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Abstract

The Architecture Analysis & Design Language (AADL) is an SAE International standard for
the design and analysis of both the software and hardware architecture of performance-critical
real-time systems. The Error Model Annex, Version 2 (EMV2), extends AADL with concepts
to perform safety analyses, such as error types, error propagations, and the impact of errors
propagated on components. EMV2 builds on AADL concepts of components and ports to de-
fine error propagations and error state machines. These definitions rely on a precise definition
of the effect of an error being triggered in this system. The definitions of these concepts rely
on powerful abstractions, yet they are mostly defined in plain text. This report first proposes
a formal semantics for EMV2. Then, it shows how to leverage this semantics to generate fault
trees from an AADL model enriched with EMV2 information. Defining a formal semantics im-
proves the understanding of the EMV2 model, and the precision of model transformation from
EMV2 to analysis techniques.
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1 Introduction

The Architecture Analysis & Design Language (AADL) is an SAE International standard for
the design and analysis of both the software and hardware architecture of performance-critical
real-time systems [26]. AADL describes how components in such systems interact, how data
inputs and outputs are connected, and how software components are bound to hardware com-
ponents. The dynamic behavior of the system can be described via operational modes and
mode transitions: that is, AADL can describe the different configurations of the system and
the transitions between those configurations.

AADL provides a standard and machine-processable way to model system architecture that
permits the analysis of system properties. The language can, for example, describe timing re-
quirements, time and space partitioning, and safety properties. A system designer can then
perform analyses of the composed components that, for example, determine process schedula-
bility, communication latency, or even size and weight bounds for the physical system. From
these analyses, the designer can evaluate architectural tradeoffs and changes.

AADL can be used for multiple activities in multiple development phases, beginning with pre-
liminary system design. The language can be used by multiple tools to automate various lev-
els of modeling, analysis, implementation, integration, verification, and certification. Finally,
AADL is extensible: extensions, in the form of new properties and analysis-specific notations,
can be associated with components written in the core language. Notational extensions are
accessed via annex clauses within AADL component declarations. One such extension is the
Error Model Annex, Version 2 (EMV2) [27].

EMV2 is intended “to support qualitative and quantitative assessments of system reliability,
availability, safety, security, survivability, robustness, and resilience, as well as assure compli-
ance of the system design and implementation to the fault mitigation strategies specified in
the annotated architecture model of the embedded software, computer platform, and physi-
cal system” [27, E.1.(1)]. The notational language extensions, accessed through annex EMV2
{** ... xx} clauses in the AADL core text, enable the specification of fault types, fault
behavior of individual components, fault propagation affecting related components, aggrega-
tion of fault behavior and propagation in terms of the component hierarchy, and specifica-
tion of fault tolerance strategies expected in the actual system architecture [27, E.1.(3)]. Error
modeling is supported at three levels of abstraction:

1. Error propagation and flow focuses on components as error sources, sinks, and paths
and enables analysis of the effects of the errors propagated by one component on the
errors propagated by another component.

2. Component error behavior focuses on fault models of individual components. The model
identifies faults in the component, determines how they manifest as failure, and de-
scribes their interaction with incoming error propagations to produce outgoing error
propagations. Furthermore, the different error behavior states of the system and tran-
sitions between them are declared.

3. Composite error behavior focuses on relating the fault models of a system’s (compo-
nent’s) subsystems (subcomponents) to the fault model of the system itself.

Finally, EMV2 is intended to enable the assessments and analyses of SAE ARP4761 Guide-
lines and Methods for Conducting the Safety Assessment Process on Civil Airborne Systems
and Equipment [24] to be applicable to AADL models. Such assessments are diverse and in-
clude functional hazard assessments, failure mode and effect analyses, fault tree analysis, and
common cause analysis.
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1.1 This Report

Performing any one of the analyses of ARP4761 in an effective manner requires understanding
ezactly what behavior is described by an EMV2 model. The purpose of this report is thus to

* provide a formal semantics of EMV2

* demonstrate the usefulness of the semantics to the above intent by relying on the se-
mantics to formally describe how to generate a fault tree from a system with an AADL
model incorporating EMV2 error models

This report focuses on the component error behavior abstraction layer of EMV2. This layer
describes the behavior of each component as a state machine with a complex relationship to
internal error events and external error propagations:

The EMV2 supports the specification of component error behavior in terms of an
error behavior state machine with a set of states and transitions that occur under
specified conditions, as well as specification error, recover, and repair events that
are local to a component. They are associated with components to specify how
the error state of a component changes due to error events and error propagations
as well as due to repair events. Error events and states can indicate the type of
error they represent by referring to error types. The error behavior specification
also declares the conditions for outgoing error propagation in terms of the compo-
nent error behavior state and incoming error propagations. For example, the error
state of a component might change due to an error event of the component itself,
and/or due to an error propagated into that component from some other compo-
nent. This allows us to characterize the error behavior of an individual component
in terms [of] its own error events and in terms [of the| impact of incoming error
propagations from other components, as well as conditions under which outgoing
error propagations occur that can impact other components. [27, E.1.(8)]

The many nuances of the relationships and interactions of the features of the component be-
havior model are complicated and benefit from a formal semantic presentation.

1.2 A Semantics for EMV2

Our goal for the semantics presented herein is to contribute to a framework for reasoning
about the error behavior (e.g., propagations and state transitions) of a complete AADL sys-
tem that contains EMV2 error behavior declarations. Because EMV2 error behaviors define
state-based automata, such a system is a collection of automata connected to each other via
propagations (see Figure 1.1):

* The error behavior of each component as a whole is an automaton (e.g., B, C, D, and

S).

* The specific EMV2 component error behavior is one component of the component’s full
error behavior.

* The full behaviors of a component’s subcomponents contribute to the component’s full
error behavior.

* Even the EMV2 events themselves (e.g., E and F') are modeled as automata that con-
tribute to the overall component behavior. An occurrence of an event is represented by
an output from the event’s automaton.

* Inputs received from parent and sibling automata feed a component’s EMV2 behavior
automaton and its subcomponents’ automata.
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Figure 1.1: Diagram Showing the Relationships Among Behavioral and Event Automata

* Similarly, a component automaton’s output feeds the automata of its parent and sib-
lings.

A contribution of this work is to provide a formal description of the EMV2 behavior au-
tomaton associated with each component. This is an automaton specialized for the specifics
of EMV2 that combines concepts from multiple formalisms: probabilistic automata [23, 32],
Mealy machines [18], and symbolic automata [9, 33].

The definition of the behavior automaton is built on top of a denotational semantics [17, 28]
of the component error behavior and error types. EMV2 features that are not currently in-
cluded in the semantics include the typed aspect of the state machine, recover and repair
events, type mappings, error detection, composite error behavior, and error flows.

1.2.1 Condition Expressions

The main source of complexity in reasoning about EMV2 behavior is the “condition expres-
sion” used to control state transitions, out propagations, and error detections (although these
are not dealt with herein). These are rich logical expressions built from more basic “trigger
expressions” that test for the occurrence of an internal event or specific incoming error type
propagation. These can be combined using the standard Boolean operators. Additional primi-
tive operations, such as “all but n” and “n or less,” with their own complex meanings are also
available. Furthermore, condition expressions used in transitions may be evaluated with an
additional set of implicit assumptions about the component’s received propagations. All this
results in a complex entanglement of event occurrences, in propagations, out propagations,
and state transitions.

The fact that transitions (and out propagations) are governed by expressions rather than sin-
gular input symbols evokes the use of symbolic automata. Essentially, the core idea is to eval-
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uate the condition to the set of input symbols that make the condition true and to consider
the transition/propagation selected when the current input symbol is one of the satisfying
symbols. Considering this, defining a denotational semantics for the condition expressions is
a prerequisite to giving a definition of a behavior automaton.

1.2.2 Outline: Semantics

As suggested above, condition expressions depend on internal events, incoming error propaga-
tions, and error types and type sets. Condition expressions are thus evaluated in a semantic
environment that contains information about the currently occurring event and in propaga-
tions. It is this necessity that frames the presentation of the semantics:

* Section 3 formalizes the EMV?2 type system. This includes declared error types, ex-
tended types, type aliases, type sets and type aliases, and type products. Error types
and type sets play an integral role in declaring propagations and conditions, so they are
presented first.

* Section 4 presents the syntactic and semantic models of the AADL model with EMV2
declarations. These are based on a primitive object-oriented representation.

* Section 4 also describes the semantics of the basic EMV2 component declarations error
event, error behavior state, and propagation.

* Section 5 describes the environment of a component—to be used to describe the evalua-
tion of condition expressions.

*» Sections 6 to 8 describe the semantics of condition expressions. As stated above, these
are unusual: instead of operating on an environment and returning a value, a condition
evaluates to the set of environments that cause the expression to be satisfied. Expres-
sions are explained in three parts:

— Section 6 describes the basic logical operators or and and and the “trigger expres-
sions.”

— Section 7 describes the complex assumptions required when evaluating conditions
for transitions. This section shows how to reduce these requirements to the basic
logical operators.

— Section 8 describes the semantics of the “primitive operators” all, ormore, and
orless in terms of basic logical operators.

* Finally, Section 9 describes the specifics of the behavior automaton itself. This is funda-
mentally based on the

— use of environments as the input symbols to the automaton

— conversion of condition expressions to sets of environments to evaluate transitions
and out propagations

1.3 Generation of Fault Trees from EMV2

The de facto canonical fault tree reference Fault Tree Handbook with Aerospace Applications
describes fault tree analysis (FTA):

FTA can be simply described as an analytical technique, whereby an undesired
state of the system is specified (usually a state that is critical from a safety or re-
liability standpoint), and the system is then analyzed in the context of its envi-
ronment and operation to find all realistic ways in which the undesired event (top
event) can occur. The fault tree itself is a graphic model of the various parallel
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and sequential combinations of faults that will result in the occurrence of the pre-
defined undesired event. The faults can be events that are associated with com-
ponent hardware failures, human errors, software errors, or any other pertinent
events which can lead to the undesired event. A fault tree thus depicts the logical
interrelationships of basic events that lead to the undesired event, the top event of
the fault tree. [34]

Fundamentally there are two steps to fault tree analysis: (1) production of the fault tree and
(2) analysis of the fault tree. Typically, fault trees are produced by hand based on processes
intended to coerce the producer to determine all the relevant sources of faults and their effects
upon the system. The proliferation of formal architecture descriptions has led to techniques to
automatically generate fault trees (e.g., [2, 7, 10, 11, 13, 20, 22, 35)).

Analysis of a fault tree is either qualitative or quantitative:

* Qualitative evaluation determines the sets or sequences of events that can cause the top
event to become true.

* Qualitative evaluation determines the probability of the top event becoming true.

Additional summary material on fault trees is presented in Section 2.1. This report does not
concern the analysis of a fault tree. This report does, however, contribute a novel semantics-
based technique for generating a fault tree from AADL models with EMV2 component error
behavior descriptions.

1.3.1 Related Work

Previous work describes techniques for deriving fault trees from AADL models using both the
original error model annex [7, 13, 20] and the current EMV?2 [10]. These existing techniques
are insufficient for our work:

+ Some are based on an obsolete annex language [25] that is significantly different from
the current version.

* None of the techniques are grounded in a formal error modeling semantics.

* None of the techniques present a comprehensive description of exactly how the fault tree
is generated. Indeed, without an underlying semantic model, this is difficult.

Other work describes techniques for generating fault trees from general descriptions of sys-
tems [2, 11, 22, 35]. In most cases, this work is not grounded in an architecture description
language or a system modeling approach with well-defined semantics, as is AADL. See Sec-
tion 13.2.2, however, for a discussion of how techniques from these works may influence future
work.

Furthermore, the approach presented herein is based on component fault trees [15, 16] and is,
therefore, composable and component oriented.
1.3.2 Outline: Fault Tree Generation
The details of fault tree generation are provided in several sections of this report:
* Background on fault tree analysis is presented in Section 2.1.
* Background on component fault trees is presented in Section 2.2.
* A general description of the fault tree generation process is given in Section 10.

* A formal description of how a component fault tree is derived from each AADL compo-
nent is given in Section 11.
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* A formal description of how a fault tree for a complete system is generated is given in
Section 12.
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2 Background

This section provides an overview of the fault tree concepts utilized by the approach described
herein. It includes a brief description of both static and dynamic fault trees, the temporal
algebra of Merle, and component fault trees. The section concludes with a summary of the
mathematical notation and concepts used throughout.

2.1 Fault Trees

Fundamentally, a fault tree is a graphical representation of a Boolean formula expressing the
condition under which the top event occurs: the so-called structure function of the top event.
The leaf nodes are known as basic events and represent a fault that requires no further de-
velopment. Intermediate events are represented by the output of a “gate” that permits or
inhibits the passage of fault logic. Standard fault trees use AND and OR gates representing
logical conjunction and disjunction. Thus, a fault tree can be thought of as the parse tree of
a Boolean expression in which the basic events are Boolean variables. This style of fault tree
is known as a static fault tree: it is unable to capture time-dependent relationships between
events.

2.1.1 Dynamic Fault Trees

A dynamic fault tree (DFT) is capable of capturing happens-before relationships between
events [8]. The priority AND gate, PAND, is true only when (1) both its inputs are true and
(2) the first input became true before the second input became true. Specifically, it is not true
when the second input becomes true before the first input. The other standard dynamic gates
are

* FDEP, functional dependency, which indicates that a set of output events become true
when the input event becomes true

* SEQ, sequence enforcing, which forces the input events to occur only in the given order

* SPARE, spare component, which isolates a spare component from failures until it is acti-
vated by the failure of one or more previous components

The only dynamic gate used by the fault trees generated by the process described herein is
PAND.

Analysis, both quantitative and qualitative, of dynamic fault trees is more complicated and
usually reduced to Markov chains. To achieve improved performance, modern analysis tools
for DFTs divide the DFT into static and dynamic subgraphs (e.g., Basgoze et al. [3]).

2.1.2 The Structure Function of Dynamic Fault Trees

While static fault trees are easily understood in terms of Boolean algebra, the time-dependent
nature of the dynamic gates in DFTs has historically made them difficult to formally reason
about. The development of a formal time-based algebra by Merle [19] has greatly improved
the situation by allowing a structure function to be produced from a DFT.! Various sorts of
analyses can then be performed by manipulating the structure function. Important to the

TRecently the authors became aware of a similar effort by Schilling [31]. Although discovered too late to have an
influence on the work described herein, it is worth noting that Schilling’s formalism does support negation and thus
the analysis of non-coherent [29] fault trees. As a practical matter, however, there unfortunately does not appear to be
any tool support.
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d(a) if d(a) < d(b) d(b)  if d(a) < d(b)
dla+b)={ d(a) ifda)=db) da-b)=1{ dla) ifd(a)=d(b)
d(b) if d(a) > d(b) d(a) if d(a) > d(b)

Figure 2.1: Temporal Definitions of the or (+) and and (-) Operators

work herein, the theorems for the algebra can be used to prove the correctness of various sim-
plifications of the DFT. A brief summary of the algebra is thus presented here.

2.1.2.1 Temporal Functions

The algebra is based on a Boolean model of events, where an event is a temporal function in
R U {+o00} — B, where

e RT is the set of non-negative real numbers.

* +o00 represents the time point that is unreachable such that
-Vt e RT.t < +o0
- 400 £ 400

* B is the set of Boolean values {0, 1}, or alternatively {false, true}.

Every event a has a single date of occurrence, denoted d(a), such that for 0 < ¢ < d(a), a(t)
=0, and for t > d(a), a(t) = 1. An event function can thus be defined solely by its date of
occurrence.

Figure 2.1 shows the definitions of the traditional Boolean disjunction and conjunction op-
erators. The logical identities for + and - are L and T, respectively, where d(L) = o0
and d(T) = 0. Proofs of the standard logical theorems proceed following the tripartite
scheme shown above, that is, considering when d(a) < d(b), when d(a) = d(b), and when
d(a) > d(b). The standard commutative, associative, idempotent, distributive, and identity
laws are proven. These operators are sufficient for representing static fault trees.

To represent dynamic fault trees, additional time-sensitive operators are required. The (non-
inclusive) before operator < indicates if a occurs before b, or if a occurs and b does not occur
at all. The simultaneous operator A indicates whether a and b have the same date of occur-
rence. These operators are defined in Figure 2.2. An important assumption in fault trees (and
for EMV2) is that any two basic events a and b cannot occur simultaneously. This can be ex-
pressed using the expression a A b = 1. These two operators can be combined to produce the
inclusive before operator <: a Ib=a <b+ a A b, or equivalently

d(a) if d(a) < d(b)
d(a<b) =14 d(a) if d(a) = d(b)
too if d(a) > d(b)

Specifically, a <b occurs when a occurs before b, when a occurs at the same time as b, or when
a occurs and b does not occur at all. Generally speaking, the inclusive before is preferred to
the non-inclusive before during the creation of a structure function from a DFT. It is shown,
however, that during reduction of the structure function to a canonical form, the inclusive be-
fore operators can be eliminated; the canonical form contains non-inclusive before operators
only.

Merle proves a number of basic theorems and simplification rules about the three temporal
operators [19]. These are not shown here—those that are necessary for later proofs are pro-
vided when needed.
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d(a) if d(a) < d(b) +oo if d(a) < d(b)
dla<ab) =< +oo ifd(a)=d(b) dalAb)=< d(a) ifd(a)=d(b)
+oo if d(a) > d(b) +oo if d(a) > d(b)

Figure 2.2: Temporal Definitions of the Before (<1) and Simultaneous (A\) Operators

' Voter 2003 +
>=1
& & &

LT T ]
i A i

Figure 2.3: A CFT for a 2 out of 3 Voting Component (Source: Kaiser et al. [15].%)

2.1.2.2 Behavior Model of Dynamic Gates

Most importantly, Merle provides so-called behavior models of dynamic fault tree gates using
the temporal algebra [19]. The most important of these for the work described herein is the
model of the priority AND (PAND) gate, traditionally defined using language such as “A and
B when A is before B.” Merle, however, has formally defined the meaning of before—the oper-
ator <—and thus the PAND gate whose inputs are represented by the structure functions A
and B can be represented by the structure function B - (A < B).

Merle is able to formally prove using the temporal algebra the long-held belief that the func-
tional dependency gate (FDEP) is logically equivalent to the OR gate.?

Merle relies on Boudali and associates [4] to conclude that sequence (SEQ) gates can be re-
placed with cold spare (SPARE) gates and therefore provides no formal modeling of the SEQ
gate. This conclusion is also made by Pai and Dugan [21]. It is, however, incorrect as shown
by Junges and colleagues [14].

2.2 Component Fault Trees

The process to generate a fault tree from an AADL and EMV2 model described herein is
based on using component fault trees (CFTs) [15, 16]. As the name implies, a CFT brings hi-
erarchical modules to the structure of a fault tree. Generally speaking, a CFT is a directed
graph built from fault tree gates and specialized nodes known as ports. An out port repre-
sents a logical flow out of the CFT, and an in port represents a logical flow into a CFT. An
example CFT with three in ports and one out port that abstracts a 2-of-3 gate is shown in
Figure 2.3. Internal to a CFT are standard fault tree gates and events. Every event is inter-
nal to some CFT; events internal to one component are stochastically independent from those
that are internal to another component. Additionally, a CFT may contain another CFT in the
same way that a fault tree gate node is used: subgraphs flow into the in ports of the nested
CFT, and the out ports of the nested CFT can flow into multiple parent nodes. Pragmatically
speaking, each out port of a CFT is a Boolean function (i.e., a predicate) parameterized by
the CFT’s in ports.

2The authors believe, however, that there is value in maintaining a distinction between the FDEP and OR gates
during specification or construction of the fault tree because they represent fundamentally different design intents.
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Main Auxiliary
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Main Controller Aux Controller
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Main CPU Down Auxiliary CPU Down
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Power Unit Down

Figure 2.4: A CFT with Three Sub-CFTs. “Main Controller” and “Aux Controller” are two different in-
stances of the same component type (Source: Kaiser et al. [15]3)

By connecting together the in and out ports of different CFTs, a component fault tree for the
entire system is produced. Each component type in a model is associated with a CFT that
abstracts its fault behavior. CFTs are connected based on the architectural structure of the
system. If a particular component type appears multiple times in the model, multiple copies
(instances) of the associated CFT are introduced into the final fault tree. The CFT in Fig-
ure 2.4 is constructed from three CFTs and an AND gate; in particular “Main Controller”
and “Aux Controller” are two instances of the same CFT component.

