation, there remains significant
room to improve architecting workflows with automation.
GenAl provides an avenue to accelerate and refocus such
research, but the following criteria must guide efforts.

Is it aligned with competencies of GenAI? For example,
tasks that benefit from brainstorming and for which general

wisdom is available can take good advantage of that strength.

Can we compensate for the limitations of GenAI? For
example, GenAl makes mistakes, and some tasks are intolerant
of mistakes (e.g., reasoning tasks). What tools or approaches
can be paired with GenAl to produce acceptable results?

Can the underlying data problem be feasibly addressed? We
will risk overstating the obvious. Architecture lacks curated
data with clear, consistent semantics. Researchers must ask
whether existing data is adequate or new data can be generated.

Is the juice worth the squeeze? Proposed automation must

provide practical advantage over the status quo. Does GenAl

reduce total workflow effort (including compensating ap-
proaches) or produce better outcomes at acceptable cost?

To appear in 2025 IEEE 22nd International Conference on Software Architecture Companion (ICSA-C), 2025.



To go beyond low-hanging fruit applications, like brain-
storming (already readily available to architects), researchers
should consider the following directions:

1) Understand architects’ needs. Study the activities of
practicing architects, including where they spend their
time and which tasks would most benefit from automa-
tion. Target opportunities that promise big wins over those
promising incremental improvements.

2) Integrate GenAl with non-GenAl. Create workflows
that use the best approach (GenAl or non-GenAl) for
each sub-task. For example, discovering all inter-process
communication used within a system is important when
reconstructing an architecture. GenAl can help generate
an expanded set of concepts and APIs to search for
using more reliable search tools like those found in IDEs.
The pairing is better than either alone. Pairing of static
analysis and LLMs has already begun to show utility for
activities like refactoring [16].

3) Expand the scope of automation. Automation need not
be limited to solving a problem; GenAl can be helpful
in providing guidance on how to solve a problem. For
example, rather than using GenAl to determine whether
a project depends on a library like log4j, one could ask
GenAl how to make that determination. Results could
point to unfamiliar tools, online knowledge repositories,
or project artifacts that one could examine for an answer.

4) Improve the training corpus. Curation is needed to
create a robust corpus that includes diverse examples
described in consistent, semantically rich terms. Beyond
that, we can all do more. Many published articles provide
recommendations or conclusions (e.g., “use microser-
vices!”) without caveats. Intentional description of as-
sumptions improves the body of knowledge and generates
a more nuanced training corpus that can improve the
ability of GenAl to produce contextual results.

V. FUTURE PLANS

We are following this same advice in shaping a re-
search agenda in effective automation for architects, including
GenAl Our recent focus has been on helping teams realize
architecture-scale changes in code more efficiently. For ex-
ample, based on interview and survey data to identify tasks
that lack automation [3], we shifted focus from implementing
refactorings to generation of refactoring plans using a combi-
nation of search-based techniques and static analysis [17].

Similarly, we are studying how GenAl can help free projects
from dated programming languages (a hard barrier to mod-
ernization) in a new project. We are combining the promise
of GenAl to translate code in the small with static analyses
to preserve architectural connections and generate incremental
translation plans for large projects that enable incremental
validation.

In this paper, our goal in asking whether GenAl will fill
the automation gap in software architecting was to look at the
this challenge through a new lens. Our answer is a loud “not
by itself, but...” GenAl does provide opportunities to make

progress, but only if research focuses on the right problems.
We need to keep the big picture in mind and focus on activities
that are both amenable to automation and likely to result in
significant utility.
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