Carnegie Mellon University
Software Engineering Institute

Software Bill of Materials (SBOM)
Harmonization Plugfest 2024

David Tobar

Jessie Jamieson
Mark Priest

Sasank Vishnubhatla
Jason Fricke

July 2025

SPECIAL REPORT
CMU/SEI-2025-SR-002
DOI: 10.1184/R1/28893080

CERT® Division

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited dis-
tribution.

https://www.sei.cmu.edu

A\

Design: REV-03.18.2016.0 | Template: Design: REV-03.18.2016.0 | Template: 01.23.2025

https://doi.org/10.1184/R1/28893080
https://www.sei.cmu.edu/

Copyright 2025 Carnegie Mellon University.

This material is based upon work funded and supported by the Department of Homeland Security under Con-
tract No. FA8702-15-D-0002 with Carnegie Mellon University for the operation of the Software Engineering
Institute, a federally funded research and development center sponsored by the United States Department of
Defense.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be con-
strued as an official Government position, policy, or decision, unless designated by other documentation.

References herein to any specific entity, product, process, or service by trade name, trademark, manufac-
turer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by
Carnegie Mellon University or its Software Engineering Institute nor of Carnegie Mellon University - Software
Engineering Institute by any such named or represented entity.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE
MATERIAL IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO
WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT
NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR
RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT
MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK,
OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribu-
tion. Please see Copyright notice for non-US Government use and distribution.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. Re-
quests for permission for non-licensed uses should be directed to the Software Engineering Institute at per-
mission@sei.cmu.edu.

CERT® is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

DM25-0672

CMU/SEI-2025-SR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Table of Contents

Executive Summary

Abstract
1 Introduction
1.1 Task

1.2 Background
1.2.1 SBOM Background
1.2.2 SBOM Plugfest Background

2 The Plugfest Process

2.1 About the Plugfest

2.2 Submission Instructions

2.3 Methodology
2.3.1 SBOM Analysis Tools
2.3.2 Software Target Dependency Inspection
2.3.3 Evaluation Criteria
2.3.4 Baseline SBOMs
2.3.5 SBOM Depth and Breadth

3 Summary of SBOM Submissions
4 SBOM Depth Analysis
5 Findings

6 Recommendations
6.1 Recommendations for SBOM Minimum Elements
6.2 Recommendations for SBOM Harmonization
6.3 Recommendations for Future Research
6.4 Recommendations for Improving Future Plugfests

Appendix: Detailed SBOM Reviews by Software Target

Bibliography

CMU/SEI-2025-SR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

=

<

WNN-_2 =

©CoOooooon MDA

11

14

16

19
19
19
21
22

24

47

List of Figures

Figure 1:

Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:

Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:
Figure 19:
Figure 20:
Figure 21:
Figure 22:
Figure 23:
Figure 24:
Figure 25:
Figure 26:
Figure 27:
Figure 28:
Figure 29:

CMU/SEI-2025-SR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Example Dependency Tree lllustrating Target Software Dependencies, Depth, and Breadth

SBOMs Submitted per Target

Distribution of Submitted SBOMs by Standard and Format
Dependency Tree Generated from Two Hexyl SBOMs
HTTPie Submissions by Type

HTTPie Component Commonality

HTTPie Baseline SBOM Component Commonality
NodeJS Submissions by Type

NodeJS-goof Component Commonality

NodeJS-goof Baseline SBOM Component Commonality
MineColonies Submissions by Type

MineColonies Component Commonality

Gin Submissions by Type

Gin Component Commonality

Gin Baseline SBOM Component Commonality
Dependency Track Submissions by Type

Dependency Track Component Commonality
Dependency Track Baseline SBOM Component Commonality
PHPMailer Submissions by Type

PHPMailer Component Commonality

jq Submissions by Type

jq Component Commonality

jq Baseline SBOM Component Commonality

OpenCV Submissions by Type

OpenCV Component Commonality

OpenCV Baseline SBOM Component Commonality
Hexyl Submissions by Type

Hexyl Component Commonality

Hexyl Baseline SBOM Component Commonality

10
1"
12
22
24
26
26
27
29
29
30
31
32
33
33
34
36
37
38
39
40
41
41
42
43
43
44
45
45

List of Tables

Table 1: Software Targets

Table 2: Submission Instructions for the Plugfest

Table 3: Evaluation Criteria for SBOMs

Table 4: Minimum SBOM Elements Mapped to Existing Formats
Table 5: Distribution of JSON SBOMs

Table 6: Distribution of XML and YML SBOMs

Table 7: Depth Calculations for Submitted SBOMs and Baseline SBOMs, by Type, Target, and
Format

Table 8: Review of Minimum Elements for Submitted and Baseline SBOMs
Table 9: Distribution of HTTPie SBOMs

Table 10: NodeJS-goof Dependencies by Inspection

Table 11: MineColonies Dependencies by Inspection

Table 12: Gin Dependencies by Inspection

Table 13: Dependency Track Dependencies by Inspection

Table 14: PHPMailer Dependencies by Inspection

Table 15: jg Dependencies by Inspection

Table 16: Hexyl Dependencies by Inspection

CMU/SEI-2025-SR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

N
w N 00 N b~ w

N

18
25
27
30
32
34
38
40
44

Executive Summary

In this report, we at the Software Engineering Institute (SEI) describe the research findings and
recommendations that resulted from SBOM Harmonization Plugfest 2024. The SEI organized and
managed the Plugfest and conducted research into software bills of material (SBOMs) in support
of the Cybersecurity and Infrastructure Security Agency (CISA).

The SEI’s SBOM research included analyzing the differences among SBOMSs and identifying the
root causes of those differences.

We held the Plugfest to help vendors, standards producers, and the SBOM community understand
how differences in how SBOMs are generated can result in different SBOM outputs. By gaining a
better understanding of what causes these differences, we hope to recommend ways to ensure
more predictable and higher quality SBOMs.

The SEI hosted a public meeting on November 19, 2024 to kick off the Plugfest. The Plugfest’s
SBOM submission phase—when we accepted SBOMs from prospective participants—Iasted until
December 15, 2024. This phase was followed by the research phase, which lasted through March
2025.

This report contains six major sections:

o Section 1: We introduce the Plugfest project, including background about the Plugfest pro-
cess and SBOMs in general.

o Section 2: We provide a more detailed explanation of how we managed the Plugfest, the
goals we established for it, our methodology, the analysis tools we used and developed, and
the criteria we used to evaluate the SBOMs. We also provide a short description of the
SBOMs we generated to establish a baseline for comparison.

e Section 3: We provide an overview of the SBOMs submitted by Plugfest participants.

o Section 4: We provide overall metrics that represent the depth and structure of the SBOMs
we received. (We provide in-depth reviews of the metrics for each software target in the Ap-
pendix.)

e Section 5: We provide our findings from this research effort.

e Section 6: We provide our recommendations based on lessons learned. These recommenda-

tions include those related to SBOM harmonization, future research, and future SBOM
Plugfests.

We received 243 SBOMs from the 21 Plugfest participants, which covered the nine Plugfest soft-
ware targets. Notable findings from the Plugfest include the following:

1. We found significant variance in both the number of components and the content of the min-
imum required elements in SBOMs from different participants for the same software at the
same lifecycle phase.

2. We found that some variance in SBOM content is due to the lack of normalization; the same

content was simply being written differently (e.g., software version detailed as v 2.0 or just
2.0).

CMU/SEI-2025-SR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY iv
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

3. We discovered that some variance in SBOM content is due to differences in whether partici-
pants included minimum elements or not, which may be due to the somewhat artificial nature
of generating SBOMs for a research project.

4. The wide variety of SBOM use cases may also be responsible for the lack of harmonization
across SBOMs, even for those generated for the same target. Perhaps if we had specified
purposes for each use case, participants may have taken a more harmonized approach to how
they generated, enriched, and/or augmented their SBOMs for that use case.

Some participants interpreted the meaning of the term dependency differently than others,
and those differences affected what they included in the SBOM. Some participants’ SBOM
submissions included dependencies of first-party components that are not typically deployed,
such as target documentation build tools, Continuous Integration and Continuous Deploy-
ment (CI/CD) pipeline components, and optional language bindings. We found that some
differences in submitted SBOMs were because participants targeted different use cases, not
necessarily because a tool was unable to discover dependencies. The variance in the depth of
SBOMs for the same target also indicates that participants’ expectations varied about the lev-
els of transparency their SBOM should provide.

5. Participants used different approaches to generate their Build SBOMs, which led to differ-
ences in the components discovered. Some participants used a container build process to
generate their Build SBOM, and others built a standalone executable for their chosen
runtime environment using the target’s language or build-framework-specific process. Build
SBOMs also varied based on the environment and tool configurations each participant used.

6. Insome cases, participants used different approaches to generate their Source SBOMs.
Source SBOMs capture dependencies declared or inferred from source code. Some partici-
pants used additional information from external locations, such as the artifact repositories
referenced by dependencies or the contents of platform toolchain libraries to infer additional
dependencies.

See Section 5 for details about our findings and Section 6 for details about our recommendations.

To enable further research, the SEI is hosting a repository of SBOMs submitted by Plugfest par-
ticipants who agreed to make their SBOMs public.! We expect lessons learned from the Plugfest
will be useful to SBOM vendors, standards producers, and the SBOM community.

! The SBOM Plugfest 2024 repository is being hosted on GitHub at https://github.com/cmu-sei/sbom-plugfest-
2024.

CMU/SEI-2025-SR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY v
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

https://github.com/cmu-sei/sbom-plugfest-2024
https://github.com/cmu-sei/sbom-plugfest-2024

Abstract

This report describes the research findings and recommendations that resulted from the 2024
SBOM Harmonization Plugfest research project. The Software Engineering Institute (SEI) project
team managed the Plugfest and conducted research into the submitted software bills of material
(SBOMs) in support of Cybersecurity and Infrastructure Security Agency (CISA). In this project,
the SEI focused on understanding how differences in SBOM generation can result in different
SBOM outputs. After gaining a better understanding of what causes these differences, the SEI
project team developed recommendations for organizations to ensure more predictable and higher
quality SBOMs. This report contains six major sections: an introduction, an explanation of the
SBOM Plugfest process, an overview of SBOM submissions from participants, a description of
the SEI project team’s analysis, the team’s findings, and the team’s recommendations.

CMU/SEI-2025-SR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY Vi
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

1 Introduction

We are Software Engineering Institute (SEI) researchers studying software bills of material
(SBOMs). Our goal for this research is to support the harmonization of SBOM implementation. In
this report, we describe our findings and recommendations that resulted from SBOM Harmoniza-
tion Plugfest 2024.

1.1 Task

The SEI organized and managed the Plugfest to support the Cybersecurity and Infrastructure Se-
curity Agency (CISA), which sponsored the SEI’s SBOM research. A plugfest event allows par-
ticipants to demonstrate and test the interoperability of their tools to continually meet evolving
technical standards.

We designed the Plugfest to help vendors, standards producers, and the SBOM community under-
stand how differences in SBOM generation can result in different SBOM outputs. Analyzing a
piece of software at the same point in its lifecycle should produce similar SBOMs. However, it is
common for different SBOM tools to generate divergent SBOM results, which can undermine the
confidence users have in SBOMs. We did not intend the Plugfest to be a competition or “bake-
off” between SBOM producers. Rather, we intended this Plugfest to enable us to evaluate how
much variance or commonality in SBOMs occurs for the same software when different partici-
pants (e.g., industry, private sector, academia) use different tools to generate them.

We officially announced the Plugfest on the SEI’s social media channels on November 8, 2024.
We subsequently held a public kickoff meeting on November 19, 2024, to provide additional de-
tails about the Plugfest and answer questions from interested parties. We gave interested parties
until December 15, 2024, to elect to participate in the Plugfest by submitting at least two SBOMs.
We then performed the following:

o analyzed the submitted SBOMs
o outbriefed the participants
o produced a report for CISA that described our Plugfest research

We designed the Plugfest to help SBOM practitioners (e.g., producers, consumers) learn about
what causes differences in SBOMs for the same software target at the same stage of the software
lifecycle (e.g., Source, Build).? Once we better understood what causes these differences, we
formed recommendations to help the community generate more predictable and higher quality
SBOMs. (See Section 6 for details.)

2 CISA describes various SBOM types, including Build and Source, in Types of Software Bill of Material (SBOM)
Documents [CISA 2023].

CMU/SEI-2025-SR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 1
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Our SBOM research includes analyzing the differences that appear among SBOMs and the root
causes of those differences. These root causes include imprecise definitions or standards, how un-
certainty is addressed, and other implementation decisions.

1.2 Background

An SBOM is “a formal, machine-readable inventory of software Components and Dependencies,
information about those Components, and their relationships. An SBOM’s inventory should be as
comprehensive as possible and should explicitly state where relationships cannot be articulated”
[CISA 2024].

1.21 SBOM Background

The predecessor of the SBOM—the bill of materials (BOM)—was first used in World War I,
when the scarcity of materials led to more efficient methods of managing materials. While BOMs
can include software components, the SBOM specifically focuses on software, including identify-
ing libraries, dependencies, and versions.