In summary, CFTs

* mirror and exploit hierarchical modularization in system architectures. This makes them
particularly well suited for analyzing AADL models.

* enable reusable fault tree modules

The overall vision is that a component should ship with a CFT that describes its behavior,
and the system integrator would incorporate the CFTs of all the system components into the
CFT of the system as a whole. Unfortunately, as is described in Section 10.4.2, this is not
achievable for AADL models, although a different sort of reuse is presented.

2.2.1 Obtaining a CEG from a CFT

A traditional cause—effect graph (CEG, fault tree as a graph) can be derived from any out

port of any CFT; the chosen port is known as the root port. A depth-first search (e.g., Aho et
al. [1, §6.5]) from the out port into the CFT is used to construct the fault tree. The search re-
cursively proceeds into any sub-CFT it encounters. A particular CF'T may be visited multiple
times as the search enters through different output ports. A CFT is exited as the search trav-
els through an input port, where the search then continues in the internals of the surrounding

3Copyright © 2003, Australian Computer Society, Inc. This paper appeared at the 8th Australian Workshop on
Safety Critical Systems and Software (SCS’03), Canberra. Conferences in Research and Practice in Information
Technology, Vol. 33. P. Lindsay & T. Cant, Eds.
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CFT. The CEG includes the event and gate nodes only; ports are elided and, as previously
described, nested CFTs are traversed into.

2.2.2 Formalism

A CFT is formalized as a 4-tuple by Kaiser and colleagues [15]. The formalism is presented
here with a some notational modifications to make it consistent with the rest of the notation
used herein. A CFT is a 4-tuple (N, G, S, E), where

* N is a set of simple nodes partitioned into the disjoint subsets Njntern Of internal events,
N, of input ports, and Ng,: of output ports.

* G is the set of gates, where each g € G has a single output port g.out, one or more input
ports g.in; where i € N, and a Boolean formula, such as g.out = g.in; A g.iny, where g is a
specific gate in G. Set Gin = U cg{g.ini} and set Gou = U c{g-0ut}

* S is the set of subcomponents (i.e., nested CFTs). Each s € S has one or more out-
put ports s.outj, one or more input ports s.inj, and a mapping between the subcompo-
nent’s ports and those of the component’s associated CFT. Set S, = [J,cg{s-ini} and

set Sout = U,cgis-outi}.

* E C (NinternUNnUGoutUSout) X (NowtUG1nUS), ) is the set of edges: for (s,d) € E, s is the
source of the edge and d is the destination of the edge. That is, edges point towards the
output ports. No two edges may share the same target: Asq, s2,d.(s1,d) € E'A (s2,d) €
E N s1 # so. It is forbidden for edges to form a cycle; therefore, an output port cannot
be connected to an input port of the same subcomponent.

It must be emphasized that the g and s are instances of specific types of gates and compo-
nents, respectively. The mapping between a component instance s and its fault tree is not fur-
ther described by Kaiser and colleagues [15] but can easily be imagined. For reasons described
in Section 11, the CFTs developed in this work have a one-to-one mapping to components,
and thus such a mapping is unnecessary.

2.3 Notation and Definitions

The notation and terminology used throughout are heavily influenced by Hopcroft and Ull-
man [12].
2.3.1 Conventions
As is standard, pure mathematical sets are written in “blackboard bold”:
* N is the set of natural numbers: {0,1,2,3,...}.
* R is the set of real numbers.
+ B is the set of Boolean values: {true,false}.

When identifying items in the semantic space, sets are written in calligraphy (e.g., A is the
set of all symbols). Specific symbols and other mathematical relations are written in sans serif.
Semantic functions are generally written using bracket notation (e.g., [-]¢)-

The names of sets and functions relating to the abstract syntactic space are writ-
ten in boldface. Declared names and other items representing syntax are written in
typewriter text.
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2.3.2 Symbols

The definition from Hopcroft and Ullman is used here:

A “symbol” is an abstract entity that we shall not define formally, just as “point”

and “line” are not defined in geometry. Letters and digits are examples of fre-
quently used symbols. [12]

The set of all symbols is herein denoted A.

2.3.3 Relations

For a relation X : A — B, equivalently X : A x B,
* dom X = {a| (a,b) € X}
*ran X = {b| (a,b) € X}
c(ab)eXeaXbe X(a)=0b

defined X (a) = 3b € B.(a,b) € X

undefined X (a) =V(d',b) € X.d' #a

2.3.4 Cross Products

Here [] is used with sets to mean the repeated application of the cross product x: when

S1,...,5, are all sets

ﬁSiZSIX"'XSn
=1

2.3.5 Uniquely Define
When
* S and T are sets
* f:5 — T is a function
then f uniquely maps S to T if and only if
Vs, s €S. f(s)=tNf(s)=t=>s=+¢

When |S| = |T|, the function f is said to uniquely define set T

2.3.6 List Notation

The set of lists over a set S is list(S). An element [ € list(S) can be written [ = [eq, ...

and is a finite ordered sequence such that e; € S.
* The number of elements of [ is written |I| = n.
* ¢ is the first element of [ and may be written first(l).
* e, is the last element of | and may be written last(l).

A sublist [s1,...,8,] €1l F > 1.V0 <j < m.eip; = S14j.
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2.4 Record Notation

Record notation is used to compactly refer to values in tuples, for example,

(fr—=v1,. o, fr > Un)

represents a tuple where the position representing field f; is set to value v;, and any field not
explicitly named is set to an empty value (described below). The field names f; are simply
distinct symbols from an index set. Specifically, a set of n-records is described by the struc-
ture (R, I, E,¢€), where

* R is the underlying set of n-tuples.*
o I C A is the index set:
- Il=n

— Values for field f € I must come from the set R¢. Therefore, set R is isomorphic to
the set [[;.; Ry

* E is the set of values that represent empty fields: |E| < n because fields are allowed to
share empty values.

* ¢:1 — E maps each field to the empty value for that field; it must be that e(f) € Ry.

As suggested above, the order of the values in the tuple is arbitrary, as long as a consistent
mapping from field names to tuple positions is maintained. This level of detail is not elabo-
rated here. The upshot is that the order of sets used in the cross product to describe R is also
arbitrary. Here a “labeled” cross product notation is used to associate indices with sets:

R:fli.SlX‘”an:Sn

This defines a set R of n-tuples with indices {f1,..., fn} where Ry, = S,. With this notation,
R and I are simultaneously implicitly defined, and the structure of the record is instead the
triple
(fl : Sl X X fn : Sn7E7€)
Array-style notation is used to manipulate a record. For r € R, f € I,v € Ry,
* r[f] € Ry is the value of the f field of .
* r[f] + v is the tuple ' € R such that v'[f] =v and Vf' € I. f' # f = +'[f'] =r[f'].

The above notation (f; — v1,..., fm — Um) can now be formally defined as representing the
n-tuple r € R such that

*m<n

* Vi,j.1 # j = fi # [, that is, fields names cannot be repeated
* rlfil =i

s VfeIN{fi,...,fu}-T[f] = €(f)

Note that () is the record where all the fields are set to the appropriate empty value: Vf €
IO = e(f).

A record r can also be considered a function 7 : I — J¢; Ry:

r(fl=verfl=ve (.. fouv..)e (fiv)er

4R for Records.
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Similarly, a function g : I — (J;¢; Ry can be converted to a record record(g) such that

9(f)
e(f))

f€domg = record(g)[f]
Vel { f¢domg = record(g)[f] =

241 Trees

A tree (V, E,r) is a structure of nodes and directed edges with a distinguished root node. All
nodes are reachable from the root node by following edges. Specifically

* Set V is the set of nodes or vertices in the tree.

* Relation E C V' x V is the set of edges in the tree. When (v1,v2) € E, there is an edge
from node v; to node vy. Vertex vy is a parent of vertex vo, which is a child of v;.

— No node is a child of itself: Vv € V. (v,v) € E.
— A node has at most one parent: Yo € V. Apy,ps € V. (p1,v) € E A (p2,v) € E.

* r € V is the root node of the tree. It is the child of no vertex, and all other nodes are
reachable from it.

- AveVi(ur)ekE

— Yv € V.reachable(r,v), where reachable(n,n) < n = v 3In’ € V.(n En/ A
reachable(n’, 1))
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3 Error Types

Error types are declared in AADL packages and are universal for all components. Named er-
ror types, as well as predeclared error type sets, can be declared in these so-called error type
libraries. In addition, names that alias error types and error type sets can be declared. N is
the set of syntactic names and is based on the definition of names in the AADL specification'
[26, §15.3]. Its meaning should be clear, and the set is not discussed further except to say it is
a flat set: package name prefixes are incorporated into the names in N.

3.1 Declared Error Types

Error library declarations belong to the syntactic set L and are described by the abstract pro-
duction rule LibElement:

LibElement := N : type ;

| N : type extends N ;

| N renames type N ;

| N : type set TypeSet ;
| N renames type set N ;

The above rules make use of the production rule for type sets, where S : TypeSet. This pro-
duction is described in a Section 3.3. Type libraries are unified into the simple set D;, C

2L recall names are assumed to be prefixed with package names. A number of syntactic sets,
shown in Figure 3.1, are derived from the declared library elements:

* Dy © N is the set of declared error type names.

* D_ienas © N x N is the set of declared error type extensions.

* Dy, € N x S is the set of declared error type sets.
* Dgenames © N X N is the set of declared error type aliases.
* Direnames.7s © IN X N is the set of declared type set aliases.

Declared error types, type sets, type aliases, and type set aliases all share the same namespace
27, E.5.(N20), E.5.(N21)]. Therefore, the intersections of all pairwise combinations of D,
and dom D, .4 dom Dg,,, dom D¢ . and dom Dg. . .mes 15 are the empty set ().

3.1.1 Semantic Error Types

Set £ C A is a set of symbols representing the declared error types. The semantic function
[Irype © Drype — € uniquely defines €. Herein it is assumed that the name x maps to the
symbol x. Names from a renames declaration do not specify symbols in the semantic space;
see below. Declarations in the EMV2 model establish subtype as an irreflexive function <: £ X
£ 27, E5 (6)]:

* €1 < ey iff e is (declared to be) a subtype of es.
* (e,e) €<

Specifically,
(nv’n‘/) € DExtends g [[n]]Type =< Hn/ﬂType

1Ct. the Java class string.
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Dy, = {nln: type; €Dt U{n|n: type extends n’; € D}
{(n,n") | n: type extends n’; € D, }

Extends
Ds. = {(n,s)|n: typesets; €D}
Drerames = 1{(n,n') | n renames typen'; € Dy}
Dgenamests = 1(n,n') | n renames type set n'; € Dy}

Figure 3.1: Sets of Type Declarations Derived from D ;,

3.1.2 Type References
As a first step to interpreting type aliases, the set of all type references Ry, . is defined:

RT}’pe = DType U dom DRenames

RTSE = RType U dom DSet U dom DRenames,TS

The second set of “type set element” references includes the names of type sets and type set
aliases and is used in a later section. The semantic function [-Jges @ Ry,e — € evaluates
syntactic references to error types and type aliases to semantic error symbols:

[n]rype When n € Dy
[W]ges Wwhen (n,n') € D

[l = {

Renames

That is (n,1') € Dgepames = [Mref = [ [ges> f- [27, E.5.(9), E.5.(24)]. Note that the aliased
name n’ is evaluated as a reference using [-[g.s because aliases are allowed to be aliased. Also
note that function [-]g.s specifically does not uniquely define £, which is, of course, the whole
point of aliases.

References can also be resolved in the syntactic space using Res : Ry, = Dy

_fn when n € Dy,
Res(n) = { Res(n’) when (n,n’) € D

Renames

3.1.3 Type Containment
The relations <: £ x £ and <: £ x £ extend the subtype relation < [27, E.5 (28)]:

e<e & (e<xeé) Vv I(e<xeéné<e)
e<e & (e=¢€) V (e<é)

The root of a declared error type e is given by r : £ — £ and is the type that satisfies the
property [27, E.5 (29)]:
(e<r(e)) N (A€ .r(e) <€)

The type containment relation T, more fully defined in Section 3.4, extends the type descen-
dent relation to type products and type sets. For declared error types e1,es € &, it is simply
[27, E.5 (30)]

et Eexs e <er

3.1.4 Extension and Containment in the Syntactic Space
Because

* the semantic set £ is uniquely defined by [-] from the set D

Type

* the definition of the semantic < relation is in terms of D, on4e
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the semantic notion of < can be directly related to the syntactic space:
€1 < ez < El{(dlv dll)? R (dn?d;)} - DExtends' [[dl]]Type =er N [[dil]]Type =ex A d; = diJrl

That is, a chain of declared type extensions exists in the syntax between the type names de-
noted by e; and ey. This syntactic relationship is identified with the relation descendant :
Dype X Dy Lo, [ qpe < [n2lqype & n1 descendant ny, from which the relation

extends : DType X DType can be defined:

[n1]rype < [n2lgype & 71 extends ny
n, extends no, < n; =ng Vn; descendant ngy

Finally, because semantic type containment is based on <, i.e., e; C ey < €1 < eg, it too can
be related to the syntactic space:

[[nl]]Type C [[Tlg]]-rype & ny extends ne & ny C na

This bidirectionally of containment between the semantic and syntactic space may seem
pedantic, but it is useful for showing what operations can be performed by an analysis tool
solely based on the syntax of the model. For example, negating a trigger of a condition expres-
sion is discussed in Section 8.3.

3.2 Type Products

Error type products belong to set P and are built using the abstract production rule
TypeProduct:
TypeProduct := Ry, * Ry,
| Ryype * TypeProduct

The rule makes use of the set of declared type names RType to indicate that the names used in
a type product must be names of error types or error type aliases and not type sets.

P is the set of all semantic type products; it is more specifically defined below. The semantic
function [Jp,eguct : P — P generates tuples of error type symbols from syntactic products of
type names:

[[nl * nQ]]Product = ([[nlﬂRef’ Hn2]]Ref)
[[’I’L * p]]Product = ([[n]]Reﬁ €2, .., en) where (627 c ,€n) = [[p]]PVOdUCt

Note that names are evaluated to error type symbols using the reference semantics to account
for type aliases. Alternatively, type aliases can be handled in the syntactic space first. The
syntactic function Product : P — P converts an arbitrary syntactic type product to a type
product whose type name references are fully resolved.

[[p € P]]Product = [[PrOdUCt(p)]]ProducQ
Product(n; * ng) Res(ny) || * || Res(ns)
Product(n * p) Res(n) || * || Product(p)
[[nl * n2]]Product2 ([[nl]]Type’ [[n2]]Type)
[[n * p]]Product2 = (Hn]]Type7 €2;..., en) where (627 LR en) = ﬂpﬂ Product2

Here || is the string concatenation operator, and the function [-]p,oquct2 18 like [-]proquce from
above, but the syntactic type names are directly converted into semantic types using [']]Type
instead of being interpreted as aliases. This alternative formulation is important for consider-

ing type product containment in the syntactic space (see below).
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S : TypeSet
Stlements - TypeSetElements

Stlement : TypeSetElement
TypeSet := { TypeSetElements }
TypeSetElements := TypeSetElement
| TypeSetElement , TypeSetElements
TypeSetElement := Ry g
| TypeProduct

Figure 3.2: Definition of EMV2 Type Sets

n>2

——
The set of products of n types is P, = & x --- x £. Now obviously any type product con-
structed in an AADL model will be of finite size, and there is a least m > 2 such that all con-
structed type products have m or fewer elements. Furthermore, EMV?2 requires that all ele-
ments of a type product be descended from different root types [27, E.5 (8)]. This is expressed
by the predicate product:

product((eq,...,e,)) & Vi, j <n.i#j=r(e;) #r(ej)

Finally, it can be declared that the set of all product types is

P = {p € U Pn | product(p)}

n=2

3.3 Type Sets

An error type set is a set of one or more error types or type products. Set T = EUP is the set
of semantic type set elements (i.e., types that may be part of a type set). As seen above, error
type sets are built using the abstract production rule TypeSet defined in Figure 3.2. When

a type set element is a name, it is allowed to reference a declared error type, a type alias, a
declared type set, or a type set alias. A type set should not be declared to contain itself, and
cycles of type set references must be avoided. Herein it is assumed that these cases are pre-
vented prior to semantic analysis.

S is the set of all type sets; it is defined more specifically below. A second type reference se-

mantic function [-J;gg : Rygg — S interprets references to type sets and their aliases. Type
set aliases are handled by the same clause that handles error type aliases; see also EMV2 [27,
E.5.(9), E.5.(25)]. Note that this function always evaluates to a set, whereas [-]r.s evaluates

to a semantic error symbol. (The function [-]s,, is defined below.)

{Hn]]Type} when n € DType
[n)rse = ¢ [ts]ser when (n,ts) € Dg,
[[n/]]TSE when (TL, TL/) € DRenames U DRenames,TS

The semantic functions [Je : S = S, [Igiements © Stlements — S+ a0d [Jgiement © SElement — S
are used to build sets of error type symbols and tuples from syntactic type sets:

[[{ elements }]]Set = [[elements]]Elements
[[t Elements [[t]]Element
[[t ’ elements]] Elements [[t]]Elements U [[elements]] Elements
[[7’L € NH Element IIn]]TSE
[[p € P]]Element = {[[p]]Product}
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As with type products, this process can be arranged so that all the alias resolution occurs in
the syntactic space. The syntactic function Set : S — S, defined in the next paragraph, con-
verts an arbitrary syntactic type set to a syntactic type set where all the names have been
resolved, including those nested in referenced type sets and those in member type products.

[[5 € S]Set = [[elements]]Elements
where { elements } = Set(s)
[[t]] Elements = [[t]] Element

[t , elements] = [l glements U [elements]

Elements Elements

[[n € DTypeH Element = {Hn]] Type
{

Hp € PH Element = [[p]] Product2}
The definition of Set depends on resolve : Sg.cnts = Sklements 204 tS€ : Sgicent = SEiements:
Set({elements }) = { | resolve(elements) | }
resolve(n) = tse(n)
resolve(n , elements) = resolve(n) || , || resolve(elements)
tse(n € Dy,.) = n
tse(n € dom DRenames) = tSe(DRenames(n))
tse(n € dom Dg,,) = nq,...,n, where { ni,...,n; } = Set(Dg,(n))
tse(n € dom DRenames,TS) = tSe(DRenames,TS(n))
tse(p e P) = Product(p)

The point of this alternative presentation is to be able to argue that all type sets s € S orig-
inate from type sets {t1, ..., t,} € S in the syntactic space where Vi.t; € Dyype V (t; =
thx -ty where Vj. ¢ € Dy o).

n’

Like type products, type sets must satisfy a predicate as well, in this case typeset. This predi-
cate is defined in the next section, but we can use it now to define the set of all type sets:

S={se2” |typeset(s)}

3.4 Type Containment—Concluded

Type containment C is extended to compare two type products with the same number of ele-
ments [27, E.5 (32)]:

(e1,--- en) E(€),... ) & Vi.Fje; < ¢
Observe that the order of the elements in the products does not matter, hence the use of 3j;
see also EMV2 [27, E.5 (18)].

Next, containment is extended to type set elements versus type sets [27, E.5 (33)]. For e € &,
peP,and s €S,

eCs & 3FJeesele

pEs & ' esply

Finally, containment between two type sets is definable [27, E.5 (35)]. For 5,5’ € S,
sCs & Vies. 3t es tCt
A type set is required to contain unique elements only [27, E.5 (35)]. That is, no element

should be contained in any other element. This is captured by the predicate typeset—
referenced in the previous section—finally defined here. For s € S,

typeset(s) & Vi, t' estiZz ' At [Z ¢t

The relation C is not explicitly defined, but its meaning should be clear based on the meaning
of C.
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3.4.1 Type Product and Type Set Containment in the Syntactic Space
Because
* type product containment is based on <

* type aliases can be resolved in the syntactic space prior to interpretation in the semantic
space

it is the case that for n;,n; € Dy,

([[nl]]Type’ SRR [[nm]]Type) C ([[nll]]Type’ EEER [[n;n]]Type) & Vi 3-7 n; & n;
Thus, type product containment can be extended to the syntactic space:

/

i
(ng * -+« xnp Enj * - xn,

) < Vi.djn; C n;
Containment in type sets can now be extended to the syntactic space because all semantic

type sets can come from syntactic type sets without aliases as members or aliases as compo-
nents of any member type product. For error types and type sets, it is the case that

[[n]]Type L {[[nll]]Type’ te [[n;n]]Type7 [[pll]]Product’ te [[p;f]]Product}
& Fi.nCnj
& nC{ny,...np,phh - P

For error type products and type sets, it is the case that

[[p]]Product C {[[nll]]Type’ ce [[n;n]]Type7 [[pll]]Product’ ce [[p;f]]Product}
& JjpLyp)
& pCA{ng, Dy P )
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4 AADL Components

This work describes the behavior of an AADL system based on the instantiated model of the
component. It follows the general practice that only AADL instance models are analyzable.
A basic mathematical model of the instance model is given as well as attributes that can be
derived from the model. Naturally, it is assumed that the model contains valid AADL and
EMV2 syntax (e.g., type sets and type products satisfy specific predicates); see Sections 3.2
and 3.4. When appropriate, footnotes indicate analogous classes in the EMV2 instance model
or Java Runtime Environment.

