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Abstract—Researchers are aware that software architects lack 

effective automation to support much of their work. Generative 
AI (GenAI) is sparking research interest regarding its potential 
role in filling this gap, inspired by promising applications of 
GenAI to other software engineering activities. In this paper, we 
aim to reflect and sharpen this conversation from the vague “how 
can GenAI be applied to architecture” to “which architecture 
activities are most amenable to application of GenAI.” We stress 
the importance of considering contributions in the context of 
workflows and reflect on the alignment (or lack thereof) of 
GenAI with the nature of common architecture tasks through 
the discussion of five common architecture activities. We offer 
guiding criteria to assist architecture researchers in focusing on 
activities that are both amenable to automation and likely to 
obtain significant utility from GenAI. 

Index Terms—software architecture, generative AI, LLM, 
architecture decision making, software architecture automation, 
architecting workflows 

 
I. INTRODUCTION 

The rapid evolution of generative AI (GenAI) models, along 
with the tools and services built on them, is driving renewed 
excitement in software engineering to improve automation for 
a wide range of software engineering activities. The same 
is true for software architecture. Providing architects with 
effective automation to support architecting activities has been 
a longstanding challenge, significantly complicated by the 
abstraction gap between architecture and code [1]. The lack 
of effective automation can, in fact, be considered among the 
top challenges in software architecture [2] [3], one that has 
not received enough research emphasis. 

Today’s architects have limited, if any, effective automation 
to use either during architecting or after their initial realization, 
such as keeping documentation current and monitoring im- 
plementations for conformance with the architecture. Instead, 
they rely on a lot of manual effort and an ad hoc collection of 
general purpose tools such as IDEs, PowerPoint (the ultimate 
tool for architects!), spreadsheets, and static analyzers. 

GenAI is renewing hopes for better automation for ar- 
chitects, but creating tools that meet an appropriate mix of 
relevance, reliability, and utility remains a challenge. Architec- 
ture knowledge management has already received some early 
investigation [4]–[6]. However, preliminary findings on the use 
of GenAI assistants in software engineering suggest that while 

these tools can help, ideal improvements in productivity and 
quality are unlikely to stem solely from these tools [7]. Instead, 
meaningful progress will come from rethinking workflows and 
integrating expert judgment or non-AI tools with their use of 
GenAI. The case is no different for architecting. 

In this paper, we aim to sharpen research focus from the 
vague “how can GenAI be applied to architecture” to “which 
architecture activities are most amenable to application of 
GenAI” by reflecting on the alignment of GenAI and architec- 
ture activities. Where would automation be most beneficial for 
specific architecting activities? Which architecting activities 
naturally align with GenAI competencies? How can sufficient, 
high-quality data be accumulated to improve GenAI’s training 
corpus? What gaps need to be addressed through further 
software architecture research? The answers to these questions 
will involve effective and seamless orchestration of automation 
and human-in-the-loop workflows. This paper, by bringing the 
focus of attention to the architecting process and its automation 
challenges, aims to inspire a research roadmap for software 
architecture that can take advantage of GenAI where it is 
most appropriate, complementing it with other automation and 
practices to remove barriers. 

The remainder of this paper is structured as follows. Section 
II presents an overview of competencies and limitations of 
GenAI from the lens of architecture. Section III discusses how 
architecting activities align with GenAI. Section IV introduces 
fruitful directions for research in GenAI and architecting, and 
Section V lays out future directions and concludes the paper. 

II. UNPACKING GENAI 
GenAI models are deep neural networks trained on vast 

datasets (books, code, articles, images, websites, etc.) to 
identify and learn underlying patterns and relationships in 
their respective domains [8]. GenAI uses a probabilistic and 
randomized approach to select the ‘next token’ in its output 
sequence, which can mimic correctness and fluency for an end- 
user but can also lead to errors and omissions. Large language 
models (LLMs), GenAI models trained on textual data, have 
found application in software engineering due to their natural 
alignment with text-based inputs such as code [9]. 

Architecture research has faced several challenges for years: 
1) Publicly available documented architectures are scarce, 
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and examples differ significantly in form and semantics. 
Generating clean, consistent training data from this input 

requires significant effort. 2) Publicly available architectures 
skew towards small examples (e.g., open-source libraries) or 
highly precedented examples (e.g., web-based interfaces) over 
industry scale and unprecedented systems. 3) Validating the 
effectiveness of automation for several architecture activities 
relies on the subjective opinions of representative stakeholders, 
which is difficult to reflect in simulated or classroom exercises. 