In 2019, the U.S. National Telecommunications and Information Administration (NTIA) pub-
lished the first version of Framing Software Component Transparency: Establishing a Common
Software Bill of Materials (SBOM) [CISA 2024]. This publication was a product of the NTIA
Multistakeholder Process on Software Component Transparency Framing Working Group. That
group’s stated goal was creating “a model for software component information that can be univer-
sally and transparently shared across industry sectors” [NTIA 2024a]. The second version of this
publication, released in 2021, added required SBOM attributes and CycloneDX as an SBOM for-
mat.

The Department of Commerce (DOC) published The Minimum Elements for a Software Bill of
Materials (SBOM) on July 12,2021 [DOC 2021].3 This DOC publication defines the minimum
elements for an SBOM. These minimum elements address three base use cases: vulnerability
management, software inventory, and software licenses. The three broad categories of minimum
elements that support these use cases are data fields, automation support, and practices and pro-
cesses.

NTIA identifies three key SBOM data exchange formats: Software Package Data eXchange
(SPDX®), CycloneDX, and National Institute of Standards and Technology’s (NIST’s) Software
Identification (SWID) Tagging [NTIA 2021a]. (Only SPDX and CycloneDX are considered com-
plete SBOM formats.)

The Linux Foundation created SPDX, a project it hosted as part of its Open Source Compliance
Program as a data exchange format to enable information sharing about software packages. This
format is now ISO/IEC 5962:2021 Information Technology—SPDX® Specification, an interna-

tionally recognized data format standard for communicating the component and metadata infor-
mation associated with software packages [ISO/IEC 2021]. SPDX inventories software

8 Executive Order 14028, Improving the Nation’s Cybersecurity, directed the DOC, in coordination with NTIA, to
publish the minimum elements for an SBOM [White House 2021]

CMU/SEI-2025-SR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 2
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

components, license and copyright information, and security references. The current Linux Foun-
dation version of SPDX is 3.0.

The Open Worldwide Application Security Project (OWASP) Foundation created CycloneDX to
be used with OWASP Dependency-Track, “an intelligent component analysis platform that allows
organizations to identify and reduce risk in the software supply chain” [OWASP 2025a, 2025b].
CycloneDX v1.6 has been ratified as an Ecma International standard. CycloneDX may be used as
a global xBOM standard across multiple domains, including software, services, hardware, firm-
ware, artificial intelligence, machine learning, and cryptography [OWASP 2024].

1.2.2 SBOM Plugfest Background

This SBOM Plugfest followed in the footsteps of previous SBOM plugfests. Those plugfests also
relied on participation from volunteers who contributed their “sweat equity” by submitting
SBOMs for specified software targets. Volunteers in NTIA’s Software Component Transparency
initiative facilitated the first SBOM Plugfest, which was held on April 9, 2021. It focused on
SBOM generation and consumption. At that Plugfest, organizers selected four software targets,
and 13 organizations submitted SBOMs.*

Volunteers from the Organization for the Advancement of Structured Information Standards
(OASIS) managed the second Plugfest, which was held on June 22, 2021. At the second Plugfest,
organizers expanded on the set of four software targets from the initial Plugfest with an additional
five targets.>

For more information about the first SBOM Plugfest, see the SBOM Plugfest | Summary on Google Docs [NTIA

2025].

5 For more information about the second Plugfest, see the Plugfest #2 information on Google Drive [OASIS
2021].

CMU/SEI-2025-SR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 3

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

2 The Plugfest Process

In this section, we describe how we managed the Plugfest, the detailed instructions we provided to
participants submitting SBOMs, and the methodology we used to extract information from the
SBOMs, including SBOM analysis tools, software target dependency inspection, evaluation crite-
ria, the baseline SBOMs we used for comparison, and the calculations of the depth and breadth of
the SBOMs we received.

2.1 About the Plugfest

As part of managing the Plugfest, we asked the SBOM community to contribute SBOMs that they
generated based on specified software targets. We selected seven software targets (i.e., the first
seven targets in Table 1) as an initial representative sample of various programming languages
and processes. We deliberately selected these software targets to explore trends in SBOM agree-
ment and divergence in correlation with various attributes of software packages and libraries.
Based on community feedback, we added two more software targets—PHPMailer and jq (repre-
senting PHP and C)—for a total of nine final targets. See Table 1 for details about the nine speci-
fied targets.

We provided directions to the SBOM community that specified the exact software package and
package version that participants would use to develop SBOMs for each target. These specifica-
tions ensured that all participants based their SBOMs on the same sources.

We conducted an initial virtual meeting with interested parties to review Plugfest processes, direc-
tions, and expectations. We approved to participate in the Plugfest any interested parties who in-
vested their time and effort using their SBOM tools to generate and submit at least two SBOMs
for any of the nine software targets.

We gave volunteer participants until December 15, 2024, to submit SBOMs for the target soft-
ware. We asked these participants to generate Build and/or Source SBOMs in standard data for-
mats (SPDX or CycloneDX). In late January 2025, we held a session to review our initial analysis
results with Plugfest participants.

At the end of the Plugfest research project, we asked Plugfest participants to approve making their
SBOM submissions public. Those SBOMs are now available for further research on the SEI’s
GitHub® site.®

6 The SBOM Plugfest 2024 repository is being hosted on GitHub at https://github.com/cmu-sei/sbom-plugfest-

2024.

CMU/SEI-2025-SR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 4
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

https://github.com/cmu-sei/sbom-plugfest-2024
https://github.com/cmu-sei/sbom-plugfest-2024

Table 1: Software Targets

Software Version (GitHub) Language For More Information What does the project do?
(GitHub)

NodeJS-goof Commit d240896 2023 JavaScript Snyk Labs A vulnerable Node.js demo application based on the Dreamers Lab
tutorial

HTTPie Commit f4cf43e July 2024 Python HTTPie cli HTTPie for Terminal

MineColonies Commit 7¢184da-Oct 2024 Java minecolonies An interactive building mod that allows you to create a town within
Minecraft

OpenCV Commit 3919f33 17 Oct, 2024 C++ OpenCV An Open-Source Computer Vision Library

Gin Commit: f05f966 Sept 2024 Go Gin-Gonic An HTTP web framework written in Go (Golang)

Hexyl Commit 427a552 Sept 2024 Rust sharkdp A command-line hex viewer

Dependency Track 4.12.1 - 25 Oct, 2024 OCl - Java’ Dependency-Track An intelligent Component Analysis platform that allows organizations

to identify and reduce risk in the software supply chain and leverages
SBOMs to provide capabilities that traditional Software Composition
Analysis (SCA) solutions cannot achieve

PHPMailer Commit 182f7b9 - 15 Oct, 2024 PHP PHPMailer The classic email-sending library for PHP that is a full-featured email
creation and transfer class for PHP

ja Commit 96e8d89-20 Nov, 2024 C jalang/iq A lightweight and flexible command-line JSON processor

7 OCI stands for Oracle Cloud Infrastructure.

CMU/SEI-2025-SR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

https://github.com/snyk-labs/nodejs-goof/commit/d240896711e31c540fc1cab79ae2e4cf63f00b1a
https://github.com/snyk-labs/nodejs-goof
https://github.com/httpie/cli/commit/f4cf43ecdd6c5c52b5c4ba91086d5c6ccfebcd6d
https://github.com/httpie/httpie
https://github.com/ldtteam/minecolonies/commit/7c184da03403649da9d2aec2194440f86c3a3c66
https://github.com/ldtteam/minecolonies
https://github.com/opencv/opencv/commit/3919f33e21fd0783f67901ad3429101f9b39c798
https://github.com/opencv/opencv/commit/3919f33e21fd0783f67901ad3429101f9b39c798
https://github.com/opencv/opencv/commit/3919f33e21fd0783f67901ad3429101f9b39c798
https://github.com/opencv/opencv
https://github.com/gin-gonic/gin/commit/f05f966a0824b1d302ee556183e2579c91954266
https://github.com/gin-gonic/gin
https://github.com/sharkdp/hexyl/commit/427a5524e19cf951fe41c2da8b940ade3ec39848
https://github.com/sharkdp/hexyl
https://github.com/DependencyTrack/dependency-track/releases/tag/4.12.1
https://github.com/DependencyTrack/dependency-track/releases/tag/4.12.1
https://github.com/DependencyTrack/dependency-track/releases/tag/4.12.1
https://github.com/DependencyTrack/dependency-track/releases/tag/4.12.1
https://github.com/jqlang/jq/commit/96e8d893c10ed2f7656ccb8cfa39a9a291663a7e
https://github.com/jqlang/jq/commit/96e8d893c10ed2f7656ccb8cfa39a9a291663a7e
https://github.com/jqlang/jq/commit/96e8d893c10ed2f7656ccb8cfa39a9a291663a7e
https://github.com/PHPMailer/PHPMailer
https://github.com/jqlang/jq/commit/96e8d893c10ed2f7656ccb8cfa39a9a291663a7e
https://github.com/jqlang/jq/commit/96e8d893c10ed2f7656ccb8cfa39a9a291663a7e
https://github.com/jqlang/jq/commit/96e8d893c10ed2f7656ccb8cfa39a9a291663a7e
https://github.com/jqlang/jq

2.2 Submission Instructions

Table 2 details the instructions we provided to participants on how to submit SBOMs, which we
published on an SEI webpage dedicated to the Plugfest.

Table 2: Submission Instructions for the Plugfest
Instruction

1 Full participation is open to anyone who submits SBOMs for at least two of the eight software targets. The
submission deadline is December 15, 2024.

2 Create a folder for your organization (or tool) in the SBOM Plugfest 2024 directory. If you wish, you may se-
cure it so that only you and the CISA/SEI analysts have read access.

3 Store your SBOM results using the following directory structure: <organization>/<target name>/<file format>.

4 Submit (Source, Build) SBOMs in either or both standards. Use the following file-naming conventions for the
SBOMs:

a. SPDX: example. — example.spdx.json or example.spdx or example.spdx.xml
(For more information, see the SPDX website.)

b. CycloneDX: example/cyclonedx/bom.xml — example.cyclonedx.bom.xml
5 Enrich the SBOM as you normally would.

6 Validate your SBOM before submitting it and consider using one of the following tools:
a. SPDX: https://tools.spdx.org/app/ntia_checker, https://tools.spdx.org/app/validate
b. CycloneDX: https://github.com/CycloneDX/sbom-utility

7 Upload a README file that provides orientation and context for reviewers and includes the following infor-
mation:

a. point of contact (POC) for the SBOM submission

version of the tool being used

types of SBOMs being represented (e.g., Source, Build)

how the SBOM was validated, including the name of the tool used

® a0 v

additional information that might be useful to reviewers (e.g., details on any manual edits or enrichments
made to the tool-generated SBOM)

8 Add the SBOM files generated for the reference examples to your tool’s folder.

2.3 Methodology

We used an analytic methodology for this Plugfest that comprised a combination of automated
and manual processes for extracting data from the SBOMs. Our approach to evaluating the
SBOMs included doing the following:

o conducting a quantitative review using tools that processed and reported on the content of the
SBOMs

o conducting a qualitative review by having subject matter experts (SMEs) review the SBOMs

We provide more details in Sections 2.3.1-2.3.4 about the SBOM analysis tools we developed to
facilitate reviewing and analyzing the SBOMs, the software target dependency inspection process
we used to understand expected dependencies, the evaluation criteria we used in our analysis, the
baseline SBOMs we generated, and the depth and breadth of the SBOMs we analyzed. The Ap-
pendix further describes the detailed results of our analysis for each software target, including the
baseline SBOMs we generated for comparison purposes.

CMU/SEI-2025-SR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 4
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

https://spdx.github.io/spdx-spec
https://tools.spdx.org/app/ntia_checker
https://tools.spdx.org/app/validate
https://github.com/CycloneDX/sbom-utility

2.3.1 SBOM Analysis Tools

We developed software tools to facilitate reviewing and analyzing the SBOMs that Plugfest par-
ticipants submitted. Due to the many submissions we received for the Plugfest, we focused our
tool development on automating the ingesting and processing of SBOMs to collect, collate, and
export data about each one.

Participants submitted SBOMs in SPDX and CycloneDX formats in a variety of encodings, in-
cluding JSON, XML, and YML.8 Due to the potential differences between SPDX and CycloneDX
SBOM formats, our initial analysis grouped the two formats separately. Since the majority of par-
ticipants encoded their output in JSON, we prioritized JSON SBOMs for analysis. We also de-
cided to assess SBOMs in other formats (e.g., XML, YML) based on the time and resources avail-
able. We wrote code for processing SBOMs using Python within Jupyter computational
notebooks hosted on an SEI internal Bitbucket® repository, which also contained a copy of
SBOM Plugfest submissions. We chose this software development methodology primarily to fa-
cilitate a quick-turn, accurate, and collaborative exploratory analysis.

We used two primary notebooks for analyzing SBOM submissions: one for CycloneDX and one
for SPDX. We sought to extract the following from each SBOM:

o the fundamental information related to the presence or absence of minimum elements

o information about software components, including their relationships to one another and
with the target software.’