The syntactic space for this work is the AADL model with EMV2 annex clauses. It can be
thought of as a sort of parse tree. It is easy to become confused here: again, the syntactic
AADL model is an AADL instance model. Therefore, the syntactic components do not directly
correspond to classifier definitions in the textual AADL. In particular, there are no declarative
entities that directly provide names for the instantiated components. Except for types, names
are replaced with the named syntactic object. Additionally, the instance model aggregates
information within a single component that may otherwise be distributed across component
classifiers in the classifier hierarchy. This includes, for example, feature, transition, and outgo-
ing propagation declarations.

The complete structure of the AADL+EMV2 model is not of interest here and is not pre-
sented in a comprehensive manner. Later sections introduce abstract production rules that
describe some of the structure rooted at particular objects in the syntactic AADL component
model. Instead, the AADL4+EMV2 model is abstracted to a simple object-oriented model,
where elements are “objects” from the set O,! and information about an object is retrieved
using a family of functions (i.e., one function for each “field” of the object). These are repre-
sented as functions that operate on components in the AADL+EMV2 model.

Finally, it is assumed the model has already been projected into a specific system operation
mode (i.e., that it represents a specific configuration of components in the system).

The following first describes the syntactic and semantic models of the component hierarchy
and then describes the semantics of error event, behavior state, and propagation declarations.

4.1 Component Hierarchy

4.1.1 Syntactic AADL Component Instances

Set C C O is the set of all possible syntactic AADL components.®> A syntactic AADL instance
model is the tree (K, sub, ktop) where

* set K C C is the set of component instances in the model

* relation sub : K x K is the subcomponent relation between component instances:
k1 sub ks if and only if ks is a subcomponent of k;

* component instance k1o, € K is the root node, that is, the component instance of the
declarative component implementation that was instantiated

The function Dg,, : K — 2K gives the set of subcomponents of a component k: Dg,, (k) =
{k" | k sub k’}.° To make the presentation herein more compact, a superscripted notation (or

1Cf. the Java class Object.
2Cf. Component Instance in the EMV2 instance meta model.
3D for Declared.
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sometimes subscripted when there is no additional label) is used for the field functions: for ex-
ample, D’gub = Dg,, (k). Additional syntactic functions are introduced as needed throughout.

4.1.2 Semantic Components

The component instance tree is mapped into a semantic component tree, where components
are simply represented as symbols. Given a syntactic AADL instance model (K, sub, k1op),
the corresponding semantic component hierarchy is the tree (I, >, Ovyop) where

* Set K C A—the nodes of the tree—is the set of component instances represented by
symbols.

— Elements of K are referenced by the variable [J, because components are typically
represented graphically by boxes.

— The semantic function [-]x : K — K converts syntactic components to semantic
components. Function -], uniquely defines K.

* The subcomponent relation >: K x K—the edges of the tree—is derived from the sub
relation:

Vkl, ks € K. [[Iﬁ]]K > [[k‘g]]K < ky sub ko

* Node Orop € K is the root of the tree: Ovop = [kop]x-

Similar to the syntactic sets, most of the semantic sets and functions are specific to a par-
ticular semantic component. For example, the set of semantic error events V depends on the
events declared in a specific component. Thus, V is really a function in K — 2. As with syn-
tactic relations, a subscript (or in some case a superscript) on the set is used to indicate which
component is the source of the information, for example, Vg = V(O).

The semantic equivalent to D’S“ub is the semantic relation Sub : IC — 2%

. Sub(D) = {0 | O > O}

4.2 Component Declarations

4.2.1 Error Events

The syntactic domain DE . C O is the set of error event objects declared in component in-
stance k.* For component instance k with 0 = [k]y, the semantic set Vg C A is a set of
symbols representing the error events.® These are used to indicate an error event instance.
Note that recover and repair events are deliberately being ignored and are not included in the
semantics.

The semantic function []E,.,, : DE,x — VO maps a syntactic event to its semantic symbol.

The function [[-]]Event uniquely defines V. Herein, the canonical mapping is that a syntactic
event named e is mapped to the symbol e. For example, if a model declares an event named
Failure, then in the corresponding automata the symbol Failure is used.

4.2.2 Error Behavior States

For each component instance k, there is the syntactic structure (D%,,.., ¢§) where

* the syntactic domain D’gtate C O is the set of error behavior state objects in component
instance k°

4Cf. ErrorEvent Instance in the EMV2 instance meta model.
5V for eVent. £ is already used for the set of error types.
6Cf. stateInstance in the EMV2 instance meta model.
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« the state ¢§ € D&, is the initial state of k

When O = [k], the semantic set O C A is the set of symbols representing the error behav-
ior states.” The semantic function [[‘]]smtate : D’gtate — Qn maps a behavior object to its seman-
tic symbol and uniquely defines Q. Herein, the canonical mapping is that a state named s is
mapped to the symbol s. For example, if a model declares a state named Normal, then in the
corresponding automata the symbol Normal is used.

4.2.3 Propagation Points

Each component has propagation points through which error types may propagate in or out.
Herein, these are collectively referred to as the propagation points of a component. These
propagation points are represented as fields in the environment (described in Section 5.1) but
require some semantic preliminaries to be explained first, beginning with the two syntactic do-
mains D} C Opp C O and D§,, € Opp C O. These are the sets of objects representing the in
and out propagation points in component k.8

Sets len and D’éut ultimately derive from the error propagations clause in the EMV2
declarative model [27, E.7]. The specification refers to items declared therein as “error prop-
agations.” This is distinguished from a propagation action of a component’s behavior, which
is referred to as an “outgoing propagation declaration” or “outgoing propagation condition”

in the specification [27, E.10]. A propagation object may correspond to a feature of a compo-
nent, a user-declared propagation point, a feature in a (nested) feature group, or a binding-
related point such as processor or bindings. Because the assumption is that the model
derives from a legal AADL+EMV2 model, there is no need herein to formalize which propaga-
tion points appear in the syntactic model.

Note that a single propagation point may be both an in and an out propagation point. So it
is possible that len N D(]gut # (). From these sets, and the set D’gub, the set of propagation
references in component k, REs C O can be constructed:

k _ k k
RkPP = D URG,
_ s
ROut - UsEDé“ub DOut

The set R’(“)ut is the set of all out propagation objects of subcomponents of k£ and corresponds

to the declarative syntax s.f in condition expressions. Sometimes it is necessary to know the
subcomponent that contains the propagation reference. The function PPy : R’;P — K returns
that component. In particular,

k  when f € Df
PP = In
«(f) { s when f € D§,, where s € Dlgub
In addition, there are syntactic sets that describe the types a component is declared to propa-
gate:

* Dpp: (UkGK Df“n) — S maps a propagation object representing an in propagation point
to its declared set of propagated types.

* Dppy 0 (Urex Dg,.) — S maps a propagation object representing an out propagation
point to its declared set of propagations.

Note the following:

* The sets do not need to be parameterized by the component k£ because each component
has a unique set of propagation objects. The domain of the mappings is thus the set of
all in/out propagation points used by components in the syntactic model.

7Q is used because it is the canonical set of states in an automaton; see Section 9.
8Cf. ErrorPropagationInstance in the EMV2 instance meta model.
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* The codomain of both these mappings is still a syntactic set whose semantic value must
be obtained using the semantic function [-Jgq,-
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5 Environments

EMV2 condition expressions refer to event occurrences and error type propagations. These
can be viewed as references to the values of variables. Thus, an environment is needed to eval-
uate a condition. Later sections describe how the environment is actually an input symbol to
the automata representing the component’s error behavior. Furthermore, as becomes evident
in Section 6, evaluation has a non-traditional meaning: it produces a set of environments.

To begin, the set I'g is the set of environments for component O = [k]. Specific environ-
ments are identified using the variable v € T'g. The elements of set I'g are structured as
records with the index set Z, so we have

(I'o,Zo, Eg, en)

In the following, the different components of the record definition are described in more detail.

5.1 Fields — 7

Generally speaking, the environment contains
* one field indicating the current event instance, if any

* one field for each propagation point of the component, each indicating that point’s cur-
rently propagated type

The semantic function [JHyy : REp — Zo maps references to propagation points to fields
of the environment. The index set Zg and semantic function [-]g,4 are concurrently defined
below:

* For the symbol event € Zg, the value of this field represents an event instance: it
is a member of Vg, the set of symbols representing different errors. There needs to
be only one such field because events cannot happen simultaneously [27, E.8.1.(2)].
This field is used solely by the semantics, and it cannot be described syntactically:
Vr € REp. [x]F.y # event.

* For each f € Rfp there is a unique symbol i € I such that [f]H,4 = 4. The value of
this field is an error type, that is, a member of 7. But more specifically, this value can
be restricted to be from the set of types that the field can actually propagate:

— For f € Df the set of types is [Dypp(f)]ser-
— For f € R}, the set of types is [Dpp, (f)]ser-
* Finally, the function [-]&,,, uniquely defines the set Zg \ {event}.

While the choice of symbols used for the non event members of the index set is arbitrary, we
use the following canonical mapping in the examples below:

* For f € Dﬁ], [[f]]Eeld =f (e.g., feature name input is mapped to the symbol input).

* For (s,f) € RE,., [(s,1)]E.q = s-f (e.g., feature name output of the component refer-
enced by the subcomponent name sub is mapped to the symbol sub_output).

5.2 Empty Values — E; and ¢
The sets 7 and Vg do not contain elements that can be used to signify an empty field value.

Thus, two fresh symbols €type and €gyent are introduced:
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*eType €T
* VO € K. €event € VO
Now
En = {€Type, €Event }
The mapping e is defined:
* eg(event) = €gyent

* Vfe R§P~€D([[f]]||;i’eld) = €Type

5.3 Environment Structure — I'

Finally, the structure of the records can be fully specified based on the above details. Incorpo-
rating the empty values and the labeled cross product, the set I'g is

' = event: (VDDU {€Event })
X erD(; [f1Fieta : (IDppp(f)]ser U {€Type})
X erRgut [/1Reia  ([Dppy (f)ser U {eType})
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6 Condition Expressions, Part 1: Basic Expressions

Enough mathematical machinery has been developed to finally present the semantics of
EMV2 conditions, the Boolean expressions of the language. Here, a non-traditional meaning
is given to expressions: instead of evaluating to a Boolean true or false value, conditions eval-
uate to the set of environments in which the condition is true. This interpretation is used be-
cause the automata constructed for the component’s error behavior is based on a syntactic au-
tomata [9, 33|, and this meaning is consistent with the semantics required in such a scenario.

6.1 The Basic Expression Language

This section presents the semantics of a condition expression language containing basic ex-
pressions over EMV2 triggers. The full grammar for EMV2 error conditions contains addi-
tional primitive operators all, orless, and ormore and includes both inclusive or—or—
and exclusive or—xor.

The basic expressions
* exclude exclusive or
* exclude the primitive operators

* do not enforce the silencing constraints of EMV2 [27, E.8.2.(8)], but do provide the
building blocks to do so

* contain an expression to express an empty event that is not expressible in EMV2

Sections 7 and 8 give the semantics of the actual EMV2 condition expressions in terms of the
semantics of the basic expressions. In particular, we show how to enforce [27, E.8.2.(8)] and
convert the primitive operators.

We again emphasize that the model is based on the instantiated AADL and EMV2 informa-
tion. Thus the abstract production rules actually describe the expression structure as it is in
the instantiation. This is most obvious in the case of propagation targets (production rule
Trigger Prop,,), which have different syntactic forms (e.g., £ and s. £) in the declarative
model to name local or subcomponent propagation points. In the production rule, however,
the propagation point object, which already abstracts away this distinction, is directly used.

The syntactic domains and abstract production rules for the simple language are shown in
Figures 6.2 and 6.3. Many of the rules are subscripted by a syntactic component & € K in-
dicating that the rule has specific versions for each component. This is because the syntactic
sets of objects are used in the rules to indicate namespaces: for example, abstract production
rule Trigger Event,, uses Df ., instead of O to indicate that the event should be an event
declared in component k.

Note as well the following:

* The basic expression language uses keywords and symbols that are slightly different
from those in the EMV2 condition language to emphasize that the languages are dif-
ferent.

* Following the conventions of denotational semantics, the abstract production rules are
written ambiguously (e.g., the production Conditiony, ::= Condition; + Conditiony),
but it is expected that expressions are parsed and evaluated using left association. See
Schmidt [28, pp. 6-9] for a discussion of this issue. So the condition A 4+ B + C has the
parse tree in Figure 6.1(a) and not the parse tree in Figure 6.1(b).
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Conditiony Conditiony
Conditiony Conditiony Conditiony Conditiony
Conditiony Disjunct,,

Conditiony, Conditiony, ‘ Conditiony, Conditiony,
| | Disjunct,, Conjunct, | |
Disjunct,, Disjunct,, | Disjunct,, Disjunct,
| | Conjunct, Trigger,, | |
Conjunct,, Conjunct;, ‘ Conjunct,, Conjunct;,
| | Trigger,, Trigger Event,, | |
Trigger,, Trigger,, ‘ Trigger,, Trigger,,

| Trigger Event,, A | |
Trigger Event, Trigger_Event, Trigger Event, Trigger_Event,
A B B [¢
(a) (b)

Figure 6.1: The (a) Correct Left-Associative Parsing of A + B + ¢ and (b) Incorrect Right-Associative

Parsing

C,, : Conditiony
C’j_ : Disjunct,,

C% : Conjunct,,
T}, : Trigger,,

S

Tévent : Trigger_Event,
TEp : Trigger Prop,

: TypeSet_or_NoError

NoError

Figure 6.2: The Syntactic Domains for the Simple Condition Language

Conditiony
Disjunct,
Conjunct,
Trigger,

Trigger_Event,
Trigger_Prop,

TypeSet_or _NoError
TypeSet

Disjunct,, | Condition;, + Conditiony,
Conjunct, | Disjunct, & Disjunct,,
( Conditiony, ) | Trigger,
Trigger_Event,

Trigger_Prop,

event DE

noevent

in Df“n TypeSet_or NoError

out R’éut TypeSet_or_NoError
TypeSet | { noerror } | ¢

(Defined in Section 3.3)

Figure 6.3: The Production Rules for the Simple Condition Language
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The following sections describe the semantics bottom-up, starting with the specific trigger ex-
pressions. It is assumed that the condition is in component k and that O = [k].

6.2 Event Trigger

An event trigger condition is satisfied when an instance of the named event occurs (i.e., the
named event is the value of the event field of the environment). As stated above, the meaning
of a condition is the set of environments in which the condition is satisfied. Thus for event
triggers the semantic function is [[-]]%ggetE  TE o — 250:

instance : (Vo U egyent) — 210

instance(c) = {y €Tg]|y[event] =0}
[[event e]?rigger,E = inStance([[e}]Event)
[[noevent}]?riggerJE = instance(€gyent)

6.3 Propagation Trigger

A propagation trigger is satisfied when the error type propagated by the named propagation
point is contained in the given type set. The catch is that there may not be a type set speci-
fied by the trigger:

* It could be that {noerror} is explicitly given, in which case the named propagation
point must not be propagating an error (i.e, it is propagating etype).

* It could be that no set is given at all, in which case the type set is assumed to be the
type set specified in the declared propagations of the propagation point (i.e, from D pp
or Dpp,).

The semantic function [-J1s : Syogror — S — (T U €rype) — B evaluates a type set specification
to a function that can be used to test a propagated type against the specification. The curried
function has two arguments and a Boolean return value:

* The first semantic type set argument is a default set to use for comparison, in case the
type set is not specified as part of the trigger. See the case for e.

* The second type argument is the propagated type (or no type at all) to test.

For the three cases of the TypeSet_or_NoError production rule, the functions are

[ts € S]lvs = Adefault. Av. v C [ts]g,
[{ noerror }[|rs = Adefault. Av. v = erype
lelts = Adefault. Av. v T default

Specifically,

* when a syntactic type set is provided, the comparison function simply tests if the propa-
gated type value is contained in the corresponding semantic type set.

» when {noerror} is specified, the comparison function tests if the propagated type value
is the empty type value etype.

* when the type set is not specified at all (€), the propagated type value is tested against
the provided default set. The functions below ensure that the default value is derived
from the declared propagations of the correct propagation point.
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The semantic function [[-}]%ggerip : Thp — 250 is built from [Jrg:

[in f TSOTNE]]TIrlgger p = {veTolo@ni)}
where ¢ = [TSorNE]+g
d :[[[[ ]]DPP( M set

[[Ollt f TSOTNE]]Tngger P = {7 el'g | ( )(’7[ ])}
where ng = [TSorNE]+s
IIDPPD( )]]Set

i = [[f]] Field

6.4 Triggers

A trigger condition is an event or propagation trigger. The semantic function ﬂ-]]%gger Ty —

2I'0 evaluates a trigger based on its category:

IIt € Tllgvint]]grigger = Ht]]'grigger,E
[[t € TPP]]Trigger t]]Trigger,P

6.5 Conjuncts

A conjunctive term is either a parenthesized condition or a trigger condition. The semantic
function []§ : C§ — 2T'0 evaluates a conjunct in the obvious way:

[(c)lg = lclcons
[teTile = [URigge

6.6 Disjuncts

A disjunctive term is a conjunction and is evaluated by the semantic function [[]]E : C’j’r —
2I'0 as an intersection of sets:

[[Cl & CQ]]E 1
[1F = e

Recall that the operator + is treated as left-associative.

\
=
Q
=
+0O
D)
=
Q

DN
===
+0

6.7 Condition

Finally, a full condition is a disjunction evaluated by the semantic function []&, 4 : Cx — 2'0
as a union of sets:

[[Cl + cQ]]gond = [[Cll]]:,(miond U [[CQHEond
[[c]]Cond = [[d]-&-

Recall that the operator & is treated as left-associative.
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7 Condition Expressions, Part 2: Transition Conditions

As mentioned previously, the basic expression language of Section 6 is not the condition lan-
guage actually used by EMV2. To repeat,

* it contains a noevent trigger that is not expressible in EMV2
* EMV?2 supports both the inclusive or operator and the exclusive xor operator

* EMV2 imposes constraints on the propagation points not explicitly mentioned in a con-
dition [27, E.8.2.(8)]

* EMV2 features three logical primitives that must be interpreted: and, orless, and
ormore

The syntactic domains and abstract production rules for this language are shown in Fig-
ures 7.1 and 7.2, based on the grammar in the EMV2 specification. Although, here, unlike
in the specification, the grammar rules are used to impose the correct order of operations as
specified in EMV2 [27, E.8.(L30)]. Note the following:

* The names of the syntactic domains are decorated with ~ and the names of the produc-
tion rules are prefixed with ¢ to distinguish them from those of the simple language.

* As before, the production rules are ambiguous, but the operators and, or, and xor are
left-associative.

Here natural numbers are added to the grammar via the syntactic domain Natural C O,
which contains objects representing natural numbers.! The semantic function [In : N =N
maps the object representation into a mathematical natural number.

In later sections, condition expressions are retrieved from objects representing transitions and
outgoing propagation declarations. This can be thought of as obtaining an object representing
an element of Cj,, where the abstract production rules describe the structure of the object
tree rooted at that node.?

The rest of this section develops the translation function L-J’éond : C, = Cj that converts from
strings in the EMV2 condition language to strings in the basic expression language.

7.1 Rule E.8.2.(8): Silencing Unused Propagations

Before a translation to the simple language can be constructed, it is necessary to understand
what is required of the translation. The primary intricacy of the translation is to enforce a
requirement described in EMV2:

1Cf. Java.lang.Long in the EMV2 instance meta model.
2Cf. conditionExpressionInstance in the EMV2 instance meta model.