GenAI research for architecture, with its reliance on high- 
quality training data exacerbates these challenges. This dis- 
connect suggests that architects should moderate their expecta- 
tions for the utility of today’s GenAI for architecting. However, 
architecture research can still achieve meaningful progress by 
focusing on alignment of GenAI’s competencies and limita- 
tions with the sub-tasks of architecting workflows. Tasks that 

align with limitations, such as analysis or problem solving, 
suggest a need to focus on compensating approaches that 

mitigate these limitations, such as static analyses, in-context 
learning, retrieval-augmentation generation (RAG), and other 
tools, to make integrated workflows useful in practice. 

A. Competencies of GenAI 
Brainstorming, summarization, and application of patterns 

are natural uses of GenAI that are also integral parts of many 
architecting activities. 

Brainstorming is an act of generating ideas or alternatives. 
When brainstorming, drawing on common wisdom is generally 
a helpful way to avoid missing ideas, as long as the signal-to- 
noise ratio is reasonable. GenAI models help brainstorming 
because they have been trained on data such as common 
descriptions of systems, technologies, and requirements. 

Summarization involves expressing the most important 
ideas in a clear and concise way. For example, providing a list 
of transaction types mentioned in a requirements document 
and classifying requirements into categories (e.g., quality 
attributes) are two forms of summarization. GenAI works well 
for summarization because in addition to being trained on 
very large amounts of data, their models take into account 
the context of surrounding text. 

Applying patterns is conversion of potentially unstructured 
inputs to well-formed outputs. Several activities apply patterns, 
such as converting problem domain descriptions to architec- 
turally significant requirements (ASRs) expressed as quality 
attribute scenarios. Code generation also relies on pattern 
matching. Theoretically, multi-modal GenAI could generate 
code to match visual diagrams and vice versa [10], but quality 
of the output for architecture will depend on contextualization 
and availability of a higher-quality training corpus. 

B. Limitations of GenAI 
Many architecting activities involve conceptual reasoning 

such as applying abstractions in context, comparing and ana- 
lyzing options, and reasoning about collections of decisions. 
Successfully performing these activities is highly dependent 
on system context and requires combinations of analytical 

reasoning models to draw objective conclusions, subjective 
assessment, contextualization, high-fidelity representation, and 
fact checking, none of which are natural uses of GenAI. 

Objective analysis applies some kind of analytic model 
(e.g., queueing theory or dependency analysis) to generate 
results that are categorically true or false, without room 
for opinion. Given robust quantitative models, accuracy or 
correctness of results is achievable and repeatable. Objective 
analysis is neither a pattern matching activity nor probabilistic, 
hence a misfit for GenAI. 

Subjective assessment is a form of analysis whose focus 
is generating answers to represent the opinions of subject 
matter experts (SMEs), such as their priorities. Predictions of 
a GenAI model might accidentally match a subjective opinion, 
but there is little reason to believe that this would be consistent. 
Local training or fine-tuning could help (e.g., getting to know 
SME personalities based on prior projects), but extrapolation 
of opinions in one context to another is dubious. 

Contextualization is projection of architecture knowledge 
onto a high-fidelity representation that is appropriate for the 
given context. For example, using the publish/subscribe pattern 
is a general decision. Determining which specific communica- 
tion paths within a system of hundreds of components employ 
publish/subscribe and which do not involves analysis of a 
complete communication topology. GenAI does not support 
such high-fidelity representation. 

Fact checking involves reporting objective information 
about an input or determining whether a statement is objec- 
tively true. For example, determining whether a list of API 
changes accompanying a new version of a library is correct and 
complete is a fact checking problem. There is an objectively 
correct answer, based on examination of the old and new 
versions of that library’s API. Even if GenAI is provided with 
the correct inputs (e.g., for summarization), it will not create 
the same response every time. The need to fact check the fact 
check undermines practical value. 

Early research findings are aligned with this discussion. 
For example, Jahic and Sami report from their industry 
study [11] that ChatGPT 4 mixed high-level and low-level 
architecture concepts inappropriately and missed the hierarchy 
and dependencies among components. However, the architects 
interviewed appreciated the brainstorming help in identifying 
the requirements and design patterns they had not considered. 