In each notebook, we collected information from each SBOM by doing the following:

o traversing the directory of SBOM submissions, importing JSON SBOM files, and decoding
the JSON files so that data could be extracted

e extracting minimum elements from each SBOM where the data existed and noting where
data was missing

o constructing a dependency tree based on the dependencies listed in each SBOM (These de-
pendency trees contained information about software components and the types of relation-
ships among those components as listed in the SBOM.)

e collating data from each SBOM into two common data structures: one for information re-
lated to minimum elements and the other for component information. (We also tagged data
extracted from each SBOM with whether the SBOM was a Build or Source SBOM and
which target the SBOM applied to. For traceability and validation purposes, we also included
the file path for the data.)

We then analyzed the data structures using Python data science packages, or we exported them as
comma separated value (CSV) files for further analysis using other tools. We used information
about the presence or absence of minimum elements to generate summary statistics for each

8 JSON stands for JavaScript Object Notation, XML stands for eXtensible Markup Language, and YML is the file
format produced by YAML, which stands for YAML Ain't Markup Language, but originally stood for Yet Another
Markup Language.

For more information about minimum elements for SBOMs, refer to Section 2.3.2.

CMU/SEI-2025-SR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 5
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

software target and each SBOM type (Source/Build). Meanwhile, we used dependency graph in-
formation to analyze the presence/absence of components and assess the depth of the SBOMs.
(For more information about SBOM depth, refer to Section 4.)

We are currently evaluating the code we developed for this Plugfest to prepare it for release in an
open source repository of Python packages and scripts. A release date will be determined pending
further analysis.

2.3.2 Software Target Dependency Inspection

Many open source software projects follow programming language and platform-specific conven-
tions for declaring third-party dependencies and defining a repeatable build process. These con-
ventions usually allow for specifying a single version or a range of acceptable versions for the de-
clared dependencies. Software projects commonly use artifact repositories with associated
package managers to obtain their dependencies rather than building them from source code.

We manually inspected each target to determine its declared dependencies and captured this infor-
mation in dependency tables we provide for each software target in the Appendix. When a target
followed an identified convention, we extracted the declared dependencies and allowable versions
from their associated artifacts and analyzed the submitted SBOMs to detect the presence or ab-
sence of these dependencies.

We used a permissive approach for dependency name and version matching because the conven-
tions for these values vary widely across artifact repositories used to host dependencies and
among current SBOM tools. We considered an SBOM to include a dependency if the SBOM out-
put clearly showed it did, even if the reported name did not exactly match the name specified in
the target. Similarly, we considered a dependency to be present regardless of whether the version
listed in the SBOM was an allowable version based on the target’s dependency artifacts.

We intended this manual inspection to determine whether a dependency was discovered rather
than to adjudicate the validity of SBOM field values. In our analysis, we considered only the de-
pendency artifacts for the first-party components that are clearly intended for runtime deployment
whenever the target is used as part of a software solution. Several targets included multiple arti-
facts intended for building project documentation, language bindings for other supported pro-
gramming languages, and other secondary functions. We did not include these artifacts in the
analysis, but they were analyzed and used by some baseline tools and tools used to generate par-
ticipant submissions. Not including these artifacts accounts for some components that were pre-
sent in SBOMs but did not explicitly declare as third-party dependencies.

2.3.3 Evaluation Criteria

To better understand sources of divergence for SBOMs, we sought to establish criteria we could
use to evaluate SBOM alignment. We chose criteria that were in line with NTIA recommenda-
tions about the quality attributes of SBOMs in its Roles and Benefits for SBOM Across the Supply
Chain [NTIA 2019].

CMU/SEI-2025-SR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 6
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

We selected these criteria because of their relevance to use cases for SBOMs within the cyberse-
curity community. Where possible, we developed metrics that we could use to understand the var-

iance within criteria across SBOM submissions and types for each software target and phase.

Table 3:

Criteria

Completeness

Accuracy

Pedigree

Provenance

Integrity

Evaluation Criteria for SBOMs

Definition

Information about all the com-
ponents that make up a piece
of software and the pro-
cess(es) used to assemble
them

A determination of whether
information about all the com-
ponents that make up a piece
of software and the pro-
cess(es) used to assemble
them are accurate

The term of art for having in-

formation on all of the compo-

nents that have come to-
gether to make a piece of
software and the process
used to assemble them

The term of art for having in-
formation about the chain of
custody of the software and
all of the components that
comprise that software, cap-
turing information about the
authors and locations where
the components were ob-
tained from

The use of cryptographic
techniques to indicate that (1)
the SBOM has not been al-
tered since the author initially
wrote it or (2) if there was a
modification that was made
by a subsequent SBOM au-
thor

Evaluation

Determine whether SBOMs
contain information about
the target software pack-
age, its dependencies, and
its requirements as stated
by the producers of the tar-
get software packages, and
whether that information is
correct.

Determine the presence of
accurate SBOM authorship
information.

Determine the presence of
a cryptographic hash for
the SBOM and information
about the technique used
to generate the hash.

Metric(s)

Depth
Breadth°
Minimum elements

Component information
(e.g., version numbers, li-
cense information)

Authorship information that
is present and accurate

Cryptographic hash that is
present

Algorithm used to create
the hash that is present
(e.g. SHA-256, MD5)

The NTIA recommendations on SBOMs include certain data fields as a type of minimum element
in any SBOM. Table 4 illustrates the minimum elements for SBOMs as well as a mapping of
these elements to corresponding data values in SBOM standards.'!

Breadth, as we define it in this report, was considered as a possible metric by which SBOM consistency could
be measured; however, ultimately, we did not focus on this metric as it was clear that breadth varied across
submitted SBOMs. Although it was calculated for SBOMs, we did not report this value during our report of find-
ings. We include it here for completeness.

Table 4 is excerpted from Table 1 in Framing Software Component Transparency: Establishing a Common Soft-
ware Bill of Materials (SBOM) [CISA 2024].

CMU/SEI-2025-SR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 7
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Assessing the consistency of the minimum elements of SBOMs submitted as part of the Plugfest
was a central part of our analytic methodology and was a critical component in determining their
completeness and accuracy. The minimum elements listed below can apply to both the target soft-
ware package and the component software packages listed as dependencies within SBOMs. For
this Plugfest, we derived summary statistics and evaluations of consistency across SBOMs with
respect to minimum elements from those elements that correspond to the target software package.

Table 4: Minimum SBOM Elements Mapped to Existing Formats

Element

SBOM Author Name

SBOM Timestamp

SBOM Type

SBOM Primary Component
Component Name
Component Version String

Component Supplier Name

Component Cryptographic
Hash

Component Unique Identifier

Component Relationships

SPDX 3.0"
Core.Creationinfo.createdBy
Core.CreationlInfo.created
Software.Sbom.sbomType
Software.Sbom.rootElement
Software.Package.name
Software.Package.packageVersion

Software.Package.suppliedBy

Software.Package.verifiedUsing

Core.Artifact.spdxId
Software.SoftwareArtifact.conten-
tidentifier
Software.SoftwareArtifact.externall-
dentifier (cpe22, cpe23, cve, gitoid,
packageUrl, swhid, swid, securi-
tyOther, other)

Core.Relationship
Contains

dependsOn
hasStaticLink
hasDynamicLink
hasProvidedDependency
hasOptionalDependency

great majority of the SBOMs we received were in SPDX V2.3.

CycloneDX v1.6 (ECMA-424)
metadata.authors
metadata.timestamp
metadata.lifecycles
metadata.component
components[].name
components|[].version

metadata.supplier
components[].supplier

components[].hashes[]

serialNumber + version
components[].cpe
components|].purl
components[].swid
components[].omniborld
components[].swhid
components[].evidence.identity

dependencies|[]
components[].components

We use SPDX V3.0 in this table since it is the current version reflected in the CISA reference, although the

CMU/SEI-2025-SR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Element SPDX 3.0" CycloneDX v1.6 (ECMA-424)

Component License Core.Relationship components[].licenses][]
hasConcludedLicense
hasDeclaredLicense components[].licenses[].acknowl-

edgement[declared, concluded]

components[].licenses][].licensing

(proprietary)
components[].evidence.licenses|]

Component Copyright Holder Software.SoftwareArtifact.copy- components[].copyright
rightText components[].evidence.copyright

2.3.4 Baseline SBOMs

We generated Source SBOMs for each software target and standard to serve as examples of what
we might expect to see in SBOMs submitted by Plugfest participants. These examples allowed us
to start building our analysis tools before submissions were received. We selected Syft, Trivy, and
Microsoft® SBOM tool to create these baseline SBOMs based on our previous work in this area.
In that work, we found that these open source, community-developed tools provide an acceptable
depth and breadth in their SBOMSs’ coverage of software components. We used Syft and Trivy to
create both CycloneDX and SPDX Source SBOMs. We used Microsoft SBOM tool to create
SPDX Source SBOMs. We built the baseline SBOMs from locally cloned copies of the target Git
repositories at the specified commit hashes.

The baseline SBOMs proved useful in our analysis because they helped us understand some of the
reasons for the differences that we saw across tool-generated SBOMs for the same target. Because
the tools were open source and we ran them with known settings in a controlled environment, we
could reason more effectively about the differences that we found among them. By inspecting the
tools’ logs and source code, we were able to determine why one tool discovered a component that
another did not, for example. The baseline SBOMs set our expectations for what SBOM providers
could generate by simply using available open source SBOM tools. The Appendix includes sum-
mary information about the baseline SBOMs for each target. We generated baseline commonality
charts from the SPDX results since all three tools support that format. We did not observe mean-
ingful differences for any tool based on format alone.

2.3.5 SBOM Depth and Breadth

For this Plugfest, we defined the depth of an SBOM to be the length of the longest path in the di-
rected graph generated by the dependency tree defined by the components and relationships
within the SBOM. Similarly, we calculated breadth as the maximum number of components at
any given distance from the target software in the dependency tree defined by the components and
relationships within the SBOM.

Figure 1 illustrates an example of a dependency tree. In this example, the depth is three, since the
longest path in this directed graph is three. The breadth is three, since the largest number of com-
ponents at any given distance from the target is the set of three direct dependencies. Figure 1 illus-
trates the depth and breadth by the rounded rectangle and square rectangle, respectively.

CMU/SEI-2025-SR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 9
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Targgt ———m8>

Direct o O O Q
Dependencies

Transitive
Dependencies

Figure 1: Example Dependency Tree lllustrating Target Software Dependencies, Depth, and Breadth

As described in the NTIA’s The Minimum Elements for a Sofiware Bill of Materials (SBOM),
SBOMs should contain “all primary (top level) components, with all their transitive dependencies
listed” [DOC 2021]. SBOMs that contain top-level dependencies should contain enough detail to
allow for transitive dependencies to be identified recursively. Depth in the dependency tree of
software provides transparency into components and subcomponents of the software. SBOMs that
are shallow may require additional augmentation with component SBOMs to reach the desired
level of transparency.

A variety of relationship types may define dependencies within SBOMs. For example, in the Cy-
cloneDX standard for SBOMs, dependencies “represent the relationships between components or
services that a given component relies on functionally, focusing exclusively on the connections
rather than the inventory of components,” and these relationships make use of the “dependsOn”
dependency type within the format specification [OWASP 2025c¢]. Likewise, the SPDX specifica-
tion provides for a number of dependency types to be specified within the relationship fields of an
SBOM. Because of the aforementioned variety of relationships possible within an SBOM and the
variety of potential use cases for SBOMs, the depth of an SBOM required to provide a sufficient
level of transparency for its use case may vary. For more details about the specific technique we
used to calculate depth in SBOMs for the Plugfest, see Section 4.

CMU/SEI-2025-SR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 10
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

3 Summary of SBOM Submissions

In this section, we provide an overview of the SBOM submissions from Plugfest participants. See
the Appendix for details of our analyses of nine different software target JSON SBOMs. Detailed
analysis findings from the Plugfest are included in Section 5.

Figure 2 shows the distribution of SBOMs we received from Plugfest participants across the vari-
ous software targets. There were 21 Plugfest participants, and each was asked to submit at least
two SBOMs to participate. Of those 21 participants, five submitted over 10 SBOMs. As a result,
we received a total of 243 SBOMs.

To ensure participants’ anonymity and to prevent any bias in our review, we anonymized partici-
pant names by assigning alphanumeric codes to each. One participant, who was assigned the code
Y2, submitted many more SBOMs (102) than all the others.

SBOMS SUBMITTED PER TARGET

B Without Y2 Y2

23
20 17
16 15 15
12 12 11
N ~ N 3 ~ D ~ > A
o & o & e * N & &
{,\Q N ot & « 2 N L \\\r B\ &
Q o v & O & o N
N
& > O QO\ & &5 <F
<2 N q\“ o N A >
. o > o +
> o Q %q,c’ &
<<J\%' N Q‘v\\
Q
Q
O

Figure 2: SBOMs Submitted per Target

Figure 3 shows the distribution of SBOMs across SBOM standards and formats. Once we re-
ceived the submissions, we determined that our analysis of SBOMs would proceed in the follow-
ing order:

e the most common SBOMSs: JSON SBOMs in CycloneDX format
o JSON SBOMs in SPDX format
« XML and YML SBOMs, which were treated as special cases

CMU/SEI-2025-SR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 11
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SBOMs Submitted

50
40
30
20
10

0

JSON xml JSON JSON xml JSON yml
CycloneDX SPDX CycloneDX SPDX

Build Source

Figure 3: Distribution of Submitted SBOMs by Standard and Format

Table 5 shows the distribution of JSON SBOMs across the various software targets for both Build
and Source SBOMs.