Cy : «Conditiony, TF,, : oTriggers;,
Cffor : oDisjunct, T : oTrigger,,

and : oConjunct,, T’E\lent : oTrigger_ Event,
X M, : oTerm;, T’;P : oTrigger_Prop,
Py : oPrimitive; Natural : See Main Text

Figure 7.1: The Syntactic Domains for EMV2 Condition Expressions
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oConditiony oDisjunct,
oCondition; or «Conditiony

oCondition;, xor «Conditiony,

oDisjunct,, oConjuct,, | ©Disjunct,; and ¢Disjunct,
oConjunct;, := (oConditiony ) |cTermy
oTermy := oPrimitive; | oTrigger,
oPrimitive, := all (¢Triggers,)
| all — Natural ( oTriggers;,)
| Natural ormore ( oTriggers;,)
| Natural orless ( ¢Triggers;,)
oTriggers, := oTrigger, |¢oTrigger,, oTriggers,
oTrigger,, oTrigger_Event,

oTrigger_Prop,

k
Event
in len TypeSet_or_NoError

out R’éut TypeSet_or_ NoError
(Defined in Figure 6.3)

oTrigger_Event,
oTrigger Prop,

TypeSet_or_NoError

Figure 7.2: The Abstract Production Rules for EMV2 Condition Expressions

If an alternative transition condition specifies a single error propagation point, e.g.,
portl{Badvalue}, by itself, then all other incoming error propagation points
must not have a propagation present. [27, E.8.2.(8)] [emphasis added]

This requirement is qualified by the following:

Note: we chose to interpret listing a single error propagation point as all others
being error free, because modelers often assume that they are dealing with one in-
coming error propagation at a time. Optionally, the user can explicitly indicate
that the other error propagation points have NoError. [27, E.8.2.(9)] [emphasis
added]

This is an interesting restriction because it requires knowing what is not specified by a con-
dition. Fortunately, the universe of propagation points available to a condition in component
instance k is already known: Rf5. Thus, knowing that a solitary propagation f is referenced,
then the set of propagation points not referenced is the set f = Rfp \ {f}. A propagation
trigger that tests for noerror and the noevent trigger are known as silent triggers. Thus
inserting implied silent triggers is henceforth known as silencing.

There is significant ambiguity in the EMV2 standard regarding the interpretation of condition
expressions. This is revisited in Sections 8.3.1 and 9.5.1; the problems it causes for fault trees
is discussed in Section 10.5. Difficulty in understanding the intended meaning of condition ex-
pressions is caused by the standard using simplistic examples to define the meaning of expres-
sions, leaving questions about the interpretation in more complex cases. The sole definition of
and in EMV2, for example, is

If the alternative transition condition specifies port1Badvalue and
port2BadValue, then the condition is satisfied if error propagations are present
on both ports. [27, E.8.2.(8)]

Generally, the descriptions use propagation triggers only, do not explore cases where logical
operators are nested, do not fully elaborate the meanings of the logical primitives, and do not
show primitives combined with logical operators. This makes understanding the full role of
events difficult. Of particular interest here is that it is unclear if silencing in the case of a sin-
gular propagation trigger is meant to silence events or not. It is also unclear if a solitary ref-
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catisiedBya(c) = {[[( I LeJéong 1) & ( | silencex(7) || )]Z.ng when ¢ € Ty and  # 0

[[ LCJ ]éond]]gond otherwise
where f = L, \ specified,(c)

Figure 7.3: Semantic Helper Function satisfiedBy

specified;, (C; or Cs
specified;, (C; xor Cs
specified;, (C; and Cs
specified, (( C)
specified; (all ( Triggers
specified; (all — N ( Triggers

; = specified; (C1) U specified; (Cs)

)

)

)

)
specified;, (N ormore ( Triggers ;;

)

)

)

)

(
specified; (C;) U specified;, (C2)
specified;, (C;) U specified;, (C2)
specified;, (C)
= specified, ( Triggers
(
(
(
(

)
specified;, ( Triggers)
specified; ( Triggers)

specified; ( Triggers)

specified;,(t) U specified, ( Triggers)
= {evt}

{(in, )}

= {(out, )}

specified;, (N orless ( Triggers
specified,, (t , Triggers
specified, (e
specified; (in f ts
specified; (out f ts

Figure 7.4: Determining the Triggers Specified in an Expression

erence to an event instance should silence all the propagations. Herein the decision is made to
apply silencing in both of these cases.

This requirement applies to an alternative transition condition [27, E.8.2.(7)], which is re-
ally the condition as a whole that appears in a particular transition declaration. It must be
enforced, therefore, at a level above the oCondition; production rule. For a component in-
stance k where 0 = [k]y, a new semantic helper function satisfiedBy : Cp — 270 is in-
troduced in Figure 7.3. It determines the set of environments that satisfy a particular alter-
nate transition condition. When the input condition expression ¢ € ’i‘k, that is, is a solitary
event or propagation, silencing is applied; otherwise the condition is translated without mod-
ification. Specifically, a modified basic expression in C, is constructed and interpreted using
[1&, .4 the symbol || is the string concatenation operator.

The set L, is the set of labeled propagation points (i.e., they are “tagged” with in or out):

L, = ({in} x DF) U ({out} x R,,) U {evt}. These tags are necessary to reconstruct the
correct syntactic trigger when generating the silenced expression (see below). The syntactic
function silence;—defined in next section—generates a conjunction of empty triggers ex-
pressed in the simple condition language from the given set of triggers. The syntactic function
specified,, : (Ck u TLlst) — 2L in Figure 7.4 “analyzes” a condition and returns a set consist-
ing of all the triggers used by the condition. Considering that silencing applies only to solitary
triggers, this function is definitely overkill. However, silencing is also used to define exclusive
or; thus arbitrary expressions may require silencing.

Finally, the syntactic function silencey, : 24 — (C% U {€}) in Figure 7.5, intended to operate
in conjunction with the results of the specified, function, generates conjunctions of silent
triggers in the basic expression language based on the input set. It bears repeating that the
output of this function is a string in the set of strings C% U {e}.
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silence,({l1, ..., ln}) = silencex({l1}) || & || silencer({lz, ..., ln})
silencek({(' Y = 4dn || f || { noerror }
silenceg ({(out, f)}) = out || f || { noerror }
silencej({evt}) = noevent
silence, () = €

Figure 7.5: Function to Silence Triggers

7.1.1 Silencing Example

Consider the instantiation of Example. i in Listing 7.1; that is, k is the component instance
for the instantiation of Example. i, and O is the associated semantic component. Ignoring
the implicit propagation points, such as bindings, the set of labeled propagation point ref-
erences is L, = {(in, in1), (in, in2), evt}. Consider how satisfiedByy, specified,, and silence;,

0 N o o A WO N =

W W W W W W W W NN NN NN DNDND NN 222 2 g
N O O A WD -2 O © 00N OO, WON 2 O 0 0o N O NN+ O

interact and evaluate the alternate condition expression of transition t1.

package Q
public
annex EMV2 {*x
error types
T: type;
end types;

error behavior Simple_Behavior
events
X: error event;
states
S1: initial state;
52: state;
S3: state;
end behavior;
*x};

system Example
features
inl: in event port;
in2: in event port;
annex EMV2 {*x
use types 0Q;
use behavior Q::Simple_Behavior;

error propagations
inl: in propagation {T};
in2: in propagation {T};
end propagations;

component error behavior
transitions
tl: S1 -[X]-> S2;
t2: S1 =-[X and inl{T} and int{T}]-> S3;
end component;
*x};
end Example;
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38

39 system implementation Example.i
40 end Example.i;

41 end Q;

Listing 7.1: An Example EMV2 Model to Demonstrate Silencing

Condition t1 is the solitary event instance X: the condition X is the EMV2 condition lan-
guage. According to rule E.8.2.(8), then, it must be assumed that there are no propagations
on inl and in2.

* The set of specified propagation points in the condition is specified; (event X) = {evt}.

* The set of unspecified propagation points is then f = L, \ specified; (event X) =
{(in, in1), (in, in2), evt} \ {evt} = {(in,in1), (in,in2)}.

* The resulting expression of silenced propagations is then silencey(f) =
silence({(in,in1), (in,in2)}) = in in1 {noerror} & in in2 {noerror}.

Condition t2, X and inl{T} and in2{T}, is X and in in1{T} and in in2{T} in the EMV2
expression language. It is not a solitary trigger, so silencing is not applied to it.

7.2 Translation to Basic Expressions

It remains to define |- |, : €} — Cy, introduced for satisfiedByp. The scheme is to translate
from the EMV2 condition language to the basic expression language and rely on the semantic
functions of the basic expression language.

Event and propagation triggers are translated directly without any additional meaning. The

translation functions |- |§ e TE e — TEene and |- K iggerp TEp — TEp for event and
propagation triggers, respectively, are shown below:
k
\_GJ Trigger_E = evente
lin f TSorNE|Figeerp = in f TSorNE

k
k
lout f TSorNE|% = out f TSorNE

rigger_P

k

Trigger | Ty — T translates a trigger based on its category:

The translation function ||

Lt € TéventJ #rigger

~

I_tJ 'IT'rigger,E
Lt € TII'?’PJ ']f'rigger = LtJ ']Ic'r

igger_P

Translation of primitives is discussed in Section 8.

The translation function || 'krerm - My — C’gz translates a trigger based on its category. Terms

are translated directly into conjuncts in the basic expression language because the basic ex-
pression language does not have terms.

I_t € F‘FkJ ']T'erm = I_tj 'lf'rigger
\_p € Pk?JZIierm LpJ ]Igrimitive

A conjunctive term is either a parenthesized condition or a term. The translation function

|-k 4 CE — CE evaluates as a straightforward translation:

L(e))aa = (Il Leona ll )

/ k k
Lm € Mkjand LmJ Term
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A disjunctive term is a possible conjunction and is translated by the function [-]5%, or

Ci in the expected manner:

I_Cl and C2J>’for = \_cljfor ” & H \_CQJ)]?or

\_CJ Eor = \_CJ End

Finally, a full condition is a possible disjunction and is translated by the semantic function
|'|% .4 : Cr — Cp. As mentioned previously, the EMV2 specification includes both the or
operator as inclusive or and the xor operator as an exclusive or. The exclusive or operator is

defined as follows:

If each port is referenced by itself in a separate alternative transition condition,
i.e, portl{Badvalue} xor port2{Badvalue}, then the transition condition
is satisfied if port1 has an error propagation present and port2 does not have an
error propagation present, and vice versa, but is not satisfied when both ports have
an error propagation present (exclusive or of alternatives). [27, E.8.2.(8)] [empha-
sis added)

The simple language does not have an exclusive or operator; instead the translation takes ad-
vantage of the logical equivalence

axorb=(aAN-b)V(-aAb)

As with satisfiedBy, a silenced term is taken to mean a term with no propagation. Specifi-
cally, the propagations used by each side of the disjunction are computed using specified,,
and then silencey, is used to generate the appropriate conjunction of empty propagations.
Unlike with satisfiedBy, the set of specified propagations is used directly without being con-
verted to an inverse set.

e %07 eolfing = (I Lexiona | & 2 1) + (1 11 & | L2l 1)
ny = silencey (specified (c1))

ny = silencey (specified; (c2))

Lcl or C2J %ond = I_Cljéond H + H I_Czjléond

|_CJ Cond I_CJ

where

Xor

7.3 Example: Translation and Interpretation

The example in Listing 7.2 helps demonstrate the translation of the exclusive or and generally

demonstrates applying the semantic functions. Consider the condition of transition t1. Let
k be the component instance for the instantiation of Example2.1i; let (I be the associated
semantic component. Ignoring the implicit propagation points, the set of propagation point
references is Rfp = {in1,in2,in3, in4}.

system Example?
features
inl: in event port;
in2: in event port;
in3: in event port;
in4: in event port;
annex EMV2 {*x
use types 0Q;
use behavior Q::Simple_Behavior;
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11
12
13
14
15
16
17
18
19
20

22
23
24
25
26

error propagations
inl: in propagation {T};
in2: in propagation {T};
in3: in propagation {T};
in4: in propagation {T};
end propagations;

component error behavior
transitions
tl: SO —=[inl{T} and in2{T} xor in3{T} and in4{T}]-> S3;
end component;
*x};
end Example?2;

system implementation Example2.i
end Example2.i;

Listing 7.2: An Example Using Exclusive Or

The meaning of the condition begins with it being considered as an alternative transition con-
dition and thus processed by satisfiedByp:

satisfiedBy(in in1{T} and in in2{T} xor in in3{T} and in in4{T})
= [|in in1{T} and in in2{T} xor in in3{T} and in ind{T}|E ,]J5 .

The translation of the condition in in1{T} and in in2{T} xor in in3{T} and in in4{T} is

|in in1{T} and in in2{T} xor in in3{T} and in ind{T}|%_,
— () Lin 03{T} and i 102{T} [fpg | & |
silencey, (specified, (in in3{T} and in in4{T})) ||) + (|
silencey (specified, (in in1{T} and in in2{T})) || & |
|in in3{T} and in ind{T}|% ., I)
— (| Lin 03{T} and in 02T} o | & |
silencey, ({(in, in3), (in,ind)}) || ) + (||
silencey ({(in, in1), (in,in2)}) || & ||
|in in3{T} and in ind{T}|% ., I)
— (I [in 03{T} and in 02T} [Epy || & |
in in3 {noerror} & in in4 {noerror} || ) + (|
in inl {noerror} & in in2 {noerror} || & ||
|in in3{T} and in ind{T}|% . I)
= () Lin in1{THE, | & || Lin 102{T}H | & |
in in3 {noerror} & in in4 {noerror} || ) + (|
in inl {noerror} & in in2 {noerror} || & ||
[in in3{T} |G, [| & || [in ind{T} |G, ||)
= (Jin 0T} & | 10 1n24T} | &
in in3 {noerror} & in in4 {noerror} | ) + (||
in inl {noerror} & in in2 {noerror} || & ||
in in3{T} || & || in in4{T} || )
= (in in1{T} & in in2{T} & in in3 {noerror} & in in4 {noerror}) +
(in inl {noerror} & in in2 {noerror} & in in3{T} & in in4{T})
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Evaluation of the basic expression condition yields the following:

[(in in1{T} & in in2{T} & in in3 {noerror} & in in4 {noerror}) +

(in in1 {noerror} & in in2 {noerror} & in in3{T} & in ina{T})[E ,

[(in in1{T} & in in2{T} & in in3 {noerror} & in in4 {noerror})]c, 4 U

[(in inl {noerror} & in in2 {noerror} & in in3{T} & in ind{T})[E, 4

[in in1{T}]7 N [in in2{T} & in in3 {noerror} & in in4 {noerror}]; U

[in in1 {noerror}]? N [(in in2 {noerror} & in in3{T} & in in4{T}]?

[in int{T}? N [in in2{T}]7 N [in in3 {noerror} & in in4 {noerror}]7 U
[in in1 {noerror}]? N [(in in2 {noerror}]} N [in in3{T} & in in4{T}|7

[in in1{T}]7 N [in in2{T}]T N [in in3 {noerror}]? N [in in4 {noerror}]} U
[in in1 {noerror}]? N [(in in2 {noerror}]} N [in in3{T}]T N [in ina{T}]Y

]

Each propagation trigger ¢ evaluates to a set of environments via [t]2 = [t Triggers

= {yelo|q[in] E{T}} N {yeln|yin2] E{T}} N
{veTo|~[in3] =enpe} N {y el |~7[ind] = erype} U
{'Y elg | 'Y[inl] = 6Type} N {’7 elg | ’y[in2] = GTyPE} N
{veTo|~[in3] C{T}} N {yelo|~[ind] E{T}}
= {veln|~[in]C{T}} N {yelo[~[in2] C{T}} N
{7 € To | 7[in3] = etype A [in4] = €rype} U
{yeTn|~linl] = EType} N {yelg|~fin2] = 6Type} N
{v€To [y[in3] T {T} Ay[ind] C{T}}
= {yveTo|1[in] C{T}} N {yeTn|~[in2] T {T}A~[in3] = etype A Y[in4] = €rype} U
{v €To | 9[inl] = erype} N {7y €' |7[in2] = erype A[in3] T {T} A~[ind] C {T}}
= {veTlo|[inl] C{T} Av[in2] T {T} A~[in3] = erype A Y[ind] = eType} U
{7 € To | 1lin1] = enype Alin2] = erype A fin3) € {T} A7find] = {T}}

Now the environments can be fully expanded based on the facts
* I ={inl,inl,inl,inl, evt}
* Vo ={X}
* D pp(f) = {T} for each f in {in1, in2, in3, in4}.

= {(inl — T,in2 — T,in3 = €rype, IN4 — €Type, VENt > EEyent),
(inl — T,in2 = T,in3 — €rype, iN4 — €Type, event — X)} U
{(inl = eType, N2 = €Type, in3 — T,ind = T, event — €gyent),
(inl = €Type, iN2 — €Type, iN3 +— T,ind — T, event — X)}

= {(inl— T,in2 — T,in3 > €rype, IN4 > €Type, EVENt > EEyent),
(inl — T,in2 +— T,in3 — €Type, iN4 — €Type, event — X),
(inl = €Type, iN2 > €Type, iN3 = T,ind — T, event — €gyent),
(inl = €Type, IN2 > €Type, iN3 — T,ind = T, event — X) }

Thus, the alternate condition expression in in1{T} and in in2{T} xor in in3{T} and in in4{T}

describes the environments in which
* both inl and in2 are propagating T and both in3 and in4 are silent
* both inl and in2 are silent and both in3 and in4 are propagating T

Note that it is irrelevant whether event X has occurred or not.
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8 Condition Expressions, Part 3: Translation of Primitives

The logical primitives are translated into expressions based on conjunction, disjunction in the
simple language, and a basic concept of negating a trigger. The translations all rely on de-
termining combinations of set elements. Let choose(k,{z1,...,2,}) be the function that re-
turns the set of all k-combinations of {z1,...,z,}. (The particular algorithm used to compute
choose is not important and is not further discussed.). For example,

choose(2,{1,2,3,4}) = {{1,2},{1,3},{1,4},{2,3},{2,4},{3,4}}
choose(3, {1,2,3,4}) {{1,2,3},{1,2,4},{1,3,4},{2,3,4}}

Below, the translation function || ... : Px — Ck is defined. The translations are more
complex than might be expected because of the strict requirements of triggers that must not
be satisfied. The simplest case ormore is presented first.

8.1 The Primitive ormore

The standard defines ormore:

If the alternative transition condition specifies 1 ormore (portl{Badvalue},
port2{Badvalue}), then the condition is satisfied if error propagations are
present on either port or on both ports. In other words, if one conditions or more
are true. [27, E.8.2.(8)]

From this can be extrapolated the definition that k ormore ... is satisfied if k or more
conditions (i.e., triggers) are satisfied. Importantly, no triggers are required to be unsatisfied.
Let DNFChoosey (kk, {t1,...,tn}), where t; € T4, be the function that generates disjunctive
normal form from the kk combinations of triggers; see Figure 8.1. A strict literal translation
of kk ormore (t1,...,t, ) is

DNFChoosey (kk, {t1,...,tn})
+ DNFChoosey(kk + 1,{t1,...,tn})
+ e
+ DNFChoosey(n,{t1,...,tx})

It is easy to see, however, that once at least kk triggers are satisfied, the subexpression
DNFChoosey, (kk, {t1,...,t,}) will always be satisfied—indeed one of its conjuncts will have
to be satisfied—and the condition as a whole will be satisfied. Thus, the translation can just
be simplified to DNFChoosey (kk, {t1,...,t,}).

The translation of ormore is formally defined in Figure 8.1.

* DNFChoosej : N x 2Tk C}, is described above.

* DNFy : 22"k Cy, constructs a syntactic disjunction by first building a disjunction
from each mathematical set s, of triggers representing a combination of kk triggers.

* conjoin,, : 2Tr C’i builds a syntactic conjunction from a mathematical set of trig-
gers.