III. ARCHITECTING ACTIVITIES AND GENAI 
In this section, we describe five common architecture activ- 

ities and their alignment with GenAI. For each, we identify 
common sub-tasks and challenges to their execution. Note that 

this discussion is not intended to depict a specific process or 
flow. It simply exemplifies the work conducted in the course of 
architecting software to highlight opportunities for automation. 

Table I presents the sub-tasks and a rough assessment of 
the GenAI fit for each. The authors independently reviewed 
each sub-task based on the competencies and limitations sum- 

marized in Section II before consolidating their assessments. 
We erred on the generous side by assuming that suitable inputs 
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are available to each activity and that end-users have sufficient 
knowledge and experience to execute the activities effectively. 
We do anticipate changes to some of these assessments as 
GenAI evolves. This assessment focuses on approximating the 
current state, not predicting the future. 

 
TABLE I 

COMMON ARCHITECTURE ACTIVITIES 
 

Activity Sub-tasks GenAI 
Fit 

Define ASRs Identify relevant stakeholders + 

Identify stakeholders’ concerns + 

Generate well-formed ASRs + 

Assess correctness & relevance of ASRs -- 

Assess coverage of qualities and 
stakeholder concerns across ASRs 

- 

Prioritize ASRs -- 

Design an 
architecture 

Identify collection of decisions needed + 

Identify dependencies among decisions - 

Identify alternatives + 

Compare alternatives (in general) - 

Select and refine alternative (e.g., place a 
decision in system context) 

-- 

Assess goodness of alternative in context -- 

Prototype to support comparison and 
assessment of alternatives 

+ 

Evaluate an 
architecture 

Enumerate new architecture decisions + 

Enumerate prior architecture decisions + 

Align decisions with their placement in the 
architecture 

-- 

Identify any conflicts among decisions -- 

Assess satisfaction of each ASR -- 

Document an 
architecture 

Enumerate architecture decisions + 

Decide on best representation for each 
decision (e.g., diagrams or prose) 

+ 

Decide on best view(s) for each decision + 

Generate views and supporting text -- 

Determine which decisions merit rationale -- 

Generate rationale + 

Reconstruct an 
architecture 

Extract facts from artifacts - 

Identify architecture abstractions from facts + 

Assemble architecture views -- 

Test correctness of architecture views -- 
 
 

A. Defining Architecturally Significant Requirements (ASRs) 
Defining ASRs is typically a human-centered activity that 

involves engaging stakeholders to elicit their needs, understand 
their priorities, and reconcile their differences [12]. The core 
automation challenge is that acceptable results depend on the 
subjective opinions of stakeholders rather than any analytic 
theory that can be programmed. 

Several ASR sub-tasks can exploit competencies of GenAI 
(noted with + in Table I). Sub-tasks like identifying types 
of stakeholders or their common concerns align with the 
brainstorming competency of GenAI. GenAI responses that 

reflect common answers can provide helpful starting points or 
missing topics to an architect [11]. While these suggestions 
may not be correct or precise with respect to organizational 
specifics, they are easily reviewable by an architect. 

Other sub-tasks require representation of stakeholders’ sub- 
jective and perhaps idiosyncratic opinions (noted with -- in 
Table I). For example, while a starting point for an ASR might 
be a latency requirement for generating a report, assessing the 
correctness of an ASR requires assessing whether a specific 
quantified goal makes sense for that system (N seconds, 
minutes, or hours). This work is more reliant on subjective 
assessment than on summarization of common knowledge 
available in a training corpus, and its effectiveness is signifi- 
cantly hampered by the limitations of GenAI. 

Assessing the quality and coverage of ASRs is a mixed 
case (noted with - in Table I). An aspect of this sub-task 
is categorizing ASRs in one or more dimensions (e.g., by 
quality attribute), which is a reasonable match to GenAI’s 
summarization competency. However, determining whether 
enough ASRs exist for each category is another task that is 
more reliant on subjective assessment. 

B. Designing an Architecture 
To design an architecture, an architect needs to make a 

collection of decisions that collectively satisfy the ASRs. This 
technical activity involves refining general decisions (e.g., 

deploy in the cloud) to system-specific details (e.g., which 
services will be replicated and what protocols will be used for 
run-time interactions) and system-specific conclusions (e.g., a 
good decision for one system can be an awful one for another). 

Multiple design sub-tasks can productively exploit the brain- 
storming potential of GenAI. Responses that provide general 

advice, including advantages and disadvantages, on common 
decisions and alternatives are useful starting points. GenAI 

can also suggest alternatives that are most commonly related 
to those used in systems with similar ASRs. While comparing 
alternatives is partially supported by this summarization of 

alternatives, GenAI lacks true analytic reasoning for detailed 
comparison beyond what it can summarize from training 
material (meriting a - in Table I). 