Table 5: Distribution of JSON SBOMs

SBOM/Type CycloneDX SBOMs SPDX SBOMs Grand Total
Build 31 27 58
Dependency Track (OCl) 5 5 10
Gin (Go) 2 1 3
Hexyl (Rust) 3 4 7
HTTPie (Python) 4 5 9
ja (C) 5 4 9
MineColonies (Java) 4 2 6
NodeJS-goof (JavaScript) 4 3 7
OpenCV (C++) 4 3 7
Source 71 57 128
Dependency Track (OCl) 6 6 12
Gin (Go) 7 15
Hexyl (Rust) 6 4 10
HTTPie (Python) 11 10 21
jq (C) 9 8 17
MineColonies (Java) 6 5 11
NodeJS-goof (JavaScript) 8 5 13
OpenCV (C++) 8 5 13
PHPMailer (PHP) 9 7 16
Grand Total 102 84 186

We received a limited number of XML and YML SBOM submissions. Table 6 shows the distri-
bution of these SBOMs across the various software targets for both Build and Source SBOMs.
Only three participants contributed to the 49 XML SBOMSs, and of those, only one participant
contributed 34 XML SBOMs. Only one participant contributed all eight YML SBOMs. Because
we had only one YML submission per target, we could not compare these SBOMs with other

CMU/SEI-2025-SR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 12
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

YML SBOMs for the same target. Due to the lack of time, we were unable to thoroughly review
the XML and YML SBOMs.

Table 6: Distribution of XML and YML SBOMs

SBOM/Type

Build

Dependency Track (OCI)
Hexyl (Rust)

HTTPie (Python)

Jg (C)

MineColonies (Java)
NodeJS-goof (JavaScript)
OpenCV (C++)

Source

Dependency Track (OCI)
Gin (Go)

Hexyl (Rust)

HTTPie (Python)

ja(C)

MineColonies (Java)
NodeJS-goof (JavaScript)
OpenCV (C++)
PHPMailer (PHP)

Grand Total

Count of XML SBOMs
17
4

N W NN NN

ANA#@@GA@S

H
©

Count of YML SBOMs

W - 2 A4 A A O 2 2 A M O O O O O o o o

CMU/SEI-2025-SR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

13

4 SBOM Depth Analysis

In this section, we provide our analysis of the depth of various SBOMs for the software targets.

Table 7 presents the depths of SBOM submissions and baseline SBOMs. For each target, format,
and lifecycle phase, we calculated the maximum depth of SBOMs in each category as well as the
median depth for SBOMs in each category. We also calculated maximum and median depths for
the combination of formats for each target/lifecycle phase.

We calculated depth values for SPDX v2.3 SBOMs by generating a dependency tree from
“DEPENDS ON” and “DEPENDENCY _OF” relationships in each SBOM. Likewise, we calcu-
lated depth values for CycloneDX format SBOMs by generating a dependency tree from the
“DEPENDENCIES” elements listed in each SBOM. We chose this approach primarily to enable
the comparison of depth calculations for both specifications of SBOMs. However, an analysis of
relationship types for SPDX SBOMs that had their depths calculated revealed that the only rela-
tionship types listed in these SBOMs were “METAFILE OF,” “CONTAINS,” “DESCRIBES,”
“DEPENDS_ON,” “DEPENDENCY _OF,” and “OTHER” despite many other relationship types
being allowed within the SPDX standard.

Depths of the submitted SBOMs ranged widely, and some SBOMs did not include dependency
information or information about transitive dependencies. Studying the overall structure of
SBOMs is challenging. Additional research time would help in understanding SBOM structures
and dependencies as well as the root causes of discrepancies across SBOMs generated for the
same software target.

CMU/SEI-2025-SR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 14
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Table 7: Depth Calculations for Submitted SBOMs and Baseline SBOMs, by Type, Target, and Format

CycloneDX Submissions SPDX Submissions SPDX and CycloneDX Baseline SBOMs
Submissions

Type/Target Max. Median Number of Max. Median Number of Max. Median Number of Max. Median Depth Number of SBOMs
Depth Depth SBOMs Depth Depth SBOMs Depth Depth SBOMs Depth

Dependency 10 10 3 4 3 3 10 3 6
Track
Gin 2 1 2 - - - 2 1 2
Hexyl 10 10 3 4 4 3 10 6.5 6
% HTTPie 5 3 4 3 2 4 4 25 8 N/A
D g 2 1 5 2 2 2 2 1 7
MineColonies 12 1 4 2 2 2 12 1 6
NodeJS-goof 18 17.5 2 8 8 3 18 17.5 5
OpenCV 2 2 4 2 2 2 2 1.5 6
Dependency 10 25 6 6 1 6 10 2 12 8 1 5
Track
Gin 3 1 7 3 1 4 3 1 11 3 1 5
Hexyl 10 6 6 5 4 4 10 4 10 10 8 5
8 HTTPie 6 2 8 16 1 5 16 1 13 4 0 5
?, g 3 2 8 23 1 4 23 1 12 2 2 5
MineColonies 5 2 6 2 1 4 5 1 10 0 0 5
NodeJS-goof 17 2.5 8 9 1 5 17 2 13 17 8 5
OpenCV 3 2 6 12 1 3 12 2 9 3 1 5
PHPMailer 5 2 9 3 1 5 5 1.5 14 0 0 5
CMU/SEI-2025-SR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 15

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

5 Findings

This section describes the key findings of our analysis of the SBOMs submitted for the Plugfest
effort.

Commonality and Variance in SBOM Components. Our review found significant vari-
ance in the number of components in SBOMs from different participants for the same soft-
ware at the same lifecycle phase. The variance is visible in the commonality charts provided
in the Appendix. For example, Figure 9 includes the chart for the SPDX Source SBOMS for
NodeJS-goof, where five SBOMs included 496 components, but one SBOM included 1081
components. Based solely on the SBOMs we received, we found that the software targets
with the highest commonality in components were Hexyl (Rust) and NodeJS (JavaScript).
We found that jq (C) and OpenCV (C++) were the targets with the lowest commonality in
components. Figure 22 includes the chart for the SPDX Source SBOMS for jq, where three
SBOMs included under 30 components, but one SBOM included 745 components.

Component Name and Version Challenges. Our review showed that the lack of normaliza-
tion for component names and versions (e.g., software version detailed as v 2.0 or just 2.0) is
also a cause of variance in SBOMs [MITRE 2024].

Version Ranges and Specification. When a target allows for version flexibility, there is am-
biguity about what versions should be included in a source SBOM because SBOM specifica-
tions allow only a single version to be normatively captured for each dependency. One par-
ticipant stated in a readme file that they deliberately chose the minimum allowable version
for each dependency as a kind of worst-case analysis. In general, multiple versions were
listed across different participants for each target with version ranges. In a Build SBOM, a
single version is always captured during a given build, but that version may differ across
SBOMSs because it is based on the specific build process, environment, and time that a build
occurs. We note here that the Package Uniform Reference Locator (PURL) specification has
a new syntax for version ranges called the version range specifier.!3

Ease of Review. It is easier to inspect SBOMs for targets that explicitly declare dependen-
cies and follow common build conventions (e.g., HTTPie, NodeJS-goof, Hexyl).

Dependency Discovery Challenges. Organizations use many conventions for specifying de-
pendencies and building software across programming languages, platforms, environments,
and software development frameworks. These differences make it challenging for any one
SBOM tool or producer to capture and represent components and relationships for an arbi-
trary target. Our baseline SBOM analysis confirmed that this challenge explains at least
some of the differences in discovered dependencies across tools.

Differing Definitions of Dependencies. A review of submitted readme files and discussions
with a few participants indicated that they had different definitions or interpretations of a

For more information on the issues surrounding standardized formatting of version ranges and the new version
range specifier syntax, see https://github.com/package-url/purl-spec/blob/main/VERSION-RANGE-SPEC.rst.

CMU/SEI-2025-SR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 16
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

https://github.com/package-url/purl-spec/blob/main/VERSION-RANGE-SPEC.rst

“dependency.” A few submissions included dependencies of first-party components that are
not typically deployed, such as target documentation build tools, CI/CD pipeline compo-
nents, and optional language bindings. At least some of these differences are due to the
SBOMs targeting different use cases and are not necessarily due to any tool’s inability to dis-
cover dependencies. The variance in the depth of SBOMs for the same target also indicates
participants’ varying expectations of the levels of transparency provided by SBOMs.

o Diversity of Use Cases. SBOMs have diverse use cases, which lead to different types of
SBOMs [NTIA 2019, CISA 2023]. In line with our findings about dependencies, the wide
variety of use cases for SBOMs may be responsible for the expansion of SBOM specifica-
tion as well as the lack of harmonization across SBOMs, even for those generated for the
same target. Use cases for SBOMs may also vary by industry sector and risk model. Our
guidance to Plugfest participants did not mandate a specific purpose in mind for the SBOMs
other than general research. Discussions with participants indicated that if they had specific
purposes in mind they may have generated, enriched, and/or augmented their SBOMs differ-
ently.

e Build SBOM Variance. PHPMailer, NodeJs-Goof, Dependency Track, HTTPie, and jq all
include a Dockerfile and build artifacts that can be used to generate a Docker container as
the build output. A few participants used this container build process to generate their Build
SBOM, and others built a standalone executable for their chosen runtime environment using
the target’s language or build framework-specific process (e.g. npm, maven). These different
approaches led to differences in the components they discovered. Build SBOMs also varied
based on the environment and tool configurations each participant used. Discovering infor-
mation about the build environments that the vendors used was possible in some cases by
manually inspecting the SBOMs. In these instances, containers were listed as components in
the SBOM. Participants also provided this information to us in readme files that explained
their SBOM generation processes.

e Source SBOM Variance. Source SBOMs capture dependencies declared or inferred from
source code. In a few cases, participants used additional information from external locations,
such as the artifact repositories referenced by dependencies or the contents of platform tool-
chain libraries, to infer additional dependencies.

e Minimum Elements. We found significant variance in the degree of inclusion of the various
minimum required elements in SBOMs from different participants for the same software at
the same lifecycle phase. As shown in Table §, some minimum elements were well popu-
lated (e.g., Target Name, Timestamp, Target Type), while others were not.

Table 8 shows the percentages of SBOMs that contained the given minimum elements for both
the SBOMs submitted and the baseline SBOMs we generated for comparison analysis. In Table 8,
we shaded cells in the Submitted SBOMs Overall column where the percentage was under 50%
for the given SBOM element, indicating a significant lack of compliance for those minimum re-
quired elements.

CMU/SEI-2025-SR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 17
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Table 8: Review of Minimum Elements for Submitted and Baseline SBOMs

SBOM Element

Target Name
Timestamp

Taraet Version
SBOM Author
Crvptoaraphic Hash
Lifecvcle Phase
SBOM Supplier

License

Target Type

The overall percentage of SBOMs that included the Cryptographic Hash for their software target
was only 22%, and none of the SBOMs for the same software target included the same hash.

Submitted SBOMs

CycloneDX SPDX

96% 100%
92% 100%
50% 39%
37% 32%
13% 33%
9% None
9% 88%
3% 10%
95% 81%

Baseline SBOMs

Overall CycloneDX
97% 100%

94% 100%

44% 50%

35% 0%

22% 0%

5% 0%

42% 0%

6% 0%

90% 100%

SPDX

100%
100%
67%
0%
0%
None
100%
67%

67%

Overall

100%
100%
60%
0%
0%
0%
60%
40%

80%

Although most participants identified a target type for their SBOMs, there was a wide discrepancy

in how they did so. For example, in the supplied SBOMs, jq was listed as an application, a con-
tainer, data, and a file.

CMU/SEI-2025-SR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

18

6 Recommendations

This section details our recommendations based on our analysis of the SBOMs submitted for the
Plugfest. These recommendations are designed to help vendors, standards producers, and the

SBOM community improve how SBOMs are generated so their results can be more consistent.

6.1

Recommendations for SBOM Minimum Elements

In our review of the submitted SBOMs, we found that some minimum elements were sporadically

populated. As a result, we formed the following recommendations:

SBOM Type. Emphasize including this attribute to document the lifecycle phase for which
this SBOM was generated (e.g. Source, Build). We recommend that this attribute be required
rather than optional because it is important for deciding which use cases the SBOM can sup-
port. Any tool should be able to report this attribute based on how it works and is invoked.

Component Version String. Emphasize that accuracy in reporting exactly what the supplier
provides is critical. Accurate reporting helps reduce the need for normalization when data is
inconsistently reported (e.g., one SBOM reports v 2.0 and another reports 2.0). We also rec-
ommend that versions follow semantic versioning formats that allow some flexibility in re-
porting ranges of versions where necessary.

Component Supplier Name. Emphasize the need for including the name of the entity that
provided the contents of the software being described. This name helps users of the SBOM
understand which third parties were part of the supply chain. For open source software com-
ponents, which do not have a traditional supplier, a direct reference or link to the project re-
pository should be provided.