* triggers,, : ’i",fist — 2T converts a syntactic sequence of triggers to a mathematical set
of triggers.
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= ( || DNFChoosey([kk]y, triggers, (Triggers)) || )

k
Primitive

| kk ormore ( Triggers )|

DNFChoosey(kk,{t1,...,tn}) = DNFy(choose(kk,{t1,...,tn}))
DNF.({s}) = conjoin(s)

DNF;({s1,.-.,8m}) = conjoing(s1) | + || DNFr({s2,...5m})
COHjOink({t}) = I_tJ'llc'rigger

conjoin, ({t1,...,tm}) = Ltlj‘krrigger I & || conjoiny({t2,...tm})

triggers,, (t) {t}
triggers, (t , Triggers) = {t} U triggers,(Triggers)

Figure 8.1: The Translation of the Primitive ormore

8.2 The Primitive orless

The standard defines orless:

If the alternative transition condition specifies 1 orless (portl{Badvalue},
port2{Badvalue}), then the condition is satisfied if at most one error propaga-
tion is present on either port or on both ports. In other words, if one conditions
[sic] or less is true.

Based on the translation for ormore, it is easy to conclude naively that the translation for
orless should be

DNFChoose(1,{t1,...,tn}) + -+ + DNFChoosey(k, {t1,...,tn})

However, this is incorrect because it does not enforce that no more than k are satisfied. Con-
sider, for example, 2 ormore(A, B, C, D), where A, B, C, and D are trigger expressions. The
above would translate the ormore expression to

A+B+C+D+AB+AC+ AD+ BC+ BD + DE

This may look reasonable, but it is not: this expression is satisfied, for example, when all four
of A, B, C, and D, are satisfied. But this is not what is required: the expression must be un-
satisfied when three or four of A, B, C, or D are satisfied. In this case, the translation of

2 ormore(A, B, C, D) should be

A&B&C&D + A&B&C&D + A&B&C&D + A&B&C&D + A&B&C&D+
A&B&C&D + A&B&C&D + A&B&C&D + A&B&C&D + A&B&C&D

which simplifies to

A&B&(C + D) + A&C&(B + D) + A&D&(B + C)+
B&C&(A + D) + B&D&(A + C) + C&D&(A + B)

Here X is the negation of trigger X. The exact meaning of this for triggers is given below; for
now, it is sufficient to (1) consider the normal logical meaning of negation and (2) point out
that negation is not silencing (see Section 7.1 and Section 8.3.1).

The above can be generalized: k orless (t1,...,t, ) means n — k of the triggers must be un-
satisfied and at least one of the remaining triggers is satisfied. The formal translation is in
Figure 8.2:
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| kk orless ( Triggers )|E = ( || buildOrlessy(choose(n — [kk]y;, trg), trg) || )

Primitive
where trg = triggers(Triggers)
n = [try|
buildOrlessy({s},trg) = ( || negateSet,(s) || ) &
(|| disjoin(trg \ s) || )
buildOrlessy({s1,...,8m}, trg) = buildOrless;({s1},trg) | + ||
buildOrless ({sa, ..., Sm}, trg)
diS_]Oll’lk({t}) = LtJ']IC'rigger
diSjOink({t17"'?tm}) = I_tlj']f'rigger || + || diSjOink({t27tm})
negateSet, ({t}) = ( || negatey(t) || )
negateSet; ({t1,...,tn}) = negateSet, ({t1}) || & | negateSet,({t2,...,tm})

Figure 8.2: The Translation of the Primitive orless

* Recall that choose evaluates to a set of sets so that variables s; are sets.

+ Function buildOrLessk:ZQT'“ x 2T C% builds the overall disjunction based on the
choices of sets of (n — k) triggers that must be unsatisfied.

* Function disjoink:2T’° — Cj, simply builds a disjunction of triggers from a set of trig-
gers.

* Function negateSet,, : 9T C’i builds a conjunction of the negation of all the trig-
gers in the input set.

The next section defines negate;,—used by negateSet;,—and the semantics of negating a
trigger. To complete this section, it is enough to say that the negation of a trigger should be
satisfied if and only if the trigger is not satisfied. For example, the trigger in in1{T} is satis-
fied by the set of environments

{yelo~nl] E{T}}

The negation of the trigger in1{T} is thus
{yelolylinl] Z{T}}

8.3 Negation of Triggers

From a mathematical point of view, the negation of a trigger is straightforward; see the above
example. It is illuminating, however, to present a more “positive” denotation of negation. For-
tunately, the universe of possible values for environment fields is both known and finite. For
example, the universe of values for an in propagation is given by the declared in-propagation
set. So if

1. the propagation point inl, above, is declared to have the possible in propagations of X,
Q,and T

2. error types X, Q, and T are in separate hierarchies (cf. type containment)
then the negation of the trigger in1{T} can be denoted as
[y € T | Afin1] T {X,Q} V ylinl] = erype}

The set includes the possibility that the propagation point has no propagation: the value
eType- Working backward, this set of environments can be seen to come from the basic expres-
sion in in1{X,Q} + in ini{noerror}.
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negate, (e € Df .) = disjoinEvents,(DE ..\ {e}) | + noevent
negate, (in f tse) constructLocal(f, ne, inverted)
where (ne, inverted) = invert TSE(Set(D, pp(f)), tse)
negate, (out f tse) = constructSub(f, ne, inverted)
where (ne, inverted) = invert TSE(Set(Dpp, (f)), tse)

invertTSE,(d,e) = (true,0)
invertTSEy ({elements}, {noerror}) = (false, types(elements))
invertTSEy ({elements}, ts € S) = (true,inverty(types(elements), Set(ts)))

types(t) = {t}
types(t , elements) = {t} Utypes(elements)
disjoinEvents, ({e}) = evente
disjoinEvents,({e1,...,e,}) = disjoinEvents,({e:}) || + |
disjoinEvents, ({ez,...,emn})
constructLocal(f,false, {t1,...,t,}) = in || f Il { It |l s -1, | tn |l }
constructLocal(f,true,)) = in || f || {noerror}
constructLocal(f,true, {t1,...,t,}) = in || f || {noerror} + in ||
ARt b s It I}
constructSub(f,false, {t1,...,t,}) = out || f || { | ta |, 1l---1, 1 tu ||}
constructSub(f,true,)) = out || f | {noerror}
constructSub(f, true, {t1,...,t,}) = out || f || {noerror} + out ||
FARCI s s e 3

invert({t}, ts) { 0 when t C ts

{t} otherwise
invert({t,}, ts) Uinvert({ts,...,t,}, ts)

invert({ti,...,t,}, ts)

Figure 8.3: Function to Negate a Single Trigger
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Function negate;, : T, — Ci in Figure 8.3 converts an EMV?2 trigger into a basic expres-
sion that expresses the trigger being unsatisfied. For event triggers, this is clearly the set of
all possible events except for the event named in the trigger, plus the possibility of no event
at all. Because D’E\Ient is known from the syntaz of the model, it is trivial for an analysis of
the model to compute D’évent \ {e} and then build the syntactic disjunction of events using
disjoinEvents,, : 9DEuent — C..

Negation of a propagation trigger proceeds based on the observations above:

1. The set of possible propagations for the propagation point is obtained from D, pp for
an in propagation point or Dpp, for an out propagation point. Because these sets are
syntactic, they must have references resolved using the Set function. This is purposely
done in the syntactic space to demonstrate that this translation can be performed in an
analysis tool. The optional type set from the trigger is then inverted.

2. invertTSEy, : S — Syogror — (B X 25eemen) determines how an optional type set should
be inverted. The Boolean value indicates whether the inverse should contain {noerror};
the mathematical set of triggers is the inverted trigger.

* If the type set is missing (), then the trigger is testing against all the types that
could possibly be propagated, and thus the inverse is just {noerror}.

* If the specified type set is {noerror}, then the inverse includes all the declared
propagated types, but not {noerror}.

« If a set of types is specified, then the inverse includes {noerror} and all the propa-
gated types not contained in the specified set.

3. types : Sgiements — 2Seement converts a syntactic list of type set elements to a mathemati-
cal set of type set elements.

4. invert : 25eement — § — 2Seement tests each possible propagated type or containment in
the trigger’s type set. As described in Section 3.4.1, this test can be performed in the
syntactic space. A mathematical set of the types that are not contained in the trigger’s
type set is constructed as a result.

5. constructLocal, : D} — B — 25temex — C, and constructSuby : R§, — B —
2Setement —» C, construct the basic expression of the negated trigger.

8.3.1 Negation Versus Silencing

It should be clear that negating a trigger, above, and silencing a trigger (Section 7.1) are dis-
tinct operations. To be clear,

* a silenced trigger is satisfied by environments in which the trigger is silent; that is, no
event is occurring, or no propagation is occurring on the propagation point.

* a negated trigger is satisfied by environments in which the trigger is not satisfied. This
is a larger set of environments than those described by silencing: it includes the silent
environments but also includes environments in which the trigger has other values that
do not satisfy the trigger.

In this context, the semantics of the exclusive or operator xor, presented in Section 7.2, are
revisited. Recall that the exclusive or operator is defined as follows:

If each port is referenced by itself in a separate alternative transition condition,
i.e., portl{Badvalue} xor port2{Badvalue}, then the transition condition
is satisfied if port1 has an error propagation present and port2 does not have an
error propagation present, and vice versa, but is not satisfied when both ports have
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an error propagation present (exclusive or of alternatives). [27, E.8.2.(8)] [empha-
sis added, but in a different place than before]

Section 7.2 uses silencing to define the translation of xor based on the wording “does not
have an error propagation present.” This is similar wording to the requirement from EMV2
that when a propagation trigger is by itself “then all other incoming error propagation points
must not have a propagation present” [27, E.8.2.(8)]. Thus, silencing is used to translate both
situations.

Exclusive or, however, is typically defined using negation:
Axor B=(AAN-B)V (—~AAB)

In the authors’ opinion, neither the wording of the EMV2 standard nor the notes from its cre-
ation are clear enough to fully determine whether exclusive or should be translated via silenc-
ing or via negation. In particular, the silencing translation may make sense when A and B,
above, are solitary trigger expressions. In this case, A xor B can be thought of merging the
transition conditions of two alternate transition conditions. For example, the separate transi-
tions

tl: sl —-[inl{A}]-> s2
t2: sl —-[in2{C}]-> s2

could be written as
t3: sl -[inl{A} xor in2{C}]—-> s2

and t3 would have the same silencing semantics as the pair t1 and t2. However, silencing be-
gins to make less sense when A and B are allowed to be arbitrary expressions. For example,
what is the rationale behind silencing the propagations inl and in2 from the sub-condition
in1{X} and in2{Y} of the transition condition of t4?

td: sl —-[(inl{X} and in2{Y}) xor FailEvent]-> s2

Furthermore, does it ever really make sense to silence events, as would occur during the han-
dling of event FailEvent above?

To translate xor via negation, the negation concepts from the previous section would need to
be extended to cover full expressions, and not just triggers. In the absence of certainty, this
extension is not carried out here, and it is possible that such an extension may introduce new
issues regarding the interpretation of expressions.! This section concludes, however, with a
concrete example demonstrating both translations.

Assume that
+ D, pp(in1) = {A, B}
+ D, pp(in2) = {C.D}
* Error types A and B are in separate hierarchies.
* Error types C and D are in separate hierarchies.

Interpreting in in1{A} xor in in2{C} via silencing (as described in Section 7.1), yields the
basic expression

(in in1{A} & in in2{noerror}) + (in inl{noerror} & in in2{C})

1The authors conjecture that such a translation can be carried out using De Morgan’s laws in such a way that con-
dition expressions can always be reduced to basic expressions over propagations, including those with {noerror},
events, and noevent—even in cases where previously negated subexpressions are negated again.
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|all — k& ( Triggers )| imicive ( || buildAllButy(choose([kk]y, trg),trg) | )

where trg = triggers(Triggers)

( [l negateSet(s) || ) & ( |

conjoin, (trg \ 5) | )

buildAllButy ({s1,...,8m},trg) = buildAllButy({s1},trg) || + ||
buildAllButy ({sa, ..., Sm}, trg)

build AllIButy ({s}, trg)

Figure 8.4: The Translation of the “All But” Primitive

Interpreting in in1{A} xor in in2{C} via negation, however, would yield the basic expression

(in in1{A} & (in in2{noerror} + in in2{D})) +
((in inl{noerror} + in in1{B}) & in in2{C})

8.4 The Primitive all

The simple case is all(ty,...,t,). The EMV2 specification gives the exact meaning [27,
E.8.2.(8)]:

all (portl{Badvalue}, port2{Badvalue}, port3{Badvalue}) is equiv-
alent to the conjunction port1{Badvalue} and port2{Badvalue} and
port3{Badvalue}

The translation can be described using machinery already developed above:

|all ( Triggers )|E

Primitive conjoiny (triggersy,(Triggers))
For the general case of all — kk ( Triggers ), the specification states [27, E.8.2.(8)] (emphasis
added):

if the alternative transition specifies all { x (portl{Badvalue},
port2{Badvalue}, port3{Badvalue}), then the condition is satisfied if all
but = of them satisfies the condition, for x an integer

Specifically, it is the case that exactly kk triggers are unsatisfied, and exactly n — kk are
satisfied. This too can be expressed using machinery described above via the function
buildAllBut. 2T+ x 2Tx — C]fr. The translation is shown in Figure 8.4.
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9 Component Behavior Automata

The preceding sections develop enough semantic machinery to enable a formal description of
the error behavior of a component, which is a surprisingly complex entity. It has properties of
many types of automata:

* A component’s error behavior contains states and state transitions. This suggests that
the behavior is a finite automaton. Furthermore, “the set of outgoing error behavior
transitions from the same source error behavior state to different target states must be
unambiguous for a given component” [27, E.8.2.(12)], so the behavior should be a deter-
ministic finite automaton [12, §2.2].

* A component, however, can emit an error propagation as the result of a transition,
which is similar to the behavior of a Mealy machine [18]. However, the behavior au-
tomata semantics differ slightly from that of a Mealy machine.

* Transitions can be branched [27, E.8.2.(5)], meaning that a transition leads to one of
a set of states with a given probability. The behavior is thus similar to a probabilistic
automata [23, 32].

* Most interestingly, the transitions are not directly driven by the input alphabet but
rather, as already explored in Sections 6-8, are described using expressions over events
and error propagations. This is similar to a symbolic automata [9, 33].

Because of the complexity of behavior automata, the description of them is built incremen-
tally, with the bulk of this section being devoted to the semantics of transitions and propaga-
tions.

9.1 The Basic Automaton
A deterministic finite automaton (DFA) is defined in Hopcroft and Ullman [12] as a 5-tuple
(Q,%,9,q0, F), where

* ( is a finite set of states. Symbol ¢ is an element of Q.

* Y is a finite input alphabet. Symbol a is an element of X..

* ) € Q x X — (@ is the transition function.

* go € @ is the initial state.

* P C Q is the set of final states.

In summary, the automaton starts in state gg. When the automaton is in state ¢ and re-
ceives input a, the transition function determines the new state of the automaton, if any:

q = 6(q,a). Because § is a function, the automaton is deterministic: there is only a single
value for each (g, a), and thus the exact transition can always be determined. The automaton
terminates when the current state q € F'.

For an automaton describing the error behavior of a component, sets from the preceding sec-
tions define some of this information. Specifically, for a syntactic component k& with O = [k],
let B be the behavior automaton for (0." The exact form of By evolves over the next few
sections; initially, based on the structure of a DFA| it is Bg = (Q, %, 9, qo), where

* Q=090

1B for behavior.
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° Z:FD

* qo= [[qéc]]SDtate

* The set of final states is irrelevant to the error behavior—the automaton is not being
used to match strings—so set F' is unnecessary.

Only the transitions and propagations have not yet been described. After a discussion of the
use of environments as the input alphabet, this section describes the semantics of transitions,
describes the semantics of propagations, and, finally, gives a full description of the behavior
automaton for a specific component.

9.1.1 Environments as Input Symbols

This section clarifies the use of the set of environments I'g as the input alphabet. The chal-
lenge here is that an environment is a tuple (manipulated as a record); see Section 5 for more
information. How can a record be used as an input character? This section shows that it is
possible to construct a set of symbols ¥ with a one-to-one correspondence to set I';. Then
the set ¥ is used as the input alphabet. But because every symbol in ¥ corresponds to ex-
actly one environment tuple in I'g, the symbol can easily be interpreted as that environment
when necessary and vice versa. Thus, there is no practical reason to distinguish between the
members of ¥ and I'.

For a given semantic component O = [k], consider the following:

1. Because the EMV2 model must be of finite length (as measured in characters), the fol-
lowing sets must also be finite:

(a) the set of declared error events DE _ . and thus also the set Vg

Event

(b) the set of declared error types Dy, and thus £
(c) the sets of in and out propagation points Df, and D§
(d) the set of declared subcomponents D,
e) the set of propagation point references RE . (from 1d and lc
Out

2. Based on 1b and the fact that product(p) must be true for all products p € P that ap-
pear in the EMV2 model, a product cannot have more elements than the number of
unique roots, n, < |€], in €. Thus, in practice, the only products that can appear in
the EMV2 model for component instance O are those in Pn = (J;~, P;, a set with large
but finite cardinality.

3. A type set is thus limited to drawing members from the set 75 = £ U P, which by 1b
and 2 must also be a finite set.

4. By 3, the maximum cardinality of a type set s referenced in component instance OJ is
thus ny = |Tg|, and the cardinality of the set of expressible type sets Sg = SN 270 must
also be finite, although extremely large! (The set of sets of elements of 7 is intersected
with S to enforce the requirements of typeset.)

5. By 4, for all f € D} the set [D¥>p(f)]se, is finite. Similarly, for all f € D, the set
[Dgp, (f)]see i finite.

6. By 1la, 1c, le, and 5 there are a finite number of error events, in propagation points, and
outgoing subcomponent propagation point references, and the cardinality of all the de-
clared propagations is finite. Therefore, the cardinality of I'; must be finite.

Now, let ¥ C A be a set of symbols such that
* [Xo| = T'ol
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* Function 6 : I'q — ¥ uniquely defines 3.

Clearly 6! : ¥ — I'g uniquely defines I';. The set of symbols Y5 can now be said to be
the input alphabet to the automaton B. The corresponding environment for an input symbol
a € ¥gis v = 6(a); the input symbol for an environment v € I'g is thus a = 6~!(y). There
is little to be gained besides confusion by continuing to make this correspondence explicit, so
hereon, as presented above, the set of input symbols to automaton By is I'.

9.2 Transitions and Propagations—Prelude

The standard describes transitions [27, E.8.2] and output error propagation conditions [27,
E.10.1]. The EMV2 model attached to a component specifies transitions and outgoing propa-
gation declarations separately. Within the declarative AADL model,

* transitions are declared in

— the transitions section of an error behavior declaration within the error
model library

— the transitions section of a component-specific component error
behavior declaration

* propagations are declared in the propagations section of a component-specific
component error behavior declaration

The instance model—and thus the syntactic component model used herein—keeps the transi-
tions and propagations separate, although it does collect together all the transitions declared
in the component’s error behavior, including those from the named error behavior and
from the component’s component error behavior.? Similarly, it collects all the propaga-
tions from the component’s component error behavior.

The point of giving this unusual level of detail on the specification of transitions and outgo-
ing propagations for a component is to emphasize that the specification of transitions and the
specification of outgoing propagations are completely separate. Therefore, it is necessary to
describe the relationship between transitions and outgoing propagations in the behavior au-
tomaton. Generally,

* a transition declaration specifies a source state, a condition, and a target (destination)
state

* an outgoing propagation declaration specifies a state, a condition, and a propagated er-
ror type

The issue at hand is the meaning of the states in the declarations. For transitions there are no
surprises: “An error behavior transition specifies a transition from a source state to a target
state if a transition condition is satisfied” [27, E.8.2.(4)]. More interesting is the interpretation
of the state in an outgoing propagation, which is mentioned in three places:

1. An outgoing propagation declaration specifies the “conditions under which outgoing er-
ror propagations occur in terms of incoming error propagations and the target error be-
havior state” [27, E.10.(2)] [emphasis added].

2. “The error behavior state referenced in an outgoing propagation declaration is the new
(target) state of a transition, if a transition occurs; otherwise it is the current state” [27,
E.10.1.(3)] [emphasis added].

2Classifiers may extend the component error behavior of their ancestor, so the full behavior of an instantiated
component may come from many places in the declarative model.
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3. “An outgoing error propagation declaration can specify that an outgoing error propaga-
tion is triggered by an error behavior event. This can be the error behavior event inde-
pendent of an error behavior state, or when the system is in a particular error behavior
state. In the latter case, the new (target) state of a transition, if the event also affects a
transition. [sic]” [27, E.10.1.(9)] [emphasis added]

It is thus clear that transitions must be considered first, and then outgoing propagations based
on the results of any transitions that were actually performed. This is revisited in detail in
Section 9.6.2. The following sections describe the semantics of transitions, the output alpha-
bet, the semantics of outgoing propagations, and the exact relationship between transitions
and propagations and, finally, summarize the behavior automata.