Most design sub-tasks rely on contextualization and objec- 
tive analysis, running into the limitations of GenAI. Contex- 
tualization of abstract design alternatives to system specifics 
relies on high fidelity representations that must remain consis- 
tent across multiple decisions, a trait that is not guaranteed by 
the stochastic nature of GenAI, and objective analyses to rea- 
son about system-specific consequences of design decisions. 
Although GenAI can provide general suggestions based on the 
“wisdom of the masses” derived from conclusions most widely 
cited in the training corpus, it is poorly suited to drawing 
context-specific conclusions. 

C. Evaluating an Architecture 
Architecture evaluation involves predicting whether a col- 

lection of decisions will support the ASRs [13]. Predictions 
can be qualitative (based on expert opinion) or quantitative 
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(based on analytic models), the latter of which derive greater 
benefit from automation. For this paper, we bias discussion 
towards repeatable forms of evaluation that produce high 
confidence results. 

Evaluation is a detailed technical activity that requires 
understanding how all decisions are allocated to elements, 
relations, and properties within architecture views, reasoning 
over the precise semantics of each decision, and interactions 
among decisions. As such, most sub-tasks of evaluation rely 
heavily on contextualization, high fidelity representation, and 
some form of analytic reasoning, all of which are challeng- 
ing concepts for GenAI. Mapping architecture decisions to 
ASRs poses additional challenges because ASRs often lack 
identifiers of specific interfaces or components, complicating 
correlation with high fidelity architecture representations. 

The most promising evaluation sub-steps for GenAI involve 
preparation tasks, like enumerating decisions for inclusion in 
the evaluation. Given availability of sufficiently rich source 
material (documentation, decision records, or notes from de- 
sign meetings), summarization helps to quickly identify the 
presence of design concepts like patterns and tactics and elicit 
nearby context from the source material. In practice, while 
new decisions are often recorded, it can be more challenging 
to identify material that contains prior decisions when evolving 
an existing system, and effective evaluation needs to consider 
both sets of decisions together. 

D. Documenting an Architecture 
Documentation is a necessary evil. Its essence is to con- 

cisely capture architecture decisions and rationale with suffi- 
cient clarity and detail to support the needs of stakeholders 
like developers and test engineers [14]. It requires precision 
and accuracy to convey an architect’s intent and ultimately 
help ensure that the right software is built and deployed. 

Use of GenAI is best aligned with the getting started 
portions of documentation, such as providing textbook like 
guidance for how to organize documentation, which views 
and representations to use, and where each decision is best 
conveyed (e.g., in a diagram or supporting text). Essentially, 
GenAI can provide tutor-like guidance on how such decisions 
are typically handled in publicly available examples. 

Generating actual views, however, requires high fidelity 
representation of project-specific decisions, using labels and 
symbols that convey unambiguous semantics, and maintaining 
consistency across views and their supporting text. This con- 
textualization is poorly aligned with the predictive nature of 
GenAI, as is the fact checking required to ensure consistency 
across generated artifacts. 

E. Reconstructing an Architecture 
Recovering the architecture of existing software through 

study of available artifacts is referred to as architecture recon- 
struction [15]. The essence of this activity is analyzing artifacts 
(primarily source code) to infer the architecture that they 
realize, a task that typically requires judgment and expertise 
to span the abstraction gap between architecture and code [1]. 

Reconstruction activities range from building a general idea 
to constructing representations that allow architects to draw 
precise conclusions about proposed changes. GenAI is more 
helpful with the former. Summarization can be effective at 
providing an overview of the concepts found in artifacts like 
source code. For example, using GenAI to summarize a sys- 
tem’s fault management strategy could result in a reasonable 
list of exceptions that are raised. However, using GenAI to 
summarize how the MVC pattern is employed could generate 
a great deal of noise, as terms like model and view can be 
widely used throughout a codebase with different meanings. 

Architecture abstractions can be implemented in many dif- 
ferent ways within the same programming language, let alone 
across programming languages. Some concepts are imple- 
mented directly by developers, while others are implemented 
by libraries and frameworks. This diversity of options hampers 
the effectiveness of GenAI’s ability to recognize and apply 
patterns. Effectiveness of applying patterns or summarization 
for such tasks is more often dependent on the choice of 
names used in project artifacts, with more intentional use of 
architecture terms and abstractions likely to yield more useful 
results in practice. 