Component Cryptographic Hash. SBOM guidance should be clear about what is being
hashed when a cryptographic hash is included. This guidance would make it more straight-
forward for SBOM users to know how to verify the hash value. Alternatively, SBOM crea-
tors should be explicit about what was hashed when supplying cryptographic hashes. For ex-
ample, the hash may have been computed over a source file, a binary file, a compressed
archive, etc.

Component License. Emphasize the need to provide licensing information or to note that
the license information is not known or was not included. Many submitted SBOMs did not
include this field at all, which makes it difficult to know why it was not included (i.e. it
might not be known or might have been considered out of scope).

6.2 Recommendations for SBOM Harmonization

We recommend the following to better harmonize SBOMs overall:

Normalization. Develop recommendations about normalizing elements and their formats
and forward them to the CycloneDX and SPDX standards teams.

Terminology. Standardize on using the term supplier for a primary supplier and the term
manufacturer for a secondary supplier.

CMU/SEI-2025-SR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 19
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Support Developer Community SBOM Efforts. Some developer communities are working
to include SBOM generators into language tools and build frameworks to make it much eas-
ier for projects using those languages and frameworks to generate SBOMs as upstream sup-
pliers. These efforts have an outsize impact because they lower the barrier for creating
SBOMs for every affected project. They also push the SBOM generation further upstream to
project maintainers who have detailed knowledge of their own source code and build pro-
cesses. The CPython community recently added SBOM support, for example [Python 2025].
Supporting these efforts has the potential to accelerate SBOM usage with a relatively low
cost due to the economies of scale derived from SBOM tool use further upstream.

Dependencies. Provide guidance to distinguish dependencies by category (e.g., runtime,
tests, docs).

Component Inclusion Reason. Standardize on annotating each component with the reason
that it was included. This annotation would help users understand why a dependency (e.g.,
component, package, file) is included. Annotation could include an attribute or property
(e.g., associated configuration and operating mode used to generate the SBOM) or different
relationship types as applicable. Annotating in this way may not be possible for all depend-
encies, but it could be done when a tool has the context to provide that information. The fol-
lowing is an incomplete list of the reasons for including a component:

- The component was included in a build manifest (e.g., pom.xml).
~ The component was used by a package manager during build.

- The component was used by a platform toolchain during build.

- The file was processed by a compiler.

- The file was read to determine the license for a component.

SBOM Tools. SBOM tools typically focus on a subset of the programming languages and
build environments in use today. SBOM creators and users should be encouraged to ensure
they are using an appropriate SBOM tool for their specific environment.

SBOM Profiles. Interested stakeholders could develop and validate SBOM profiles!* to en-
sure that each profile is useful and effective. Stakeholders can use SBOMs for a variety of
different use cases (e.g., vulnerability identification, license compliance) and by a number of
different communities (e.g., Health-ISAC and Auto-ISAC, health and automotive infor-
mation-sharing analysis centers [Health-ISAC 2025, Auto-ISAC 202]).!5 Each combination
of use case and community can be considered a context where stakeholders can use SBOMs
to communicate among themselves. Stakeholders can use both the CycloneDX and SPDX
standards for any given context because they are flexible enough to accommodate the re-
quired data with existing features. Improving interoperability within a given context requires
restricting this flexibility so that SBOM artifacts can be shared and understood by all stake-
holders. The OWASP Software Component Verifications Standard (SCVS) BOM Maturity

An SBOM profile is a well-defined restriction placed on one or more SBOM standards to clarify the meaning and
the allowable values for each field, its cardinality, and its other structural aspects.

ISACs are Information Sharing and Analysis Centers. These centers are centralized sources of information
about cybersecurity and security threats in a particular sector.

CMU/SEI-2025-SR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 20
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

https://scvs.owasp.org/

Model profiles feature is an example of such an approach [OWASP 2025¢]. A simpler, and
perhaps more pragmatic, approach would be to define a JSON schema that extends the exist-
ing JSON schemas for CycloneDX and/or SPDX and adds the necessary clarifications and
restrictions for a profile.

6.3 Recommendations for Future Research

We recommend that the following areas be further researched:

16

17

Vulnerability Analysis. Since vulnerability management is one popular use case of SBOMs,
future research could focus on how well SBOMs support the vulnerability management func-
tion. This research could include how SBOMs support analyzing component vulnerabilities
and how SBOMs support aligns with the National Vulnerability Database (NVD). Some
Plugfest participants provided Vulnerability Exploitability eXchange (VEX) files for analy-
sis, but these files were considered out of scope for the current Plugfest. Part of the challenge
in vulnerability analysis is determining whether a vulnerable function within a component is
being used since it is possible that vulnerabilities exist in the code but are not exploitable or
consequential. This determination is critical to assessing true vulnerability and risk.

Analysis of SBOM Structure with Respect to Dependencies. Analyzing the presence or
absence of dependencies is only one dimension of understanding the structure of SBOMs. 16
The structure of dependency trees and alignment/variance in these structures can also pro-
vide insight into how the upstream effects of flaws in software components can percolate
throughout dependent software packages and organizations. Researchers have begun con-
ducting an introductory analysis of SBOMs to explore this facet of SBOM structure using
dependency trees generated for assessing SBOM depth. We recommend conducting such an
analysis to explore identifying discrepancies in SBOMs and their root causes. In Figure 4,
we compared a Source CycloneDX SBOM and a Source SPDX SBOM for Hexyl from the
same participant to check the following:!7

- Do the SBOMs contain the same components?
- Are the overall structures of these two SBOMs and the relationships between the compo-
nents identical?

In this instance, we expected that the two SBOMs would have the same components and
would contain the same relationships between components. Using an algorithm to match
components and relationships across the two SBOMs resulted in a graphical representation
of both SBOMs that confirmed our expectation. Applying this technique to other pairs or
groups of SBOMs would highlight similarities and differences across SBOM structures.

Analyzing dependencies can also help you understand the structure of software supply chains.

This SBOM structure analysis was facilitated by code written by our colleagues at the Pacific Northwest Na-
tional Laboratory [PNNL 2025].

CMU/SEI-2025-SR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 21
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

s @ L] L] L e
L ® L] ¢ o
& © & © @© s o & @© L L]
e & & & & @ 8 &8 & & & o ®
® e ©® @© L3 e @9 O L] ® & & ©
e & &8 ¢ © & o @ < s s ® L]

s & & L]
e ®

Figure 4: Dependency Tree Generated from Two Hexyl SBOMs

False Positives and False Negatives. We need more research into what causes dependencies
to be reported that are not actually included or used. If a component is reported as a depend-
ency in an SBOM, then you should be confident that the component will be in your environ-
ment if you deploy that software. Likewise, if a component is not reported, you should be
confident that the component will be absent from the environment if you deploy that soft-
ware. We recommend conducting root cause analysis across multiple SBOMs to identify
why components are or are not listed. This analysis would provide insight into when false
positives and false negatives are detected in deployed software.

Dynamic Analysis. We recommend conducting further research into how dynamic analysis
at runtime used to resolve required native dependencies affects the number of dependencies
in an SBOM.

SBOM Evolution. SBOMs used in this Plugfest were static artifacts generated at a point in
time. We recommend conducting additional research to better understand how to track and
implement changes to SBOMs over time.

6.4 Recommendations for Improving Future Plugfests

We recommend the following improvements for future plugfests:

Security and Anonymity. Allow anonymous submissions to the plugfest and provide
stronger security for SBOM submission folders. We allowed individual contributors to con-
figure their own security controls. Anyone who had concerns about security could email
their submissions to us directly and then request us to delete those submissions when we no
longer needed them.

Facilitate Sharing. Some Plugfest participants were interested in seeing the SBOMs that
others submitted to learn from them. Likewise, some participants may be interested in shar-
ing their SBOMs with others. When there is interest, provide such access. We asked each
participant for permission to make their SBOM submissions public. We are sharing the
SBOMs from those who gave us their permission on GitHub at https://github.com/cmu-
sei/sbom-plugfest-2024.

CMU/SEI-2025-SR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 22
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

https://github.com/cmu-sei/sbom-plugfest-2024
https://github.com/cmu-sei/sbom-plugfest-2024

e One-to-One Meetings with Plugfest Participants. Plan to conduct some one-to-one meet-
ings with individual participants as part of the plugfest process to better understand their
SBOM generation processes and answer any questions they or the analysts may have. We
conducted a few such meetings as time allowed.

o Email List. Establish an email list for the plugfest and allow participants to use it.

e Use Case Plugfests. For future plugfests, organizers should consider prescribing a specific
use case or set of goals for SBOM submissions. Inspecting the harmonization (or lack
thereof) of SBOMs submitted for the same use case may highlight different interpretations of
requirements or methods for augmenting and enriching SBOM products.

CMU/SEI-2025-SR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 23
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Appendix: Detailed SBOM Reviews by Software Target

This Appendix details our analyses of the JSON SBOMs submitted for the nine individual soft-
ware targets. For each target, our analyses include the following:

a brief description of the software target function
a chart summary of the numbers of SBOMs submitted

a review of the required dependencies based on an inspection of the software as well as sta-
tistics on the percentages of SBOMs that included the declared dependencies

summary “commonality” charts depicting the number of SBOMs that contained a given

component of all components identified in the set of relevant SBOMs. These charts provide a

visual sense of whether the SBOMs generally included the same components or diverged in

their listed components. We generated these charts for Build and Source JSON SBOM s in

both CycloneDX and SPDX format. Most would expect SBOMs of the same type for a given

software target to capture the same dependencies. However, the charts depict variances in

these SBOMs; most have a few common dependencies, but many dependencies are listed in

only one or two SBOMs.

a “commonality” chart covering the baseline components that we created using Syft, Grype
and the Microsoft SBOM tool. (We included this chart essentially for comparison purposes
only to provide a sense of what we should expect the submitted SBOMs to include.)

HTTPie

b

HTTPie is a command-line HTTP client in Python designed for testing, debugging, and generally
interacting with APIs and HTTP servers [HTTPie 2025].

Plugfest participants submitted 35 SBOMs in both Build and Source types, using both Cy-
cloneDX and SPDX standards, in both JSON and XML formats. None of the participants submit-
ted SBOMs in YML format. Of the 35 SBOMs submitted, 30 were in JSON format.

HTTPie (Python)
JSON

10
8
6
d . .
0

Build Source

N

B CycloneDX mSPDX

Figure 5: HTTPie Submissions by Type

CMU/SEI-2025-SR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

24

Dependencies by Inspection

Our review of the code showed the following dependencies for HTTPie that were declared in the
target repository’s Python setup.cfg file. Table 9 shows the percentage of the submitted JSON
SBOMs that contained the given declared dependency. Note that colorama is declared as a de-
pendency only for the Windows 32-bit platform.

Table 9: Distribution of HTTPie SBOMs

CycloneDX SPDX
Dependency Version
Build % Source % Build % Source %
pip - 100 45 60 22
charset_normalizer >=2.0.0 100 72 60 22
defusedxml >=0.6.0 100 54 60 22
requests >=2.22.0, 100 63 60 22
<=2.31.0
Pygments >=2.5.2 100 72 60 22
requests-toolbelt >=0.9.1 100 9 60 22
multidict >=4.7.0 100 63 60 22
setuptools — 100 63 60 22
importlib-metadata >=1.4.0 75 63 60 22
rich >=9.10.0 100 63 60 22
colorama; sys_plat- >=0.2.4 0 27 0 11

form=="win32"

Component Commonality

We reviewed four Build and 11 Source CycloneDX SBOMs. We also reviewed five Build and 10
Source SPDX SBOMs. Figure 6 displays charts that show the number of SBOMs that contained a
given component of all components identified in the set of SBOMs. We generated these charts for
Build and Source SBOMs in both CycloneDX and SPDX format.

CMU/SEI-2025-SR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 25
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Build SBOMs Source SBOMs

CycloneDX

por

HTTPie Build SBOMs HTTPie Source SBOMs

SPDX

Figure 6: HTTPie Component Commonality

Baseline Commonality

HTTPie SBOMs (Baseline)

Number of SBOMs
with Given Component

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Component

Figure 7: HTTPie Baseline SBOM Component Commonality

Only the Microsoft SBOM tool captured the dependencies for this target because it supported the
setup.py file, and the other tools did not.

CMU/SEI-2025-SR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 26
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

NodeJS-goof

NodeJS-goof'is “a vulnerable Node.js demo application based on the Dreamers Lab tutorial” writ-
ten in JavaScript [Snyk 2025].

Plugfest participants submitted 28 SBOMs in Build and Source types using both CycloneDX and
SPDX standards and appearing in all three formats (JSON, SML, YML). Of the 28 SBOMs sub-
mitted, 20 were in JSON format.

Node JS (Java Script)

JSON

10

2 -
0
Build Source

B CycloneDX ™ SPDX

Figure 8: NodedS Submissions by Type

Dependencies by Inspection

A review of the code showed the following declared dependencies in the package.json file for
NodeJS-goof. Table 10 shows the percentage of the submitted JSON SBOMs that contained the
given declared dependency.