9.3 Transitions

As mentioned in the introduction, transitions are deterministic, in that only one transition
may apply to any given combination of source state and input symbol/environment:

The set of outgoing error behavior transitions from the same source error behav-
ior state to different target states must be unambiguous for a given component,
i.e., they must uniquely identify the target state for a given state, error behavior
events, and incoming error propagations. [27, E.8.2.(12)]

This section describes how to detect the existence of ambiguity in transitions when conditions
are considered.

The target state is probabilistic. That is, the unambiguous applicable transition may specify
multiple potential target states, together with the probability that each is the actual target:

A transition can be a branching transition with multiple target states. Once the
transition is taken, one of the specified target states is selected according to a
specified probability with fixed distribution. The probabilities of all branches must
add up to one. One of the branches may specify others—taking on a proba-
bility value that is the difference between the probability value sum of the other
branches and the value one. [27, E.8.2.(5)]

It is possible—as would be expected—to declare multiple transitions between the same source
and target state with different conditions.® These are referred to as alternate transition condi-
tions:

The transition condition expression of an error behavior transition declaration can
specify one or more alternative conditions, one of which must be satisfied in order
for the transition to be triggered. Multiple error behavior transition declarations
may name the same source and target state. In this case the transition condition
expression of each transition declaration is considered to be an alternative transi-
tion condition. [27, E.8.2.(7)]

The syntactic domain D'krrans C O is the set of transition objects declared in component

instance k.4 Figure 9.1 shows the syntactic domains and abstract production rules for the
source and target states of a transition. Here the syntactic domain Real C O contains ob-
jects representing decimal numbers.® The semantic function [-]g : Real — R maps the object
representation into a real number. Regarding branched transitions, it is assumed that

* any reference to others has been resolved into the correct decimal probability

3Indeed, this is similar to defining a DFA in which inputs a or b may cause a transition from state s to t. It is shown
herein, however, that for a behavior automaton the single condition a or b is not the same as two separate alterna-
tive conditions a and b.

4Cf. TransitionInstance in the EMV2 instance meta model.

5Cf. the Java class BigDecimal.
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all | Dlgtate

Target_State,,

Target_Branch,,

same state | D¥_
Target_Prob,, , Target_Branch,
Target_Prob,,

Target_State, with Real

Source_State,,

Srcy, : Source_Statey, T. ¢
arget;

Tgt,, : Target,
Tgtlgtate : Targetfstatek
Tgt’éranch : Tal‘gethranchk
Tgtp,., : Target_Prob,
Real : See Main Text

Target_State,,
Target_Branch,

Target_Prob,

Figure 9.1: Syntactic Domains and Astract Production Rules for Transition Sources and Targets

* the probabilities of the branches of each transition have been verified to sum to 1

Naturally, there are three syntactic functions to get information from a transition:

. Tr]éond Dk — Cy. is the condition of the transition.®

. ’I‘r’sfrc : DY — Srcy, is the source state of the transition.
. Tr?gt : D% — Tgt, is the target state or branch of the transition.

The semantics of these three parts of a transition are described below, followed by the full
meaning of a transition. As usual, it is assumed that & is the current syntactic component and
that O = [k]«.

9.3.1 Conditions

The semantics of EMV2 conditions is described in Section 7. Here it is repeated that SAE
AS5506/5 states,

An alternative transition condition specifies all the error behavior events and error
propagations that must be present in order for the condition to hold. Any error
propagation points not specified must not have an error propagation present. [27,
E.8.2.(8)]

The semantic function satisfiedBy is thus used to evaluate the transition’s condition to a set
of environments that satisfy the condition. In this way, the symbolic nature of the automaton
is eliminated [9, 33]. Any input symbol/environment that is a member of the set enables the
transition; this is formalized below in Section 9.3.5.

Note that alternative transition conditions are not equivalent to a disjunction of the individ-
ual conditions. This is due to the silencing semantics of satisfiedBy5. For example, consider
the two alternative transition conditions in inl1{T1} and in in2{T2}:

* The meaning of the first condition is ¢; = satisfiedBy(in in1{T1}), which will require
that propagation point in2 is silenced.

* Similarly, the meaning of the second condition is ¢o = satisfiedByg(in in2{T2}), which
will require that propagation point in1l is silenced.

* The meaning of the disjunction is ¢z = satisfiedByq(in in1{T1} or in in2{T2}), which
silences neither inl nor in2.

* Thus, for environment v = (inl +— T1,in2 > T2), it is the case that v ¢ c1, v € c2, but
that v € cs.

87r for Transition. This is to avoid confusion with the T sets used for triggers (e.g., Tk _ ).

Event
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9.3.2 Source State

The meaning of the source of a transition is straightforward. It is the set of states of which
the current state of the behavior automaton must be a member. There are two options:

« A single specific state is identified, in which case the semantic function []5.,,. is used to
translate the state to the semantic domain.

» The source state is all, which is defined in EMV2 [27, E.8.2.(4)]: “The keyword all
may be used to express that the transition applies to all source states.” So all must
mean the set of all states in the component: Q.

The semantic function [-]5). : Source_State;, — 290 is therefore

lals. = {[al5te}
[a11]s,. = Qo

9.3.3 Transition Target

Branching transitions complicate the interpretation of transition targets because they require
representing not only multiple destination states but also their probabilities. Traditionally this
is accomplished by representing the target as a probability distribution g : X — [0, 1] where
X is the set of states in the automaton [32]. The set of all probability distributions over X is
Distr(X). The notation {x1 + p1,...}, where elements with 0 probability are left out, is used
to succinctly write . Finally, z +— p € pu < p(x) = p.

Thus the semantic function ought to map a transition target to a distribution function over
Qn. However, the interpretation of same state requires knowing what the current state is,
so the meaning of a transition target must actually be a function parameterized by the cur-
rent state: [[~]]?gt : Tgt, — Qo — Distr(Qn). The function [[-]]'%'gt simply delegates to the

subrules: - -
[[tsﬂTgt = [[ts]]Tgt,S
[branch] ?gt = [branch] %LB

The semantic function [H]%LS : Tgt¥ .. — Qo — Distr(Qn) maps target states into a function
from a state to a singleton probability distribution using the helper stateq : Tgtlgtate X Qo —

Qo:

[[ts]]?gt,s = AQStart- {StateD(t57 QStart) = 1}
statey(same state, ¢/) = ¢
stateq(q, ¢) = [q)5he

The semantic function [H]%LB . Tgth . — Qo — Distr(Qg) maps branching targets into a
function from a state to a probability distribution constructed from the union of its members:

[[tp]]'lggt,B = [[tp]]“%lgt,P . .
[tp , tb]]Tgt,B = )‘qstart~([[tP]]Tgt,P(qStart)U[[tb]]Tgt,B(Qstam))

Finally, the semantic function [[.]]'I%Igt,P : Tgtﬁrob — Qg — Distr(Qg) maps a probabilistic
target into a function from a state to a singleton probability distribution:

[ts with p]]?gtip = AGstart- {Stateq (s, gstart) — [P]g}
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9.3.4 Determinism

As stated previously, transitions are required to be deterministic: “For the current error be-
havior state there must be one unique outgoing transition” [27, E.10.(C10)].

When transitions are defined in terms of condition expressions, this is a difficult requirement
to reason about. Reducing conditions to sets of environments, however, enables this restric-
tion to be reasoned about in terms of these sets. In particular, the restriction is that if the set
of source states of two transitions has a non-empty intersection, then the intersection of the
satisfying environments for their conditions must be empty:

V71, Ty € D'}?;rans' s1 N sg # V=T NIy = 0

where . -
Si [[’I‘rSrc(Ti)]]Src
I; = satisfiedByq(Trk, (7))

9.3.5 Transition Semantics

As mentioned above, the transition function for a DFA with states (Q and input alphabet X is
0: @QxX — Q. The behavior automata is no longer a DFA but a probabilistic automata whose
target states are described by probability distributions. It is now the case that the transition
function for a behavior automaton B with states @ and input alphabet I'g is g : 9 X
I'o — Distr(Qn). The semantics of a single transition 7 € DX_ _is one or more transitions in
6. The condition of T evaluates to a set of environments; thus, 7 defines a set of transitions,
all of which start at same start state, and end at the same probability distribution, but which

have different input environments.

The semantic function [-]5,,. : D%... — (9@ x I'g — Distr(Qn)) yields a transition function

by taking the cross product of the transition’s start states, satisfying environments, and target
probability distribution. Note that the semantic representation of the start state is passed to
the function that is the semantic meaning of the transition target.

[TRas = U (s} x T x {tgt(s)})

sesrcStates
where
srcStates = HT‘IJSCrc(T)]]g'c
I = satisfiedByq(Treyng(T))
k
tgt = [[TrTgt<T)ﬂ"%lgt

Now the full transition function dg is simply the union of all the transition functions produced
by each transition:

61] = U [[T]] 1D'rans

TeDk

Trans

9.3.5.1 Most Specific Transition

Finally, consider EMV2, which explains the reasoning behind the “silencing” semantics de-
scribed in Section 7.1:

Note: we chose to interpret listing a single error propagation point as all others
being error free, because modelers often assume that they are dealing with one in-
coming error propagation at a time. [27, E.8.2.(9)]

That is, silencing is a design decision made to accommodate the way system designers think
about errors. In particular, it ensures that the most specific transition is taken. This point is
revisited in Section 9.5.1.
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9.4 The Output Alphabet

A separate alphabet is used to describe the output of the behavior automata. For Mealy ma-
chines, this alphabet is traditionally named A [12], but it is named IT herein to more clearly
associate it with propagations. For the behavior automata, this alphabet must be able to de-
scribe all the outgoing propagations of the component. Unlike the environments that serve as
the input alphabet, it does not need to express an event instance or propagations related to
subcomponents. The output alphabet is defined as a set of records in manner similar to the
input alphabet; it can also be put into a one-to-one correspondence with a set of symbols in
the same way as the input alphabet.

Set Il is the set of propagation records for component O = [k]«. Specific outputs are associ-
ated with the symbol 7. The elements of set Il are structured as records with the index set
I%, so we have

(FDaIEv EI/]’ €/I:I)

The propagation record contains one field for each out propagation point of the component,
each indicating that point’s currently propagated type. The semantic function [-] Eeldb

Dgut — 17 maps references to propagation points to fields of the record. The index set Zg
and semantic function [[-]]E'e,d‘> are concurrently defined:

» For each f € DJ, there is a unique symbol i € 7% such that [f]5,y = i- The value of

this field is an error type, specifically a member of [Dpp, (f)]se-
* The function []5, 4, uniquely defines the set Z2,.

The set of empty values is E; = {erype}. The empty value for each field is erype: Vf €
Dgut' 6/IZI(IIJC]]‘IEileIdD) = €Type-

Finally, the set of records is

Hp = H [/TFeas = ([Dpps (F)lsee U {erype})

k
feDOut

9.5 Outgoing Propagations

As mentioned above, outgoing propagations associated with state transitions make the behav-
ior automata similar to a Mealy machine [18]. Traditionally, automata output is governed by
an output function A : Q x ¥ — A that maps the current state and input symbol to an output
symbol [12]. For a behavior automaton By, the output function is A\g : QO x I'g — TIg. A
novel aspect of the behavior automata is that multiple output propagations on distinct prop-
agation points may be possible for a given state—environment pair. Abstractly, this reduces
to a single output token because a single propagation record can describe this situation. But
because the propagations are described by distinct output propagation declarations in the
EMV2 model, the propagations are represented by multiple outputs in the output function
Ag- The behavior automata must, therefore, combine the multiple outputs into a single propa-
gation record.

The syntactic domain D’épc C O is the set of output propagation objects declared in com-
ponent instance k.” Figure 9.2 shows the syntactic domains and abstract production rules for
the features of an output propagation conditions. There are three syntactic functions to get
information from an output propagation condition:

« OPC¢,,4: Db — C(k)pt is the optional condition of the outgoing propagation.

7Cf. outgoingPropagationConditionInstance in the EMV2 instance meta model.
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Cg,: : OptCondition,, OptCondition, := oConditiony | e

Tgt],gmp : Target_Prop Target_Prop, := Target Point, Target_Type,
Tgtk . . : Target_Point Target Point, == D} |all
Tgtlérr : Target_Typej Target Type, = Ry, | TypeProduct | noerror

Figure 9.2: Syntactic Domains and Abstract Production Rules for Output Propagation Conditions

. OPC’SCrc : DEpc — Srcy, is the source state of the outgoing propagation. These are the
same as for transitions.

. OPCZFgt : Dch — Tgt’,irop is the output propagation target, that is, the specification of
propagation point and error type.

The semantics of these three parts of an outgoing propagation condition are described below,
and then the full meaning of an outgoing propagation condition is described. As usual, it is
assumed that & is the current syntactic component and that O = [k].

9.5.1 Conditions

Conditions in propagations differ from those in transitions in two ways: (1) they are optional,
and (2) they are evaluated without silencing. When the condition is empty, € in the abstract
production rule, the condition is always satisfied: “An empty condition expression indicates
that the outgoing error propagation occurs whenever the component is in the specified error
behavior state” [27, E.10.1.(4)]. This means the empty condition evaluates to I'm; it is satis-
fied by any environment.

Silencing as described in SAE AS5506/5 [27, E.8.2.(8)] applies to alternate transition condi-
tions. The EMV2 specification does not discuss conditions with respect to outgoing propa-
gation conditions per se. Section E.8.2 is, however, titled “Error Behavior States and Tran-
sitions,” suggesting that generally it should not apply to outgoing propagation conditions,
which are described in Section E.10.1. The decision is thus made herein to evaluate the con-
ditions of output propagation conditions without silencing. In this way, by being agnostic
about the value of unspecified propagation points, the condition is evaluated in the most gen-
eral context possible. This serves the design principle that as many errors should be reported
as possible.

The semantic function [H]gpt : Chpe — 210 is thus

e = T
C]]Opt = [leJEonalcond

=

9.5.2 Source State

The abstract production rules for source states is the same as used for transitions. The EMV2
specification states: “The keyword all instead of the error behavior state indicates that it
applies to all states, i.e., the outgoing propagation is solely determined by incoming propaga-
tions” [27, E.10.1.(4)]. The meaning of source states is thus also the same as for transitions
and the same semantic function is used: []5,.

9.5.3 Propagation Target

The propagation target specifies both the outgoing propagation point and the error type to
be propagated. The propagation point must be an outgoing propagation point of the compo-
nent, a member of Déut, or the specification all. The EMV2 specification actually fails to
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specify the meaning of all in this context, although it seems reasonable that it should mean
all members of D’éut. Here it is especially important to consider the following: “The optional
target_error_type_instance of the propagation target in an outgoing propagation dec-
laration must be contained in the error type set specified with the defining error propagation
point declaration and must not be contained in an outgoing error containment declaration”
[27, E.10.(L36)]. In other words, the propagated type for propagation point f must be con-
tained in [Dpp, (f)]se- This is specified in more detail below.

The semantic function [-]5.;, : T&troine — 270 is

[[f]] Eoint = { [[f]] Eeldb}

[[all]] FE’]oint = IE

The error type must be a declared error type or type alias, or a product type. It cannot be
a type set: the intent is that a specific error is being indicated. Alternatively, the target can
specify that NoError is propagated. The EMV2 specification allows the propagated error
type to be unspecified: “An outgoing propagation declaration can also explicitly specify the
error type to be propagated. If this propagated error type is not specified, type transforma-
tion rules or default rules are used to determine the propagated error type” [27, E.10.1.(6)].
Herein, however, type transformation rules are not considered, so instead the error type is
made mandatory.

The semantic function []2, : TgtE,, — T U {eype} is

O
IIt € RType]]EIrr = [[ﬂ] Ref
[[p € P]]Elrr = [[p]]Product
[noerror]g, = €Type

Now that the meaning of the propagated error type is defined, the constraint [27, E.10.(L36)]
can be specified for point err € Tgtérop. Let 0(-) be the inverse of the function [-]E .- The
constraint is thus

Vf € [pointoone [errTer € (IDpps (0(/)]ser U eType)

The overall meaning of a propagation target must be propagation points paired with error
types. A propagation record is not yet introduced here—a function from fields to propagated
types is used instead because it makes checking for nondeterminism easier (see below). The
semantic function [[~]]Erop : Tgt{%rop — (I — (T U €e1ype)) generates a propagation mapping
from a propagation target:

. O . O O
[[pomt eTrHProp = [[poznt]]Point X HerrﬂErr

Note that the propagation mapping either has a single element or |Z%| elements, and the
range of the mapping is always the singleton set {[err]g, }.

9.5.4 Determinism

The outgoing propagations of the behavior automaton must be deterministic: “The result of
evaluating the outgoing propagation declarations for an outgoing error propagation must re-
sult in at most one propagated error type” [27, E10.(C14)].

In this context and in the language used in the EMV2 specification, “outgoing error propaga-
tion” means a single outgoing propagation point. So for every state and environment, the out
propagation, if any, at each out propagation point must be unambiguous. Ambiguity would
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arise if a pair of propagation points had the same start state, conditions that were both satis-
fied by the same environment, and propagation mappings that mapped the same propagation
point to different values. This is the condition that must not occur. The opposite condition
that must always be is

v c DE (siNsa #0) A (T1NTy #0) =
01,02 OPC\ Vf € T8.(21(f) = z2(f) V (undefined z1(f) A undefined z2(f)))
where
S = [[OPCérc(OZ)]]SDrc
Fi = [[OPC]éond (Oi)]]gpt
Zi = [[OPC']IC'gt(Oi)]]Erop

9.5.5 Propagation Semantics

Having established that the set of outgoing propagation conditions are deterministic, the out-
put function A\g is constructed from the individual outgoing propagation conditions. The
meaning of each outgoing propagation condition is a function that maps a state and an en-
vironment to a propagation mapping: []5pc : DEpc = ((Qo x T'm) — (T8 — (T Uetype)))- A
simple cross product is sufficient:

[[OHEPC = [[OPCISCrc(O)TS:,rc x [[OPC]éond(O)H%’pt X {[[OPC'krgt(O)]]FE"rop}

The full output function A\g is constructed by merging together, via set union, functions gen-
erated by all the outgoing propagation conditions in the component. The result remains a
function: every Ag(q,v)(f) has a single value because the outgoing propagations have already
been constrained to be deterministic; see above. The propagation function generated for each
Ao(g, ) is finally converted to a propagation record in IIg using the record operator (see Sec-
tion 2.4).

A(g,7) =record [ | [ol6pc(a:7)

k
0€Dgpc

9.6 Behavior Automata—Conclusion

This section provides a complete definition of a behavior automaton and its implemen-
tation for a specific component. A behavior automaton is defined by the structure B =

(Qa F7 Ha 67 Aa qo):
* @ C Ais the set of behavior states; see Section 4.2.2.
* T" is the set environments/input symbols; see Section 5.3.

« II is the set of propagation records/output symbols; see Section 9.4.

* §: Q%I — Distr(Q) is the probabilistic transition function; see Section 9.3.5. 6(q,7v) = u,
where ¢’ — p € p indicates a transition to state ¢’ with a probability of p. The transi-
tion function may be partial.

e A : Q xTI' — II is the output function; see Section 9.5.5. The output function may be
partial.

* go € @ is the initial state; see Section 4.2.2.

A behavior automaton has the same structure as a Mealy machine, but the operation of the
behavior automata is slightly different: as discussed in Section 9.2, propagations are consid-
ered after transitions, based on the target state of the transition.
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9.6.1 For Component &

For a specific component [0 = [k], the behavior automaton is
— k10
Bo = (Qo, T'o, o, 6o, A [0 ] state)

9.6.2 Operation

The operation of a behavior automata B is as follows. At all times the automata is “in” one,
and only one, of the states in Q. That is, there is a current state ¢. € @ that describes the
active state of the automaton. Initially ¢. = go. When the automata receives an input sym-
bol v € T, it may change its active state g. and must output a symbol = € II. Specifically,
when the automaton is in state g. and receives input vy, it responds as follows, in the following
order:

1. The current state q. is updated to ¢, based on the transition function §. First ¢ is ex-
tended to be total (i.e., to have a value for all inputs) by inserting “self-transitions” with
the probability of 1 when (g, ) is undefined:

, | {g— 1} undefined 6(g,7)
G { 0(qe,y)  otherwise

The new state ¢/, = ¢ with the probability of p when ¢ — p € (¢, 7).