While there is potential for extracting some architecture 
information from artifacts, assembling that information into 
a well-structure architecture view is a more challenging task, 
as described in the discussion on documenting an architecture. 
Assessing the correctness of generated architecture views is a 
similarly poor fit for GenAI as it relies on fact checking and 
subjective assessment of the captured architectural intent. 

 
IV. DISCUSSION 

Our analysis of the alignment between architecture activities 
and GenAI in Section III clearly shows that expecting out-of- 
the-box GenAI to solve automation challenges in architecting 
is overly optimistic. However, researchers still have significant 
opportunities ahead of them. Although some architecture re- 
search has focused on automation, there remains significant 
room to improve architecting workflows with automation. 
GenAI provides an avenue to accelerate and refocus such 
research, but the following criteria must guide efforts. 

Is it aligned with competencies of GenAI? For example, 
tasks that benefit from brainstorming and for which general 
wisdom is available can take good advantage of that strength. 

Can we compensate for the limitations of GenAI? For 
example, GenAI makes mistakes, and some tasks are intolerant 
of mistakes (e.g., reasoning tasks). What tools or approaches 
can be paired with GenAI to produce acceptable results? 

Can the underlying data problem be feasibly addressed? We 
will risk overstating the obvious. Architecture lacks curated 
data with clear, consistent semantics. Researchers must ask 
whether existing data is adequate or new data can be generated. 

Is the juice worth the squeeze? Proposed automation must 
provide practical advantage over the status quo. Does GenAI 

reduce total workflow effort (including compensating ap- 
proaches) or produce better outcomes at acceptable cost? 
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To go beyond low-hanging fruit applications, like brain- 
storming (already readily available to architects), researchers 
should consider the following directions: 

1) Understand architects’ needs. Study the activities of 
practicing architects, including where they spend their 
time and which tasks would most benefit from automa- 
tion. Target opportunities that promise big wins over those 
promising incremental improvements. 

2) Integrate GenAI with non-GenAI. Create workflows 
that use the best approach (GenAI or non-GenAI) for 
each sub-task. For example, discovering all inter-process 
communication used within a system is important when 
reconstructing an architecture. GenAI can help generate 
an expanded set of concepts and APIs to search for 
using more reliable search tools like those found in IDEs. 
The pairing is better than either alone. Pairing of static 
analysis and LLMs has already begun to show utility for 
activities like refactoring [16]. 

3) Expand the scope of automation. Automation need not 
be limited to solving a problem; GenAI can be helpful 
in providing guidance on how to solve a problem. For 
example, rather than using GenAI to determine whether 
a project depends on a library like log4j, one could ask 
GenAI how to make that determination. Results could 
point to unfamiliar tools, online knowledge repositories, 
or project artifacts that one could examine for an answer. 

4) Improve the training corpus. Curation is needed to 
create a robust corpus that includes diverse examples 
described in consistent, semantically rich terms. Beyond 
that, we can all do more. Many published articles provide 
recommendations or conclusions (e.g., “use microser- 
vices!”) without caveats. Intentional description of as- 
sumptions improves the body of knowledge and generates 
a more nuanced training corpus that can improve the 
ability of GenAI to produce contextual results. 

V. FUTURE PLANS 
We are following this same advice in shaping a re- 

search agenda in effective automation for architects, including 
GenAI. Our recent focus has been on helping teams realize 
architecture-scale changes in code more efficiently. For ex- 
ample, based on interview and survey data to identify tasks 
that lack automation [3], we shifted focus from implementing 
refactorings to generation of refactoring plans using a combi- 
nation of search-based techniques and static analysis [17]. 

Similarly, we are studying how GenAI can help free projects 
from dated programming languages (a hard barrier to mod- 
ernization) in a new project. We are combining the promise 
of GenAI to translate code in the small with static analyses 
to preserve architectural connections and generate incremental 
translation plans for large projects that enable incremental 
validation. 

In this paper, our goal in asking whether GenAI will fill 
the automation gap in software architecting was to look at the 
this challenge through a new lens. Our answer is a loud “not 
by itself, but...” GenAI does provide opportunities to make 

progress, but only if research focuses on the right problems. 
We need to keep the big picture in mind and focus on activities 
that are both amenable to automation and likely to result in 
significant utility. 
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