Table 10: NodeJS-goof Dependencies by Inspection

CycloneDX SPDX

Dependency Version
Build % Source % Build % Source %
adm-zip 0.4.7 100 87.5 67 100
body-parser 1.9.0 100 87.5 67 100
cfenv 7M.04 100 87.5 67 100
consolidate 0.14.5 100 87.5 67 100
dustjs-helpers 1.5.0 100 87.5 67 100
dustjs-linkedin 25.0 100 87.5 67 100
ejs 1.0.0 100 87.5 67 100
ejs-locals 1.0.2 100 87.5 67 100
errorhandler 1.2.0 100 87.5 67 100
express 4124 100 87.5 67 100
CMU/SEI-2025-SR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 27

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Dependency Version
express-fileupload 0.0.5
express-session MAT.2
file-type 78.1.0
hbs 74.0.4
humanize-ms 1.0.1
jquery 224
lodash 4174
marked 0.3.5
method-override latest
moment 2.151
mongodb 73.5.9
mongoose 424
morgan latest
ms 70.71
mysq|l A2.18.1
npmconf 72.18.1
typeorm 70.2.24
validator "M3.5.2

Component Commonality

CycloneDX

Build %
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100

Source %
87.5
87.5
87.5
87.5
87.5
87.5
87.5
87.5
87.5
87.5
87.5
87.5
87.5
87.5
87.5
87.5
87.5
87.5

Build %
67
67
67
67
67
67
67
67
67
67
67
67
67
67
67
67
67
67

SPDX

Source %
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100

We reviewed four Build and eight Source CycloneDX SBOMs. We also reviewed three Build and

five Source SPDX SBOMs. Figure 9 displays charts that show the number of SBOMs that con-
tained a given component of all components identified in the set of SBOMs. We generated these
charts for Build and Source SBOMs in both CycloneDX and SPDX format.

CMU/SEI-2025-SR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

28

Build SBOMs Source SBOMs

CycloneDX

NodelS-goof Build SBOMs NodelS-goof Source SBOMs

SPDX

Figure 9: NodeJS-goof Component Commonality

Baseline Commonality

Nodejs-goof SBOMs (Baseline)

Number of SBOMs
with Given Component

B R R
TS T
o NN N

361

R T
O XN OO TTONDO T DN
SYITOUODDOOORNDO00

961

-
o
]

Component

Figure 10: NodeJS-goof Baseline SBOM Component Commonality

Figure 10 illustrates the great commonality among the SBOMs generated by our baseline tools.
All three SBOMs reported the same components for 564 components, and an additional 417 com-
ponents were reported by just one SBOM.

MineColonies

The readme entry for MineColonies describes it as “an interactive building mod that allows you to
create a thriving town within Minecraft” [IDTteam 2025]. MineColonies is written in Java.

CMU/SEI-2025-SR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 29
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Participants submitted 24 SBOMs in Build and Source types using both CycloneDX and SPDX
standards and appearing in all three formats (JSON, SML, YML). Of the 24 SBOMs submitted,

17 were in JSON format.

10

=N

ha

Build

MineColonies (Java)

JSON

, 1

B CycloneDX ®m SPDX

Figure 11: MineColonies Submissions by Type

Dependencies by Inspection

Source

A review of the code showed the following declared dependencies in the dependencies.gradle file
for MineColonies. Table 11 displays the percentage of the submitted JSON SBOMs that con-

tained the given declared dependency.

This target follows the Gradle!® conventions for declaring and building dependencies that are spe-
cific to the Minecraft mod community. Because it is specific to this community, the target may
not be as widely supported by SBOM authors as more conventional Gradle targets.

Table 11: MineColonies Dependencies by Inspection

Dependency Version

com.ldtteam:domum_or- 1.20.1-1.0.184-

namentum BETA

com.ldtteam:blockui 1.20.1-1.0.139-
BETA

com.ldtteam:structurize 1.20.1-1.0.740-
BETA

com.ldtteam:multipiston 1.20-1.2.30-
ALPHA

com.ldtteam:datagenera- 1.19.3-0.1.54-
tors ALPHA

18

CycloneDX SPDX
Build % Source % Build % Source %
25 17 0 20
25 17 0 20
25 17 0 20
25 17 0 20
25 17 0 20

For more information about Gradle, see https://gradle.org/.

CMU/SEI-2025-SR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 30
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

CycloneDX SPDX
Dependency Version
Build % Source % Build % Source %

mezz.jeijei 15.1.0.19 25 34 0 20

Component Commonality

We reviewed four Build and six Source CycloneDX SBOMs. We also reviewed two Build and
five Source SPDX SBOMs. Figure 12 displays charts that show the number of SBOMs that con-
tained a given component of all components identified in the set of SBOMs. We generated these
charts for Build and Source SBOMs in both CycloneDX and SPDX format.

Build SBOMs Source SBOMs

CycloneDX

MineColonies Build SBOMs MineColonies Source SBOMs

SPDX

Figure 12: MineColonies Component Commonality

Baseline Commonality

We were not able to use any of our tools on this software target because it does not include the
gradle.lockfile that Trivy and the Microsoft SBOM tool require for Gradle support, while Syft
does not support Gradle at all.

Gin
Gin is a web framework written in Go (Golang) [Gin-Gonic 2025].

Plugfest participants submitted 23 SBOMs in Build and Source types using both CycloneDX and
SPDX standards and appearing in all three formats (JSON, SML, YML). Of the 23 SBOMs sub-
mitted, 18 were in JSON format.

CMU/SEI-2025-SR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 31
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Gin (Go)
JSON

10

Build Source

m

f=

%]

® CycloneDX m SPDX

Figure 13: Gin Submissions by Type

Dependencies by Inspection

A review of the code showed the following declared dependencies in the go.mod file for Gin. Ta-
ble 12 displays the percentage of the submitted JSON SBOMs that contained the given declared
dependency.

Table 12: Gin Dependencies by Inspection

CycloneDX SPDX

Dependency Version
Build % Source % Build % Source %

github.com/bytedance/sonic v1.11.6 50 75 n/a 72
github.com/gin-contrib/sse v0.1.0 100 75 n/a 72
github.com/go-play- v10.20.0 100 50 n/a 72
ground/validator
github.com/goccy/go-json v0.10.2 50 75 n/a 72
github.com/json-iterator/go v1.1.12 50 75 n/a 72
github.com/mattn/go-isatty v0.0.20 100 75 n/a 72
github.com/pelletier/go-toml = v2.2.2 100 50 n/a 72
github.com/quic-go/quic-go ~ v0.43.1 100 75 n/a 72

Component Commonality

We reviewed two Build and eight Source CycloneDX SBOMs. We also reviewed seven Source
SPDX SBOMs. Although one SPDX Build SBOM was submitted, its contents did not provide an-
ything useful, so we were unable to use it to generate a chart. Figure 14 displays charts that show
the number of SBOMs that contained a given component of all components identified in the set of

CMU/SEI-2025-SR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 32
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SBOMSs. We generated these charts for Build and Source SBOMs in both CycloneDX and SPDX
format.

Build SBOMs Source SBOMs
x
o 2
1]
=
o
[&]
>
O
Gin Source SBOMs
>
o
o
w)

Figure 14: Gin Component Commonality

Baseline Commonality

Gin SBOMs (Baseline)

Number of SBOMs
with Given Component

1 35 7 91113151719212325272931333537394143 4547

Component

Figure 15: Gin Baseline SBOM Component Commonality

Figure 15 indicates that there was great commonality among the SBOMs generated by our base-
line tools. All three SBOMs reported the same components except for a couple of components re-
ported by just one SBOM.

CMU/SEI-2025-SR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 33
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Dependency Track

The readme entry for Dependency Track describes it as “an intelligent Component Analysis plat-
form that allows organizations to identify and reduce risk in the software supply chain” [OWASP
2025d]. Dependency Track is written in Java.

Plugfest participants submitted 30 SBOMs in Build and Source types using both CycloneDX and
SPDX standards and appearing in all three formats (JSON, SML, YML). Of the 30 SBOMs sub-
mitted, 22 were in JSON format.

Dependency Track
JSON

Build Source

W CycloneDX ™ SPDX

Figure 16: Dependency Track Submissions by Type

Dependencies by Inspection

A review of the code showed the following declared dependencies in the pom.xml file for De-
pendency Track. Table 13 displays the percentage of the submitted JSON SBOM:s that contained
the given declared dependency.

Table 13: Dependency Track Dependencies by Inspection

CycloneDX SPDX

Dependency Version
Build % Source % Build % Source %
org.json/json 20240303 40 100 60 83
com.github.package- 1.5.0 40 100 60 33
url/packageurl-java
org.apache.lucene/lucene- 8.11.4 60 100 60 83
core
org.apache.lucene/lucene- 8.11.4 60 100 60 83
analyzers-common
org.apache.lucene/lucene- 8.11.4 60 100 60 83
queryparser
org.apache.lucene/lucene- 8.11.4 60 100 60 83
queries
CMU/SEI-2025-SR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 34

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

CycloneDX SPDX

Dependency Version

Build % Source % Build % Source %
org.apache.lucene/lucene- 8.11.4 60 100 60 83
sandbox
io.pebbletemplates/pebble 3.2.2 60 100 60 83
com.google.protobuf/proto- 4.28.2 60 100 60 83
buf-java
com.google.protobuf/proto- 4.28.2 60 100 60 83
buf-java-util
io.swagger.core.v3/swag- 2.1.22 40 100 60 66
ger-jaxrs2-jakarta
org.apache.httpcompo- 4514 40 100 60 83
nents/httpclient
org.apache.httpcompo- 5.4 40 100 60 83
nents.client5/httpclient5
org.apache.httpcompo- 4514 60 100 60 83
nents/httpmime
oauth.signpost/signpost- 211 60 100 60 83
core
org.brotli/dec 0.1.2 40 100 60 83
com.fasterxml.wood- 7.0.0 40 100 60 83
stox/woodstox-core
org.apache.maven/maven- 3.9.9 60 100 60 83
artifact
com.mi- 12.8.1.jre11 60 100 60 83
crosoft.sqlserver/mssql-jdbc
com.mysql/mysql-con- 8.2.0 40 100 60 83
nector-j
org.postgresql/postgresq| 42.7.4 40 100 60 83
com.google.cloud.sgl/mysql- 1.20.1 40 100 60 83
socket-factory-connector-j-8
com.google.cloud.sql/post- 1.20.1 40 100 60 83
gres-socket-factory
com.google.cloud.sgl/cloud- 1.20.1 40 100 60 83
sql-connector-jdbc-sqlserver
org.apache.commons/com- 1.27.1 60 100 60 83
mons-compress
org.apache.commons/com- 1.12.0 60 100 60 83
mons-text
io.github.resilience4j/resili- 220 40 100 60 83
encedj-retry
io.github.resiliencedj/resili- 2.2.0 40 100 60 83
encedj-ratelimiter
io.github.resilience4j/resili- 220 40 100 60 83
ence4j-micrometer
org.slf4j/log4j-over-s|f4j 2.0.16 60 100 60 83

CMU/SEI-2025-SR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

CycloneDX SPDX
Dependency Version
Build % Source % Build % Source %

org.kohsuke/github-api 1.323 40 100 60 83

Component Commonality

We reviewed five Build and six Source CycloneDX SBOMs. We also reviewed five Build and six
Source SPDX SBOMs. Figure 17 displays charts that show the number of SBOMs that contained

a given component of all components identified in the set of SBOMs. We generated these charts
for Build and Source SBOMs in both CycloneDX and SPDX formats.

Build SBOMs Source SBOMs

CycloneDX

Component

Dependency Track Build SBOMs Dependency Track Source SBOMs

SPDX

Figure 17: Dependency Track Component Commonality

CMU/SEI-2025-SR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

36

Baseline Commonality

Dependency Track SBOMs (Baseline)

Number of SBOMs
with Given Compoenent

M~ N A SO W AN N
L B A B o B~ S Ty Y= = o S N« B = T

103
109
115
121
127
133
139
145

Component

Figure 18: Dependency Track Baseline SBOM Component Commonality

The Syft and Trivy tools had more commonality than the chart displays because the names used in
Trivy for this target included the group name as a prefix for the name, while Syft did not (e.g.,
commons-compress versus org.apache.commons:commons-compress). The Microsoft SBOM tool
relies on the Maven!® command-line tool (mvn) to parse dependencies in the Maven pom.xml.
The mvn tool failed to process that file for this target.

PHPMailer

The readme entry for PHPMailer describes it as “a full-featured email creation and transfer class
for PHP” [PHPMailer 2025]. PHPMailer is written in PHP, a general-purpose scripting language
geared towards web development.

Plugfest participants submitted 21 SBOMs, all in Source type using both CycloneDX and SPDX
standards and appearing in all three formats (JSON, SML, YML). Of the 21 SBOMs submitted,
16 were in JSON format.

% For more information about Maven, see https://maven.apache.org/.

CMU/SEI-2025-SR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 37
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

https://maven.apache.org/

PHPMailer (PHP)
JSON

CycloneDX SPDX

Figure 19: PHPMailer Submissions by Type

Dependencies by Inspection

A review of the code showed the following declared dependencies in the composer.json file for
PHPMailer. Table 14 displays the percentage of the submitted JSON SBOMSs that contained the
given declared dependency.