2. The output symbol 7 is determined using the output function A and the new state ¢...
Once again, this differentiates behavior automata from Mealy machines, which use the
original state g. to determine the output symbol. The function A is extended to be total
by inserting the empty propagation record () when A(g.,~y) is undefined:

) [0 undefined A(gq,7)
A (q7’7> - { )\(q,fy) otherwise

The behavior automaton outputs symbol N (g, 7).

The behavior automaton is then ready to receive and react to a new environment or input
symbol.
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10 Generating a Fault Tree from AADL and EMV2 Models

This section addresses the problem of generating a dynamic fault tree (DFT) [8, 34] from
an AADL model that includes EMV2 annex subclauses (AADL+EMV2). The technique de-
scribed herein for generating fault trees is based on using component fault trees, with some
adaptions particular to AADL.

10.1 Problem Statement

Given
* an AADL instance model

* a particular system operation mode of the system, that is, a one-to-one mapping of com-
ponent instances to one of their operational modes

* a particular initial behavior state of the entire system relative to the system operational
mode, that is, a one-to-one mapping of component instances to EMV2 error behavior
states (such a thing is not currently described in the EMV?2 specification or its meta
model)

* a particular top event, that is, state transition, state activation, or propagation within
the system—mnot necessarily from the top-level component

the problem is how to generate a dynamic fault tree that enables answering the following two
questions:

1. What are the shortest event sequences that lead to the occurrence of the top event?
Colloquially, what is the fastest way to crash the system?

2. What is the probability of the top event occurring? Colloquially, what is the probability
of crashing the system?

Collectively these inputs are known as the fault tree query.

Keep in mind that a fault tree is not a simulation of the modeled system; such simulation is
a separate problem addressed by automata and other techniques. The fault tree answers the
above questions only about the specific operational and behavioral states of the system.

10.1.1 Implications: Operational Modes

Note that the problem statement constrains the fault tree to consider event sequences within
the given system operation mode only. The possibility of the system changing modes is not
even considered by the constructed fault tree. A system with multiple system operation
modes would need to have a fault tree generated in each system operation mode of interest.
Because system operation modes are used in AADL to model system reconfiguration (e.g.,
due to component failures), this means that when considering common example systems, the
fault tree generated by the approach described in this work may be different from those usu-
ally presented in the literature.

For example, a “k of N” system design (e.g., a system with five redundant sensors that can
function as long as three sensors are operational) is usually presented as resulting in a fault
tree utilizing a k-of-N gate.! For the example just mentioned, a 3-of-5 gate would be used be-
cause failure occurs when three or more of the sensors have failed. In the approach described

A k-of-N gate can be reduced to an OR gate fed by AND gates based on expanding all the combinations in which
k of the inputs are true.
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herein, the AADL model would contain 32 system operation modes: one for each configura-
tion of the system based on which sensors are currently operational. A forest of fault trees
would be obtained, one for each system operation mode; the relationships among the different
system operation modes, and, thus, the relationships among their fault trees, are not explored
by this work. Specifically, though, no 3-of-5 gate equivalent to the one traditionally presented
would be evident in any of the resulting fault trees.

10.1.1.1 Handling Modes and Reconfiguration

By ignoring mode changes, the approach described herein is also not capable of producing
fault trees that would traditionally contain spare gates of the hot, warm, or cold variety. To
do so requires knowledge of design intent that is not evident in a standard AADL model, even
one extended with EMV2 annex clauses. Of course, the different configurations (system op-
eration modes) of such a system can be analyzed separately, but no information about the
reconfiguration itself would be available.

AADL modes and mode changes present issues with timing and inter-component synchroniza-
tion that do not yet have a formal semantics. Such an understanding is vital to ensuring that
the fault tree generated for such a system considers events in the proper order.

10.2 Component Fault Trees for AADL Components

Following the basic principles of CFTs, one component fault tree is generated per AADL com-
ponent. Recall, however, that the syntactic model of AADL is derived from the AADL system
instance model (i.e., an instantiated AADL system). Although a CFT as originally described
by Kaiser and colleagues [15] is intended to be associated with a generic component descrip-
tion (e.g., an AADL declarative component classifier) and reused for each instance of such a
component in the system, the reality of analyzing AADL models does not support this. In-
stead, a new CFT is generated for each component in the AADL model, regardless of whether
a CFT for a component with the same classifier type has already been created. There is no
inherent difficulty with this, but it does undercut the reusability claim made in support of
CFTs—in fact, the classifier of a component plays no actual role in the process at alll The
fact that each AADL component has its own CFT, however, does enable a different sort of
reuse when it comes time to connect the CFTs together; see Section 10.3.2.

10.2.1 First Impressions: AADL and EMV2 Models and Component Fault Trees

Existing approaches to deriving fault trees from AADL and EMV2 models employ a back-
ward search technique on the AADL instance model [7, 10, 20]. Generally speaking, an out-
put propagation is followed backwards to find the conditions that cause the propagation. The
causes of those conditions are further traced, and so on, until an error event or unconnected in
port is reached. While conceptually simple, this process can become complex due to

* the notion of state in the EMV2 behavior model
* the interactions among states and type propagations
* the fact that causality often passes through many components within the model

CFETs return the focus of analysis to the components, thus bringing the potential to simplify
the process of deriving a fault tree from an AADL model. In particular, by design, they allow
the fault tree to be generated on a per—component-instance basis:

* Behavior (error and core AADL) that comes from the component is represented by gates
within the CFT. This information is derived solely from attributes associated with the
component.
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* Behavior (error and core AADL) that comes from a subcomponent is described by the
CFT for that subcomponent; within the CFT of the containing component, it is repre-
sented by a single node for that subcomponent’s CFT.

» Additionally, as is shown below, CFTs can further abstract a component’s behavior on a
per-state basis.

10.3 AADL to CFTs: An Overview

First, the gates needed to convert AADL to a fault tree are limited to AND, OR, and PAND.2
The Boolean literals TRUE and FALSE, however, are also used, something that may be novel

within this work. Also, as the final fault tree is derived from a CFT, the fault trees created by
the process described herein are actually cause—effect graphs.

The AADL instance model must first be projected into the system operation mode provided
as part of the fault tree query. This is a standard AADL instance model operation. It limits
the model to containing exactly those components, connections, and other features that exist
in the specific system operation mode.

The following subsections describe the general structure of CFTs generated from AADL. The
full specification, in terms of the formalism presented in Section 2.2.2, is in the following sec-
tions.

10.3.1 Instance CFT

As mentioned already, one CFT is associated with each AADL component (instance). To
differentiate this CF'T from roles introduced below, this CF'T is known as an instance CFT.
The purpose of this CFT is to abstract the failure behavior of the component as described by
the core AADL and EMV2 structures in the component. The ports of the instance CFT are
therefore the interface to this abstraction and reflect the information that is produced or re-
ceived by the component:

* There is one output port for each behavior state in the component. The fault tree rooted
at this port describes the condition under which the behavior state becomes the current
state of the component. (For brevity below, this is equivalent to writing “The port indi-
cates when the behavior state becomes the current state.”)

* There is one output port for each type declared for each out propagation of the com-
ponent. The port indicates when the type is propagated by the propagation point.
For example, if the component declares the propagation measurement : out
propagation {Missing, Delayed};, then there would be two out ports added
to the instance CFT: one for the possibility that error type Missing is propagated by
measurement and one for the possibility that Delayed is propagated.

* Similarly, there is one input port for each type declared for each in propagation of the
component. The port indicates when the type propagation is received by the propaga-
tion point.

* Less obviously, there is also one input port for each behavior state in the component.
This port is used to manage the initial behavior state of the entire system (see Sec-
tion 10.1). Its full use is described in Section 10.3.4.

Because the exact behavior of the component depends on its current error behavior state, the
instance CFT contains one nested instance state CFT for each state in the component.

2Here the gate names are written in sans-serif typeface because they refer to specific gate identifiers that may be
used within the CFT. See Section 11.1.
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10.3.1.1 Instance State CFT

An instance state CFT abstracts the behavior of a single error behavior state of a component.
As such, it has some of the same ports as the instance CFT:

* There is a single output port indicating the state is the current state.

* There is one output port for each type declared for each out propagation of the compo-
nent.

* There is one input port for each type declared for each in propagation of the component.
* There is an input port indicating that the state should become the current state.

Because the CFT represents behavior internal to the component, transitions are also part of
the interface:

* There is one output port for each state that indicates the condition under which the cur-
rent state transitions to the state. That is, the port associated with state B on the in-
stance state CFT associated with state A of component K indicates when K transitions
from state A to state B.

The formal details of this are described in Section 11.2.2.

10.3.1.2 Gates and Edges

A minimal amount of “logic” in the form of fault tree gates is added to the instance CFT.
One of the states of the component must be current, and the component’s behavior is then de-
termined by the corresponding instance state CF'T. Thus, the outputs of the different instance
state CFTs can be ORed together. Generally speaking,

* each out propagation port is connected to an OR gate whose inputs are the correspond-
ing output ports on the nested instance state CFTs (recall that a port can only receive a
single incoming edge)

* each in propagation port is a direct input to the corresponding input propagation ports
on the nested instance state CFTs (there is no problem with a port having multiple out-
going edges)

* the current state port of each instance state CFT connects to the corresponding behav-
ior state output port of the instance CFT

* the initial state ports of the instance CFT connect to an OR gate connecting to the acti-
vation port of the corresponding instance state CFT

* the transition output port of each instance state CFT is connected to the OR gate con-
nected to the activation port of the corresponding state CFT. That is, the B transition
port of each instance state CFT is connected to the OR gate connected to the activation
port of instance state CFT associated with state B.

The formal details of this are described in Section 11.4.

10.3.2 Subcomponents

The instance state CFTs represent an abstraction layer not explicitly represented in the
AADL model. This use of CFTs seems novel to our approach. The (traditional) subcompo-
nent CFTs of the CFT, however, have been displaced. Here, a subcomponent of an AADL
component is represented by the instance CFT associated with it. There is an interesting
problem:
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* On the one hand, a subcomponent exists independently from—that is, its existence does
not depend on—the error behavior states of its containing component. Its behavior is
also unaffected by the behavior of the containing component; importantly, the current
state of the subcomponent is unaffected by the state transitions of the containing com-
ponent.

* On the other hand, the observable behavior of the subcomponent may be used to deter-
mine the behavior of the containing component. This may depend on the current state
of the containing component.

Because the subcomponent may be used by each instance state CFT, and the connections to
each may be different based on the different transitions and propagations in each state, it is
tempting to simply duplicate the subcomponent across each of the instance state CFTs. But
this runs afoul of the first bullet point above because duplicating the subcomponent would
create the problem of synchronizing the subcomponent’s current state in each instance state
CFT.

The solution is to share a single instance CFT of each subcomponent among the different in-
stance state CF'Ts of the containing component’s instance CFT. The formal details of this are
described in Section 11.3.3.

10.3.2.1 Gates and Edges

The subgraphs—gates and edges—connecting the ports of an instance state CFT to its
(shared) subcomponents mainly derive from the conditions of transitions and outgoing propa-
gations associated with the state:

* The in propagation ports of the instance state CFT and the out propagation ports of
the subcomponent CFTs are the basic “trigger expressions” of the conditions.

* The logic gates OR and AND construct the remainder of the condition expression, which
is then rooted at the appropriate transition or out propagation port (although see point
below).

It is important that the output ports of an instance state CF'T only become “active” when the
state associated with the CFT is active. Therefore, every out port of an instance state CFT is
guarded by a PAND (i.e., priority and) gate:

* The A input of the gate receives an edge from the activation port of the instance state
CF'T. That is, the state must become the current state before its output is turned on.

» The B input of the gate receives the root of the actual fault tree that would be con-
nected to the port.

The formal details of this are described in Section 11.4.2.

10.3.3 Inter-Component Edges

Edges between instance CFTs are guided by EMV2 propagation paths, which are similar

to AADL semantic connections: they describe a propagation starting from the most nested
source component (i.e., a thread), up though its containing components (i.e., thread groups,
processes, systems), across to another sibling component (i.e., a process or system), and then
back down nested components to the ultimate destination component. Processing a propaga-
tion path adds

* edges from instance CFT out ports to out ports of their containing instance state CFTs
during the journey “up”
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* edges from instance CFT out ports to instance CFT in ports during the journey
“across”

* edges from instance state CFT in ports to subcomponent instance CFT in ports during
the journey “down”

Keep in mind that the following edges exist regardless of any propagation paths that may be
added:

* edges from instance state CFT propagation output ports to instance state propagation
output ports

* edges from instance CFT propagation input ports to instance state CFT propagation
input ports

The formal details of this are described in Section 11.5.

10.3.4 The Fault Tree and the Initial System Behavior State

Generally speaking, the fault tree (really CEG) is produced as described in Section 2.2.1. The
root port for the traversal is the out port associated with the component state, state transi-
tion, or out propagation provided by the fault tree query. It needs to be pointed out, however,
that the collection of CFTs is incomplete at this point: paths leading to instance CFT be-
havior state input ports fail to connect to a gate output or basic event. This is resolved dur-
ing the traversal based on the initial system behavior state provided as part of the fault tree
query. When the child of a behavior state port is required, the initial system behavior state is
consulted:

 If the port is associated with a component state that is part of the initial system behav-
ior state, then the TRUE literal gate is used.

* If the port is not part of the initial system behavior state, then the FALSE literal gate is
used.

The fault tree obtained from the traversal is then simplified via the application of semantic
transformation rules to eliminate the use of TRUE and FALSE gates: for example, TRUE
AND A = A. Tt is possible to remove all uses of TRUE and FALSE except for the cases where
they become the root, and sole, node of the fault tree. This can happen, for example, when
the queried transition/propagation/state

* is immediately available from the initial system behavior state (TRUE)
* is impossible from the initial system behavior state (FALSE)

The formal details of this process, and the exact optimizations performed, are described in
Sections 12.2 and 12.3, respectively.

10.4 Additional Observations About This Approach

As mentioned above, existing approaches to generating fault trees from component architec-
ture models, including AADL, directly produce a fault tree using a backwards search from an
output port of an architectural component and interpreting the semantics of the component
model during the backwards traversal. In a sense, this is a global analysis of the system in-
stance and fails to leverage the modularization provided by the components themselves. In
contrast, the CFT-based approach described herein does utilize the modularization provided
by both components and error behavior states: subsections of the fault tree are generated per-
state and per-component, utilizing only information declared in that component. It is a lo-
cal and composable analysis. This makes the analysis easier to define, implement, and reason
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about. The backwards search is performed starting from a root port in the CFT (see above)
instead of from a feature in the component model.

10.4.1 Trade-Offs
There are trade-offs to using this approach:

* A CFT contains all potentially interesting events that may occur within a component;
that is, the CFT is not focused on the events necessary for the specific fault tree being
generated. This can be seen as performing unnecessary work. However, see the discus-
sion below regarding reusability.

* The generated fault tree explores all the potential paths in the system state, even those
that do not apply to the initial behavior state. These paths are ultimately disabled by
the fact that the literal FALSE values are connected to the initial state ports of instance
CFTs. Furthermore, the existing analyses in the literature do wvisit these paths; they just
do not incorporate them into the generated fault tree.

Said more succinctly, this approach pursues ease of analysis at the expense of generating a fi-
nal fault tree that has “dead paths.” The fault tree that results from the above analysis steps
can be simplified to “pull up” the TRUE and FALSE literal values. In particular, the FALSE

literals cause unreachable “dead paths” to be pruned from the fault tree.

10.4.2 Reusability

CFTs are introduced as a technique to generate a partial fault tree that can be associated
with a component type. The CFT serves as an abstraction of the component’s behaviors: each
out port is a predicate over the component’s in ports. A component type can be reused in
many different system designs, and its CFT is carried with it. The component’s CFT needs
to be generated only once but can be reused in many different contexts.

It is tempting to apply this concept directly to AADL by generating CFTs based on declar-
ative AADL component classifiers. As mentioned already in Section 10.2, this is not feasible,
making the full reuse scenario intended for CFTs inapplicable to AADL.

A lesser amount of reusability, however, is possible in the approach presented here due to the
CFT being parameterized by the initial behavior state. Only one set of instance CFTs needs
to be created per system operation mode of the system. As pointed out above, the generated
CFTs are not focused to any particular output or event of the system. Furthermore, the ini-
tial state ports are left “disconnected.” Thus, once a system instance model is projected into
a specific system operation mode, and analyzed to produce CFTs, any number of fault trees
using different initial behavior states and root ports can be produced without producing a
new set of CFTs.

10.5 Limitations

The expressiveness of AADL and EMV2 is beyond what can be expressed within a fault tree,
either static or dynamic. The production of a fault tree from AADL and EMV2 models is
thus subject to several limitations:

* As already discussed, the full semantics of AADL modes and their effects on error be-
havior have not been explored. Thus, a fault tree is always from a particular system op-
eration mode. This is true as well of the existing work that generates fault trees from
AADL, but this work is the first to directly acknowledge the limitation.

* Probabilistic branched transitions are not handled by the fault tree generation process.
They are simply ignored. They require the ability to express probabilistic choice in the
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middle of a fault tree. This is true as well of the existing work that generates fault trees
from AADL, but this work is the first to directly acknowledge the limitation.

* Operations requiring logical negation cannot be expressed in the generated fault tree.
This is generally known as non-coherence in the literature; see Sharvia and Papadopou-
los for a history of the problem and a summary of recent approaches to address it [29].
Generally, techniques exist to analyze non-coherent static fault trees, but there are no
widely discussed techniques to analyze non-coherent dynamic fault trees.® It is unclear
what tool support, if any, exists for the analysis of non-coherent fault trees, either static
or dynamic.

From the point of view of generating a fault tree from AADL, any feature that requires
negation cannot be considered:

— The requirement that condition expressions consisting of a single propagation trig-
ger be evaluated as if all other propagations are not occurring (see Section 7.1) can
not be enforced. This requirement is neither enforced nor discussed by the existing
approaches to generate fault trees from AADL.

— The xor operator cannot be translated to a fault tree.
— The primitive orless cannot be translated to a fault tree.

— The primitive “all but” all—n cannot be translated to a fault tree.

3But see Schilling [31]. The authors became aware of this work too late for it to have an influence on the work
presented herein.
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11 The Instance CFT and Instance State CFT

This section elaborates on the mathematical structure of instance and instance state CFTs as
introduced in Section 10.3.1. It describes the translation of an AADL model component &k into
a component CFT structure in detail.

11.1 CFT Defined

Recall that a CFT is described by a 4-tuple (N, G, S, E) in Section 2.2.2. Here, the represen-
tation of a CFT is extended to be a 5-tuple (N, G, O, S, E) to better capture the association
between a gate and its logical formula:

* Internal nodes, input ports, output ports, and gates are represented by distinct (non-
intersecting) sets of symbols: N C A, G C A, and N NG = (. Furthermore, the symbols
are globally unique among all the CFTs produced for the components in K.

— Whenever a fresh symbol is needed, it is unique among all symbols used in all
CFTs created for components in K.

— N is partitioned into the disjoint subsets Njntern Of internal events, V), of input
ports, and Noy: of output ports.

= Set Gin = Uyeglg-ini} and set Gouw = Uyeq{g-0ut}.

* Function O : G — Op is a total function mapping a gate node to the operator that
it represents, drawn from the set Op. The members of G are instances of the following
gates: TRUE, FALSE, AND, OR, and PAND. That is,

Op = {TRUE, FALSE, AND, OR, PAND}

The formula associated with each gate and the constraints on the number of children of
each gate are shown in Figure 11.1. The formulas are given as expressions in Merle’s al-
gebra. Note that AND and OR gates are allowed to have a single child. This allowance
makes algorithmic construction of the fault trees easier by eliminating the need for test-
ing for corner cases. These cases are removed by the fault tree simplification step de-
scribed in Section 12.3. In particular, AND(z) = x and OR(x) = z.

» The specific representation for subcomponents depends on whether the CFT is an in-
stance CFT or an instance state CFT; in either case, S C A.

— In an instance CFT, subcomponents are directly represented by the behavior state
symbols.

— In an instance state CFT, subcomponents are directly represented by semantic
components.