Table 14: PHPMailer Dependencies by Inspection

CycloneDX SPDX
Dependency Version
Build % Source % Build % Source %
ext-ctype * n/a n/a ext-ctype *
ext-filter * n/a n/a ext-filter *
ext-hash * n/a n/a ext-hash *

This target includes only legacy dependencies that are now embedded in PHP, so no meaningful
manual check is feasible.

Component Commonality

We reviewed nine Build and seven Source CycloneDX SBOMs. There were no SBOMs in SPDX
format submitted. Figure 20 displays charts that show the number of SBOMs that contained a
given component of all components identified in the set of SBOMs. We generated these charts for
Source SBOMs in both CycloneDX and SPDX format. There were no Build SBOMs given the
nature of PHPMailer.

CMU/SEI-2025-SR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 38
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Source SBOMs

CycloneDX

Component

PHPMailer Source SBOMs

SPDX

109

Component

Figure 20: PHPMailer Component Commonality

Baseline Commonality

None of the baseline tools found dependencies because they either didn’t support the PHP com-
poser.json artifact or because the dependencies listed are all now part of the PHP language itself.

id
The readme entry for jq describes it as “a lightweight and flexible command-line JSON processor
akin to sed.awk,grep, and friends for JSON data. It’s written in portable C and has zero runtime

dependencies, allowing you to easily slice, filter, map, and transform structured data” [Jqlang
2025].

Plugfest participants submitted 32 SBOMs in Build and Source types using both CycloneDX and
SPDX standards and appearing in all three formats (JSON, SML, YML). Of the 32 SBOMs sub-
mitted, 26 were in JSON format.

CMU/SEI-2025-SR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 39
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

i9(C)

JSON
10
8
6
4
- HN
0
Build Source

W CycloneDX m SPDX

Figure 21: jg Submissions by Type

Dependencies by Inspection

A review of the code showed the following declared dependencies in the .gitmodules file for jq.
Table 15 displays the percentage of the submitted JSON SBOMs that contained the given de-
clared dependency.

Table 15: jq Dependencies by Inspection

CycloneDX SPDX
Dependency Version
Build % Source % Build % Source %
oniguruma nil 20 11 0 0

Note: This target has only one dependency, which is optional, so it is equally correct to include or exclude it.

Component Commonality

We reviewed five Build and nine Source CycloneDX SBOMs. We also reviewed four Build and
eight Source SPDX SBOMs. Figure 22 displays charts that show the number of SBOMs that con-
tained a given component of all components identified in the set of SBOMs. We generated these
charts for Build and Source SBOMs in both CycloneDX and SPDX format.

CMU/SEI-2025-SR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 40
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Build SBOMs Source SBOMs

CycloneDX

jq Build SBOMs jg Source SBOMs

SPDX

Figure 22: jg Component Commonality

Baseline Commonality

ja SBOMs (Baseline)

| \

i 2 3 4 5 6 7 &8 9 10 11 12 13 14 15

Number of SBOMs
with Given Compoeonet

Component
Figure 23: jq Baseline SBOM Component Commonality

The jq target does not have any explicit C-language dependencies, but it does include some Py-
thon dependencies that are used to build the project documentation. The Microsoft SBOM tool did
not find these dependencies because it does not support the pip files that this target uses.

OpenCV

OpenCV.org describes OpenCV as “the world’s biggest computer vision library. OpenCV is open
source, contains over 2500 algorithms, and is operated by the non-profit Open Source Vision
Foundation” [OpenCV 2025].

CMU/SEI-2025-SR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 41
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Plugfest participants submitted 25 SBOMs in Build and Source types using both CycloneDX and
SPDX standards and appearing in all three formats (JSON, SML, YML). Of the 25 SBOMs sub-
mitted, 20 were in JSON format.

OpenCV (C++)
JSON

10

0 .. I.

Build Source

B

%]

B CycloneDX M SPDX

Figure 24: OpenCV Submissions by Type

Dependencies by Inspection

We did not manually inspect dependencies for OpenCV, because they are included using a com-
plex make file with multiple options, and many dependencies are duplicated in the OpenCV re-
pository itself.

Component Commonality

We reviewed four Build and eight Source CycloneDX SBOMs. We also reviewed three Build and
five Source SPDX SBOMs. Figure 25 displays charts that show the number of SBOMs that con-
tained a given component of all components identified in the set of SBOMs. We generated these
charts for Build and Source SBOMs in both CycloneDX and SPDX format.

CMU/SEI-2025-SR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 42
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Build SBOMs

Source SBOMs

SBOMs with Given

CycloneDX

Number of

Component

OpenCV Build SBOMs OpenCV Source SBOMs

SPDX

14 710131619222528313437

Component

Component

Figure 25: OpenCV Component Commonality

Baseline Commonality

OpenCV SBOms (Baseline)

Number of SBOMs
with Given Component

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37

Component

Figure 26: OpenCV Baseline SBOM Component Commonality

The baseline tools found various dependencies among the modules included within the source
code repository. The presence or absence of these modules depends on what build options were
chosen when building the library. None of these modules is a C++ library dependency except for
the ones copied directly from their origin repository to the OpenCV repository.

Hexyl
The readme entry for Hexyl describes it as “a hex viewer for the terminal. It uses a colored output

to distinguish different categories of bytes (NULL bytes, printable ASCII characters, ASCII

CMU/SEI-2025-SR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 43
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

whitespace characters, other ASCII characters and non-ASCII)” [Sharkdp 2025]. Hexyl is written
in Rust.

Plugfest participants submitted 25 SBOMs in Build and Source types using both CycloneDX and
SPDX standards and appearing in all three formats (JSON, SML, YML). Of the 25 SBOMs sub-
mitted, 17 were in JSON format.

Hexyl (Rust)
JSON

10

Build Source

B

M

B CycloneDX ®SPDX

Figure 27: Hexyl Submissions by Type

Dependencies by Inspection

A review of the code showed the following declared dependencies in the cargo.toml file for
Hexyl. Table 16 displays the percentage of the submitted JSON SBOM:s that contained the given
declared dependency.

Table 16: Hexyl Dependencies by Inspection

CycloneDX SPDX
Dependency Version
Build % Source % Build % Source %
anyhow 1.0 100 100 75 100
const_format 0.2 100 100 75 100
libc 0.2 100 100 75 100
owo-colors 3 100 100 75 100
supports-color 2 100 100 75 100
thiserror 1.0 100 100 75 100
terminal_size 0.2 100 100 75 100
CMU/SEI-2025-SR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 44

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Component Commonality

We reviewed three Build and six Source CycloneDX SBOMs. We also reviewed four Build and
four Source SPDX SBOMs. Figure 28 displays charts that show the number of SBOMs that con-
tained a given component of all components identified in the set of SBOMs. We generated these
charts for Build and Source SBOMs in both CycloneDX and SPDX format. We mapped both
Build and Source SBOM components on the same chart with the first 78 components aligned. In
this case, we were able to ensure the components were aligned across both SBOMs, since the
number of components was relatively low.

Components per SBOM
(3 Build, 6 Source SBOMs)

CycloneDX

Numt
Q46
2

Hexyl Build SBOMs Hexyl Source SBOMs

SPDX

Component

Figure 28: Hexyl Component Commonality

Baseline Commonality

Hexyl SBOMs (Baseline)

w

with Given Component

Component

Figure 29: Hexyl Baseline SBOM Component Commonality

CMU/SEI-2025-SR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 45
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Figure 29 indicates that there was great commonality among the SBOMs generated by our base-
line tools. All three SBOMs reported the same 149 components. We noticed what appears to be a
bug in the Microsoft SBOM tool in reporting the purl of Rust cargo dependencies. All reported
purl values included an extra forward slash and ended in the hash character (e.g.,
pkg:cargo//termtree@0.4.1# rather than pkg:cargo/termtree@0.4.1). Because of this bug, the Mi-
crosoft SBOM tool reported the last 48 counted components essentially in duplicate: once with
the hash (#) and once without the hash. So, only 24 components actually existed. Participants re-
ported these components this way for two SBOMs. (Figure 29 reflects this count in the right-hand
quarter.)

CMU/SEI-2025-SR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 46
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Bibliography

URLs are valid as of the publication date of this report.

[Auto-ISAC 2025]
Automotive Information Sharing and Analysis Center (ISAC). Auto-ISAC Website. March 10,
2025 [accessed]. https://automotiveisac.com/

[Chase 2024]

Chase, Penny; Zuk, Margie; & Coley, Steven Christey. Data Normalization Challenges and Miti-
gations in Software Bill of Materials (SBOM) Processing. MITRE Corporation. October 24, 2024.
https://www.mitre.org/news-insights/publication/data-normalization-challenges-mitigations-soft-
ware-bill-materials-processing

[CIPAC 2023a]

Critical Infrastructure Partnership Advisory Council (CIPAC). Securing the Software Supply
Chain: Recommended Practices for Software Bill of Materials Consumption. CIPAC. November
2023. https://www.cisa.gov/sites/default/files/2024-

08/SECURING _THE_SOFTWARE _SUPPLY_CHAIN RECOMMENDED_PRACTICES FOR
_SOFTWARE BILL_OF MATERIALS CONSUMPTION-508.pdf

[CIPAC 2023b]

Critical Infrastructure Partnership Advisory Council (CIPAC). Securing the Software Supply
Chain: Recommended Practices for Managing Open-Source Software and Software Bill of Mate-
rials. CIPAC. December 2023. https://media.defense.gov/2023/Dec/11/2003355557/-1/-
1/0/ESF_SECURING THE _SOFTWARE SUPPLY CHAIN%20RECOMMENDED%20PRAC
TICES%20FOR%20MANAGING%200PEN%20SOURCE%20SOFTWARE%20AND%20SOF
TWARE%20BILL%200F%20MATERIALS.PDF

[CISA 2023]

Cybersecurity and Infrastructure Security Agency (CISA). Types of Software Bill of Material
(SBOM) Documents. CISA. April 21, 2023. https://www.cisa.gov/sites/default/files/2023-
04/sbom-types-document-508c.pdf

[CISA 2024]

Cybersecurity and Infrastructure Security Agency (CISA). Framing Software Component Trans-
parency: Establishing a Common Software Bill of Materials (SBOM), Third Edition. CISA. Sep-
tember 3, 2024. https://www.cisa.gov/sites/default/files/2024-

10/SBOM%20Framing%?20Software%20Component%20Transparency%202024.pdf

[CISA 2025]
Cybersecurity and Infrastructure Security Agency (CISA). CISA Software Bill of Materials
(SBOM). CISA Website. March 10, 2025 [accessed]. https://www.cisa.gov/sbom

CMU/SEI-2025-SR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 47
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

https://automotiveisac.com/
https://www.mitre.org/news-insights/publication/data-normalization-challenges-mitigations-software-bill-materials-processing
https://www.mitre.org/news-insights/publication/data-normalization-challenges-mitigations-software-bill-materials-processing
https://www.cisa.gov/sites/default/files/2024-08/SECURING_THE_SOFTWARE_SUPPLY_CHAIN_RECOMMENDED_PRACTICES_FOR_SOFTWARE_BILL_OF_MATERIALS_CONSUMPTION-508.pdf
https://www.cisa.gov/sites/default/files/2024-08/SECURING_THE_SOFTWARE_SUPPLY_CHAIN_RECOMMENDED_PRACTICES_FOR_SOFTWARE_BILL_OF_MATERIALS_CONSUMPTION-508.pdf
https://www.cisa.gov/sites/default/files/2024-08/SECURING_THE_SOFTWARE_SUPPLY_CHAIN_RECOMMENDED_PRACTICES_FOR_SOFTWARE_BILL_OF_MATERIALS_CONSUMPTION-508.pdf
https://media.defense.gov/2023/Dec/11/2003355557/-1/-1/0/ESF_SECURING_THE_SOFTWARE_SUPPLY_CHAIN%20RECOMMENDED%20PRACTICES%20FOR%20MANAGING%20OPEN%20SOURCE%20SOFTWARE%20AND%20SOFTWARE%20BILL%20OF%20MATERIALS.PDF
https://media.defense.gov/2023/Dec/11/2003355557/-1/-1/0/ESF_SECURING_THE_SOFTWARE_SUPPLY_CHAIN%20RECOMMENDED%20PRACTICES%20FOR%20MANAGING%20OPEN%20SOURCE%20SOFTWARE%20AND%20SOFTWARE%20BILL%20OF%20MATERIALS.PDF
https://media.defense.gov/2023/Dec/11/2003355557/-1/-1/0/ESF_SECURING_THE_SOFTWARE_SUPPLY_CHAIN%20RECOMMENDED%20PRACTICES%20FOR%20MANAGING%20OPEN%20SOURCE%20SOFTWARE%20AND%20SOFTWARE%20BILL%20OF%20MATERIALS.PDF
https://media.defense.gov/2023/Dec/11/2003355557/-1/-1/0/ESF_SECURING_THE_SOFTWARE_SUPPLY_CHAIN%20RECOMMENDED%20PRACTICES%20FOR%20MANAGING%20OPEN%20SOURCE%20SOFTWARE%20AND%20SOFTWARE%20BILL%20OF%20MATERIALS.PDF
https://www.cisa.gov/sites/default/files/2023-04/sbom-types-document-508c.pdf
https://www.cisa.gov/sites/default/files/2023-04/sbom-types-document-508c.pdf
https://www.cisa.gov/sites/default/files/2024-10/SBOM%20Framing%20Software%20Component%20Transparency%202024.pdf
https://www.cisa.gov/sites/default/files/2024-10/SBOM%20Framing%20Software%20Component%20Transparency%202024.pdf
https://www.cisa.gov/sbom

[DOC 2021]
U.S. Department of Commerce (DOC). The Minimum Elements for a Software Bill of Materials
(SBOM). National Telecommunications and Information Administration (NTIA). July 12, 2021.

https://www.ntia.doc.gov/files/ntia/publications/sbom_minimum_elements_report.pdf

[Gin-Gonic 2025]
Gin-Gonic. gin. GitHub Website. March 10, 2025 [accessed]. https://github.com/gin-gonic/gin

[Health-ISAC 2025]
Health Information Sharing and Analysis Center (ISAC). Health-ISAC Website. March 10, 2025
[accessed]. https://health-isac.org/

[HTTPie 2025]
HTTPie. HTTPie CLI. GitHub Website. March 10, 2025 [accessed].
https://github.com/HTTPie/cli

[IDTteam 2025]
IDTteam. minecolonies. GitHub Website. March 10, 2025 [accessed].
https://github.com/ldtteam/minecolonies

[ISO/IEC 2021]

International Organization for Standardization/International Electrotechnical Commission
(ISO/IEQ). Information Technology—SPDX® Specification V2.2.1. ISO/IEC 5962:2021. ISO/IEC.
2021. https://www.iso.org/standard/81870.html

[Jglang 2025]
Jqlang. jq. GitHub Website. March 10, 2025 [accessed]. https://github.com/jglang/jq

[Linux 2023]

The Linux Foundation. Software Package Data Exchange (SPD™) Specification, Version 1.0.
The Linux Foundation. September 31, 2023. https://spdx.dev/wp-content/up-
loads/sites/31/2023/09/spdx-1.0.pdf

[Linux 2024]

The Linux Foundation. Sofiware Package Data Exchange (SPD™) Specification, Version 3.0.1.
The Linux Foundation. December 31, 2024. https://spdx.dev/wp-content/up-
loads/sites/31/2024/12/SPDX-3.0.1-1.pdf

[NTIA 2019]

National Telecommunications and Information Administration (NTIA). Roles and Benefits for
SBOM Across the Supply Chain. NTIA. November 8, 2019. https://www.ntia.gov/files/ntia/publi-
cations/ntia_sbom_use cases_roles_benefits-nov2019.pdf

CMU/SEI-2025-SR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 48
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

https://www.ntia.doc.gov/files/ntia/publications/sbom_minimum_elements_report.pdf
https://github.com/gin-gonic/gin
https://health-isac.org/
https://github.com/HTTPie/cli
https://github.com/ldtteam/minecolonies
https://www.iso.org/standard/81870.html
https://github.com/jqlang/jq
https://spdx.dev/wp-content/uploads/sites/31/2023/09/spdx-1.0.pdf
https://spdx.dev/wp-content/uploads/sites/31/2023/09/spdx-1.0.pdf
https://spdx.dev/wp-content/uploads/sites/31/2024/12/SPDX-3.0.1-1.pdf
https://spdx.dev/wp-content/uploads/sites/31/2024/12/SPDX-3.0.1-1.pdf
https://www.ntia.gov/files/ntia/publications/ntia_sbom_use_cases_roles_benefits-nov2019.pdf
https://www.ntia.gov/files/ntia/publications/ntia_sbom_use_cases_roles_benefits-nov2019.pdf

[NTIA 2021a]

National Telecommunications and Information Administration (NTIA). Survey of Existing SBOM
Formats and Standards. NTIA. 2021. https://www.ntia.gov/sites/default/files/publica-
tions/sbom_formats_survey-version-2021_0.pdf

[NTIA 2021b]

National Telecommunications and Information Administration (NTIA). Sofiware Identification
Challenges and Guidance. NTIA. March 30, 2021. https://www.ntia.gov/files/ntia/publica-
tions/ntia_sbom_software_identity-2021mar30.pdf

[NTIA 2025]

National Telecommunications and Information Administration (NTIA). SBOM Plugfest I Sum-
mary. Google Docs. April 21, 2025 [accessed]. https://docs.google.com/document/d/1vtqjjZIreY-
IxFTTtwUSBD62CXEKu6T5pj7syxrJVcrA/edit?tab=t.0

[OASIS 2021]

Organization for the Advancement of Structured Information Standards (OASIS). Plugfest #2 —
20210622. Google Drive. June 22,2021. https://drive.google.com/drive/u/0/fold-
ers/1Ujxp8w7dhrL 6TNjSNxcaASbgPSoVTP1Y

[OpenCV 2025]
OpenCV Team. OpenCV. OpenCV Website. https://opencv.org/

[OWASP 2024]

Open Worldwide Application Security Project (OWASP) Foundation. CycloneDX v1.6: Now an
Ecma International Standard. CycloneDX Website. July 1, 2024. https://cyclonedx.org/news/cy-
clonedx-vl.6-now-an-ecma-international-standard/

[OWASP 2025a]

The Open Worldwide Application Security Project (OWASP) Foundation. Dependency-Track In-
troduction. Dependency Track Website. March 10, 2025 [accessed]. https://docs.dependen-

cytrack.org/

[OWASP 2025b]
The Open Worldwide Application Security Project (OWASP) Foundation. CycloneDX. OWASP.
March 10, 2025 [accessed]. https://cyclonedx.org/guides/CycloneDX%200ne%20Pager.pdf

[OWASP 2025c]

The Open Worldwide Application Security Project (OWASP) Foundation. CycloneDX: Depend-
ency Relationship Compositions. CycloneDX Website. March 10, 2025 [accessed]. https://cy-
clonedx.org/use-cases/compositions-dependencies/

[OWASP 2025d]

The Open Worldwide Application Security Project (OWASP) Foundation. dependency-track.
GitHub Website. March 10, 2025 [accessed]. https://github.com/DependencyTrack/dependency-
track

CMU/SEI-2025-SR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 49
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

https://www.ntia.gov/sites/default/files/publications/sbom_formats_survey-version-2021_0.pdf
https://www.ntia.gov/sites/default/files/publications/sbom_formats_survey-version-2021_0.pdf
https://www.ntia.gov/files/ntia/publications/ntia_sbom_software_identity-2021mar30.pdf
https://www.ntia.gov/files/ntia/publications/ntia_sbom_software_identity-2021mar30.pdf
https://docs.google.com/document/d/1vtqjjZIreYlxFTTtwUSBD62CXEKu6T5pj7syxrJVcrA/edit?tab=t.0
https://docs.google.com/document/d/1vtqjjZIreYlxFTTtwUSBD62CXEKu6T5pj7syxrJVcrA/edit?tab=t.0
https://drive.google.com/drive/u/0/folders/1Ujxp8w7dhrL6TNj5NxcaASbqPSoVTP1Y
https://drive.google.com/drive/u/0/folders/1Ujxp8w7dhrL6TNj5NxcaASbqPSoVTP1Y
https://opencv.org/
https://cyclonedx.org/news/cyclonedx-v1.6-now-an-ecma-international-standard/
https://cyclonedx.org/news/cyclonedx-v1.6-now-an-ecma-international-standard/
https://docs.dependencytrack.org/
https://docs.dependencytrack.org/
https://cyclonedx.org/guides/CycloneDX%20One%20Pager.pdf
https://cyclonedx.org/use-cases/compositions-dependencies/
https://cyclonedx.org/use-cases/compositions-dependencies/
https://github.com/DependencyTrack/dependency-track
https://github.com/DependencyTrack/dependency-track

[OWASP 2025¢]
The Open Worldwide Application Security Project (OWASP) Foundation. BOM Maturity Model.
OWASP Website. March 10, 2025 [accessed]. https://scvs.owasp.org/bom-maturity-model/

[PHPMailer 2025]
PHPMailer. PHPMailer. GitHub Website. March 10, 2025 [accessed]. https://github.com/PHP-
Mailer/PHPMailer

[PNNL 2025]
Pacific Northwest National Laboratory (PNNL). graph_merge. GitHub Website. March 10, 2025
[accessed]. https://github.com/pnnl/graph_merge

[Python 2025]
Python Software Foundation. Software Bill-of-Materials Information. Python Website. March 10,
2025 [accessed]. https://www.python.org/downloads/metadata/sbom/

[Sharkdp 2025]
Sharkdp. hexyl. GitHub Website. March 10, 2025 [accessed]. https://github.com/sharkdp/hexyl

[Snyk 2025]
Snyk Limited. nodejs-goof. GitHub Website. March 10, 2025 [accessed]. https://github.com/snyk-

labs/nodejs-goof

[White House 2021]
The White House. Improving the Nation’s Cybersecurity. Executive Order 14028. U.S. National
Archives. May 12, 2021. https://www.federalregister.gov/documents/2021/05/17/2021-10460/im-

proving-the-nations-cybersecurity

CMU/SEI-2025-SR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 50
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

https://scvs.owasp.org/bom-maturity-model/
https://github.com/PHPMailer/PHPMailer
https://github.com/PHPMailer/PHPMailer
https://github.com/pnnl/graph_merge
https://www.python.org/downloads/metadata/sbom/
https://github.com/sharkdp/hexyl
https://github.com/snyk-labs/nodejs-goof
https://github.com/snyk-labs/nodejs-goof
https://www.federalregister.gov/documents/2021/05/17/2021-10460/improving-the-nations-cybersecurity
https://www.federalregister.gov/documents/2021/05/17/2021-10460/improving-the-nations-cybersecurity

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, search-
ing existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regard-
ing this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters
Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of
Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY 2. REPORTDATE 3. REPORT TYPE AND DATES

(Leave Blank) May 2025 COVERED
Final

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
Software Bill of Materials (SBOM) Harmonization Plugfest 2024 FA8702-15-D-0002

6. AUTHOR(S)
David Tobar, Jessie Jamieson, Mark Priest, Sasank Vishnubhatla, and Jason Fricke

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Software Engineering Institute REPORT NUMBER
Carnegie Mellon University CMU/SEI-2025-SR-002
Pittsburgh, PA 15213

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
SEI Administrative Agent AGENCY REPORT NUMBER
AFLCMC/AZS nla
5 Eglin Street
Hanscom AFB, MA 01731-2100

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT 12B DISTRIBUTION CODE
Unclassified/Unlimited, DTIC, NTIS

13. ABSTRACT (MAXIMUM 200 WORDS)
This report describes the research findings and recommendations that resulted from the 2024 SBOM Harmonization Plugfest research
project. The SEI project team managed the Plugfest and conducted research into the submitted software bills of material (SBOMs) in
support of Cybersecurity & Infrastructure Security Agency (CISA). In this project, the SEI focused on understanding how differences in
SBOM generation can result in different SBOM outputs. After gaining a better understanding of what causes these differences, the SEI
project team developed recommendations for organizations to ensure more predictable and higher quality SBOMs. This report contains
six major sections: an introduction, an explanation of the SBOM Plugfest process, an overview of SBOM submissions from participants,
a description of the SE| project team’s analysis, the team’s findings, and the team’s recommendations.

14. SUBJECT TERMS 15. NUMBER OF PAGES
SBOM 61

16. PRICE CODE

17. SECURITY CLASSIFICATION OF 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION | 20. LIMITATION OF
REPORT OF THIS PAGE OF ABSTRACT ABSTRACT
Unclassified Unclassified Unclassified uL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18 298-102

CMU/SEI-2025-SR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 51

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

	Executive Summary
	Abstract
	1 Introduction
	1.1 Task
	1.2 Background
	1.2.1 SBOM Background
	1.2.2 SBOM Plugfest Background

	2 The Plugfest Process
	2.1 About the Plugfest
	2.2 Submission Instructions
	2.3 Methodology
	2.3.1 SBOM Analysis Tools
	2.3.2 Software Target Dependency Inspection
	2.3.3 Evaluation Criteria
	2.3.4 Baseline SBOMs
	2.3.5 SBOM Depth and Breadth

	3 Summary of SBOM Submissions
	4 SBOM Depth Analysis
	5 Findings
	6 Recommendations
	6.1 Recommendations for SBOM Minimum Elements
	6.2 Recommendations for SBOM Harmonization
	6.3 Recommendations for Future Research
	6.4 Recommendations for Improving Future Plugfests

	Appendix: Detailed SBOM Reviews by Software Target
	HTTPie
	Dependencies by Inspection
	Component Commonality
	Baseline Commonality

	NodeJS-goof
	Dependencies by Inspection
	Component Commonality
	Baseline Commonality

	MineColonies
	Dependencies by Inspection
	Component Commonality
	Baseline Commonality

	Gin
	Dependencies by Inspection
	Component Commonality
	Baseline Commonality

	Dependency Track
	Dependencies by Inspection
	Component Commonality
	Baseline Commonality

	PHPMailer
	Dependencies by Inspection
	Component Commonality
	Baseline Commonality

	jq
	Dependencies by Inspection
	Component Commonality
	Baseline Commonality

	OpenCV
	Dependencies by Inspection
	Component Commonality
	Baseline Commonality

	Hexyl
	Dependencies by Inspection
	Component Commonality
	Baseline Commonality

	Bibliography