— Set Sin = U, eg{s-ini} and set Sout = J,cg{s-out;}.
* FE C Src x Dst, where

— Src = Nintern U Nin U Gout U Sout

— Dst = Nout U Gin U S,

For (s,d) € E, s is the source of the edge and d is the destination of the edge. That is,
edges point towards the output ports of the CFT.
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Gate | Number of Inputs Formula

TRUE 0 out=T

FALSE 0 out =1

AND n>1 out=iny- --- -in,
OR n>1 out =iny +---+in,

PAND 2 out = ing - (in] < ing)

Figure 11.1: The Gates Used in the Constructed CFTs

11.2 The Instance CFT Interface

A component k with O = [k], has a component fault tree CFTn = (Ng, Go,On, So, En).
The specific sets Ng = NEtem U NE U Ngut and Sg for semantic component [ are now de-
fined. The general pattern is to define abstraction functions: total functions that map seman-
tic aspects of the component to symbols in the CFT. This way, the actual symbols need not
be specifically identified. As much as is possible, the existing sets of semantic symbols from
the EMV2 denotation are reused.

11.2.1 Events

The set of error events defined in the component is already identified with the set Vg; see Sec-
tion 4.2.1.

O
Nlntern = VD

11.2.2 Ports

There are two distinct subsets of input ports to the CFT: one for ports that manage the ini-
tial state of the component, and one for ports that represent the in propagations of the com-
ponent. The scheme for propagations is to have a set of ports for each propagation point: one
port for each declared propagated type. Because no two elements of a type set may have a
containment relationship with each other, these ports all represent distinct occurrences. Be-
cause negative behavior is not being modeled in the generated fault tree, no ports are gener-
ated to represent the {noerror} case of a propagation.

* For the initial state of the component, the function Initg : Qg — A uniquely maps
behavior states of the component to symbols."

* The ports representing in propagations depend on the declared propagation points and
the set of types they are declared to propagate. There is one port for each potentially
propagated type. The function Ing : A x T — A uniquely maps each propagation
symbol—type pair to a symbol. For in propagations, the symbols from Z are used to
represent the propagation point. For f € D, the types are drawn from [Dpp(f)]se;-

In»

Thus, the abstraction has a value for each pair in UfeDF {I1f1Eq} % [Dopp (FHlser)-

Thus,
NE = ran Initg Uran Ing

There are two distinct subsets of output ports to the CET: one for ports that report the cur-
rent state of the component and one for ports that represent the out propagations of the com-
ponent.

1. For the current state of the component, the function Currenty : O — A uniquely maps
behavior states of the component to symbols.

TUnlike with events, the set of states Qr cannot be directly used here because there are two sets of ports based
on states within the component. Further, the symbols in Q are used to identify the subcomponents of the CFT.
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2. The ports representing out propagations are handled similarly to the in propagations,
but propagation points are mapped to symbols using []E,q. instead of []E,4. The func-
tion Outp : A x T — A uniquely maps each pair in UfEDSut({[[f]]EeldD} X [Dppy (f)]set)
to a symbol.

Thus,
NG, = ran Currentg U ran Outg

11.2.3 Subcomponents

There is one subcomponent CFT for each behavior state of the component; thus, it is simply
the case that
So=9n
Each subcomponent s € So (i.e., ¢ € Qo) maps directly to the instance state CFT CFTqD =
(NqD, Gq':’, OqD7 S’qD, EE)7 described below. Unlike the original presentation of component fault
trees [15], note that subcomponent port ¢.p maps directly to the equivalent port in N, (']:':
0 _ O _ O

Sin = UqGQD Nq In SOUt UqéQD Nq Out
That is, the ports of the instance state CFT are directly connected to nodes in the instance
CFT, cutting out the “middle man” of the subcomponent. This is possible because there is no
reuse of referenced CFTs by subcomponents within the overall CFT structure.

11.3 The Instance State CFT Interface

The specific sets ND NqDInt N‘:I U ND and SD for the instance state CFT represent-

ing state g of semantlc component D are now deﬁned

11.3.1 Events

As described above, the error events of [J are described as internal events of the instance
CFT. It is thus the case that
NE =9

q Intern
The events of CFT o, however, are needed by the fault tree structures generated within
CF TE to represent the expressions from transition and propagation declarations. The in-
stance state CFT, therefore, has one input port for each internal event of the parent instance
CFT. Function EventqD : Vo — A uniquely maps each symbol representing a declared event to
a symbol representing an input port event in the instance state CFT.

11.3.2 Ports

The instance state CFT CF TqD has the same propagation-based input and output ports as
does the instance CFT. Thus, the analogous abstraction functions Ian t AXT — Aand
utqD : A X T — A are used to identify the ports in the instance state CFT.

In addition, CFT} has

* one input port indicating “state activation” (i.e., that the represented state should be-
come the current state of the component). The abstraction function Activateq : Qo — A
identifies the port. (This function is shared by all the instance state CFTs for [J.)

* one output port indicating that the represented state is the current state of the compo-
nent. The abstraction function Activer : Q@ — A identifies the port. (This function is
shared by all the instance state CFTs for [J.)
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* one output port for each other state of the component that indicates that the current
state should transition to that state. There is no value to a self-transition port, and in
fact, loops in fault trees should be avoided. The abstraction function TransgI 2 (Qo\
{¢q}) — A uniquely maps destination states to transition ports.

Thus, the sets of input and output ports for CFT qD are

quln = {Activaten(q)} Uran EventhI Uran Ian

NqDOut = {Activeg(q)} Uran OutE Uran Tranqu

11.3.3 Subcomponents

As described in Section 10.3.2, the instance CFT of each subcomponent is shared by all the
instance state CFTs. To this end,
SH = sub()

Similar to instance state CFTs themselves, each subcomponent s € Sm, equivalently, (I’ €
Sub(0J), maps directly to the instance CFT CFT.. In particular, subcomponent port ['.p
maps directly to the equivalent port in NY'. That is,

o _ [y O _ [y
Sq in UI:I/ESub(D) Nln Sq Out UD/GSub(D) NOut

Namely, the ports of the subcomponent’s instance CFT are directly connected to nodes in
the instance state CFT. As described below, the input ports of each subcomponent instance
CFT are directly connected to OR gates to allow the possibility of multiple incoming connec-
tions. This reuse and simultaneous connection of each subcomponent to multiple state repre-
sentations is possible only because exactly one of the instance state CFTs is “active” at any
given time.

11.4 Gates and Edges

The set of gates GP and edges EY are now concurrently defined. For ease of presentation,
some notational statements are introduced that imply edges between gates and ports. For a
CFT (N,G,0, S, E), the following properties hold:

» when d € Dst, and s € Src, then “d = s” if and only if (s,d) € E

* when d € Dst, X € Op, and s; € Src, then “d = X(s1,...s,)” if and only if there exists a

fresh gate g € G such that
- gisan X gate: O(g) =X
— the output of g is connected to d: (g.out,d) € E
— the sources s; are connected to the input ports of g: (s;, g.in1) € E

* notation is abused by allowing the gate label X to be used with an iterative subscript:
for example, AND,cs(f(z)) implies an AND gate whose input ports are the destinations
of edges that start at the nodes determined by applying function f to each element of
set S

* notation is further abused by allowing X(...) to appear in a context expecting a member
of Src, in which case the actual source value is g.out, where g is the node associated with

the gate

* when g € G, and s € Src, then “INPUT(g, s)” if and only if there exists an ¢ > 1 such
that “g.in; = §”
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Inog(p!, t) Inoq(p', t')
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CFT, (b) km@; "

(C) m OrGateg(p', t')

Figure 11.2: Example Showing the Propagation Port Connections Between an Instance CFT and Its
Instance State CFTs

11.4.1 The Instance CFT

Section 10.3.1.2 generally describes the edges internal to an instance CFT. The exact set of
gates and edges for CF'Th = (Ng, Go, Og, 9o, En) is described by the following statements:

* For all (p,t) € dom Outg, Outg(p,t) = ORquD(OutE(p, t)). See Figure 11.2(a).

* For all (p,t) € dom Ing, for all ¢ € Qq, |an(p, t) = Ing(p, t). See Figure 11.2(b).

* For all ¢ € Q, Currentp(q) = Activery(q). See Figure 11.3(a).

» For all ¢ € Qp, Activateg(¢’) = OR (Initg(q’), ORqEQD\{q/}(Tranqu(q’))). See Fig-
ure 11.4.

In addition, the internal events of the instance CFT need to be connected to the event ports
of the instance state CFTs:

* For all e € Vg, for all ¢ € @, EventqD(e) = e. See Figure 11.3(b).

Finally, the in propagation ports of the instance CFT need to be primed to receive edges from
multiple instance state CFT input ports via the addition of an OR gate. The first input of the
gate is connected to FALSE to account for the case where no actual connections are made to
the port. The identity of the gate itself is abstracted via the function OrGaten : A X T — A,
which maps each member of dom In to a fresh gate symbol.

* For all (p,t) € dom Inp,
— (OrGateq(p, t).out, Ing(p,t)) € Eg
— O(OrGatep(p,t)) = OR
— OrGateq(p, t).in; = FALSE
See Figure 11.2(c).
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Figure 11.4: Example Showing the Edges That Model the Transition to State q”

In Section 11.5, more inputs to OrGate(p, t) that describe propagation paths are asserted to
exist.

11.4.2 The Instance State CFT

The internal structure of instance state CFT C’FTE = (NqD, GqD, OE, Sub(0J), Eqm) is mostly
determined by the transition and propagation declarations of component k, where O = [k].
There is a single direct connection between the state activation input port and the current

state output port:
* Activeg(q) = Activateg(q). See Figure 11.5(a).

Like the in propagation ports of the instance CFT, the out propagation ports of the instance

NActives(q) A\Outoq(p, 1)
Z_ N\

(a)

m OrGateg(p', t')

(©)

CFT: Hq \ Activates(q)
AR

Figure 11.5: Example Showing the CFT Edges Connected to Activation Ports and Out Propagation
Ports Within the Instance State CFT CFTY
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state CFT need to be primed to receive edges from multiple sources, in this case from outgo-
ing propagation conditions (see Section 11.4.5) and from propagation paths (see Section 11.5).
They are connected to an OR gate guarded by a PAND gate that makes sure the current state
is the active state. The first input of the OR gate is connected to FALSE to account for the
case where no actual connections are made to the port. The identity of the gate itself is ab-
stracted via the function OrGateE : Ax T — A, which maps each member of dom OutE to a
fresh gate symbol.

* For all (p,t) € dom OutqD7
— Out.(p, t) = PAND(Activater(q), OrGate.(p, t).out)
— O(OrGate;'(p,t)) = OR
— OrGatel (p, t).in; = FALSE
See Figure 11.5(b).

In Section 11.4.5, more inputs to OrGatquI (p,t) that describe outgoing propagation conditions
for the port are asserted to exist, and in Section 11.5, inputs are asserted to exist to account
for propagation paths; see Figure 11.5(c).

11.4.3 Fault Tree Semantics of Expressions

To describe the gates and edges produced by transitions and propagations, the gates and
edges produced by a condition expression must be described. This section develops a denota-
tional semantics that converts a condition expression into a statement about gates and edges.
As discussed in Section 10.5, analysis of fault trees that contain negation is difficult, and tool
support for analysis of dynamic fault trees that contain negation is non-existent. Thus, as
pointed out above, no ports are created for the propagation of {noerror}. Similarly, the se-
mantics here do not handle noevent or triggers based on {noerror}. This limitation specif-
ically means that the following behaviors are not supported by the generated fault trees:

* expressions that use xor, orless, and all - (“all but”)

* silencing of propagations when the condition expression of a transition is a solitary prop-
agation trigger

To the best of our knowledge, none of the existing techniques for deriving fault trees from
AADL properly handle these cases either.

The general form of the semantic interpretation function is to operate on a condition Cj or
one of its subexpressions and return an edge source node from Src. As usual, the presenta-
tion is bottom up towards Cg. An event trigger evaluates to the appropriate event port of the
instance state CF'T; as stated above, noevent is not interpretable.

0, ] O
[[event 6]] I(:T,(!I')riggerg = Eventq ([[eﬂEve"t)

A propagation trigger evaluates to the output port of an OR gate. The gate is necessary for
two reasons:

1. The type set of the trigger may contain more than one type.
2. The port itself may declare the potential to propagate more than one type.

Each type from the port declaration must be tested to determine if it is contained in the type
set of the trigger. As described in Section 3.4.1, this test can be made on the syntactic form
of the model, that is, within an analysis tool. Each port InE(i, t) associated with the trigger
propagation f whose type t is contained (via ¢) in the specified type set d is an edge source
to an input port of the OR gate. As previously mentioned, propagation triggers based on
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{noerror} are not handled. As in Section 6.3, the semantic function [-];¢ is used to obtain
the containment-testing predicate.

. O, ;
[[111 f tS]] I(:T,('II')riggeLP = ORtEcontained (Ian(Z7 t))
where i = [f]Hqq
d = [Dypp(f)]set

¢ = [ts]rs
contained = {t € d | ¢(d)(t)}

The case for triggers from subcomponent out propagations is similar but complicated by the
fact that the port belongs to subcomponent [ = [s]y, where s is the syntactic component
that f belongs to. The ports Outy (4,¢) come from the subcomponent CFT for [, which is
really the instance CF'T CFT itself.

[[Ollt f LLS]] I(:Eg')riggeup = ORtG contained (OUtD/(ia t))
where s =PPy(f)
0O = [slk
i =[5
d= [[DPPD(f)]]Set
¢ = [ts]+s

contained = {t € d | ¢(d)(t)}

Triggers, as a whole, delegate based on the category:

E.9) _ (O.9)
Ht € TEvent]] FT %’ngger - Ht]] FT EIl'rlgger,E
[[t € TPP]]FT’Tngger = [[t]]FT _Trigger_P

The remaining cases of condition expressions are straightforward:

» Parenthesized expressions just pass through the source node.

O, O,q)
[(<)lezid = [y Eng
[[t eT ]]FT& = [[t]]FT _Trigger

» Conjunctions assert the existence of an AND gate.

O, O, 0,
[ & caler? AN(gwcﬂ]éTf% el
[ = e

* Disjunctions assert the existence of an OR gate.

0,
fer + C2H(FT ((]:)ond = OR([[Cl]]FT Cond> [[02]]FT Cond)
[c H( ,a) _ [[C]]( »q)
FT_Cond FT+

11.4.4 Transitions

A fault tree semantics of the source and target of a transition 7 € DX is also necessary.
They both evaluate to predicates that test whether a particular state is a source or a target,
respectively. This process is made simple because branched transition targets are not handled
by the translation—it is unclear how to introduce probabilistic branching into the interior of
a fault tree. For both sources and targets, a specific state evaluates to a predicate that tests
for that state. The source all evaluates to a predicate that always returns true. The target
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Figure 11.6: Example Showing the CFT Edges Connected to the Transition Ports Within the Instance
State CFT CFTY

same state, however, evaluates to a predicate that always returns false: as stated previously,
loops in fault trees are undesirable, so there is no reason to describe staying in the same state
(in fact, this scenario is preemptively prevented by subtracting the current state from Qp be-
low).

Eo1@9 (O,q)

[[q H(D,q) _ )\q/ q/ —y [[tS c TgtStat?]‘]:’FT),?l'gt = IIts]]FT,?l—gt,S
slFT.sre = ¢ =s 7 B e

[[all}](']’(”rc = A¢.true [[Qt]]FT,?I'gLS = M.{d=a
FT-sre [same state] |(:E:g|')gt,5 = \¢.false

Finally, a tree is generated rooted at each transition output port Tranqu; there is one such
port for each ¢; € Qg \ {¢}. Each port is influenced by all the transitions that start at ¢ and
transition to gi—the set influencers below. The condition of each such transition is converted
to a fault tree assertion. Because negation is not expressible, silencing of expressions that con-
tain only a single propagation target is not performed: specifically, satisfiedBy is not used.
There are two cases for the final tree:

1. The set influencers is empty: The result is simply a FALSE gate to prevent the transi-
tion from ever occurring. See Figure 11.6(a).

2. The set influencers is not empty: The result is a PAND gate whose first input is the ac-
tivation port of the instance state CFT and whose second input is a disjunction of all
the influencing transition conditions. See Figure 11.6(b).

Thus, the gates and edges for transition ports are given by the following statements:

Va: € Qo {q}. _
Tranqu () = { Eﬁll_\lSDE(ActivateD(q), conditions) é?;le“ri:icsirs -
where
influencers = {r € D, | [Tr& (7 0c(a) A [Trhg (1T Pyular)}
and

e D’
conditions = O Rreinﬂuencers ([[ LTI']éond (T)J éond]] I(ZT,((II)ond)

11.4.5 Propagations

0.9

Propagations reuse the semantic functions [-]¢7'%). from above and [-]5

Prop Lrom Section 9.5.3,

which interprets propagation targets. To review, [[-]]Erop converts a propagation target into a

set of index-symbol-type pairs and matches up perfectly with the domain of OutqD. Because

CMU/SEI-2025-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 74
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.



dom OutqD does not contain any pairs where the type is erype (for {noerror}), it is irrelevant
that the results of [[-]]Emp might contain such elements.

The port for each propagation—type pair (f,t) € dom OutqD is influenced by all the propa-
gations that have ¢ as the source state and that have (f,t) as a propagation target, where

t’ C t—the set influencers below. The condition of each such propagation is converted to as-
sertions about gates and edges in the fault tree: the root of that tree is connected to the OR
gate for the port identified by OrGatqu(f7 t). Thus, the gates and edges for propagation ports
are given by the statements:

V(f,t) € dom OutqD.
Yo € influencers.
0,
INPUT(OrGatqu(f, t)7 [[LOPC’éond(o)Jléond [(:T,(é)ond)

where

. O,
mﬂuencers = {0 € DléPC | [[OPC]SCrc(O)]]Ing?'c(q) A (fa t/) € [[OPC'krgt(o)]]Erop NEE t}

See Figure 11.5(c).

As discussed in Section 9.2, outgoing propagations are considered based on the new state after
transitions are considered. That is, when state ¢ becomes the current state, each propagation
whose source state is g is considered. Because the propagations in the fault tree depend on
the activation of the state (via PAND(Activate(g),...)), this is precisely the semantics that
are implemented in the fault tree.

11.5 Edges from Propagation Paths

After the initial construction of component faults trees for the components in K as described
above, edges between the propagation ports of an instance CFT and its nested instance state
CFTs exist:

* edges from instance state CFT propagation output ports to instance CF'T propagation
output ports

* edges from instance CF'T propagation input ports to instance state CFT propagation
input ports

See Figure 11.2. What is missing are

* edges between the propagation ports of instance state CFTs and their subcomponent in-
stance CFTs

*+ edges between sibling instance CFTs

These edges are added by processing the propagation paths of the EMV2 model. Propagation
paths derive from

* the semantic connections® between features in the AADL instance model
* the declared propagation paths in the EMV2 annex clauses

Explicitly declared propagation paths allow the modeler to express paths to/from user-
declared propagation points that cannot be expressed by connections in the AADL core lan-
guage. The syntactic domain Df_, C Op,,, C O is the set of propagation path objects in
component k.3 A path has two attributes: a list of source propagations and a list of destina-
tion propagations. These are obtained using the functions Pathg,. : Op,,, — list(Opp) and

2Cf. ConnectionInstance in the AADL meta model.
3Cf. Class PropagationPathInstance in the EMV2 instance meta model.
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Figure 11.7: A Propagation Path Through and Across Nested Components

Pathp,, : Op,,, — list(Opp), respectively. The source and destination lists have the following
meaning (see Figure 11.7):

The source list describes the propagation “upwards” via out propagations from a leaf
component to an out propagation of an ancestor component; see path segments ¢1 and
c2 in Figure 11.7. The propagations must be out propagations.

Similarly, the destination list describes the propagation “downwards” via in propaga-
tions from a component to an in propagation of a descendant leaf component; see path
segment C4 in Figure 11.7. The propagations must be in propagations.

If the source list is empty, the propagation begins at an in propagation of the root com-
ponent Krop.

If the destination list is empty, the propagation ends at an out propagation of the root
component krop.

The source and destination lists cannot both be empty.

When the source and destination lists are both non-empty, then there is an implied con-
nection between the final source propagation and the first destination propagation; see
path segment ¢3 in Figure 11.7.

Considering that a propagation path exists across multiple components, it is fair to wonder
which propagation paths are in D’,%ath for any given component k. A path belongs to the com-
ponent k lowest in the tree that is sufficient to contain the entire path:

When the source or destination list is empty, this is kqp.

Otherwise, it is the component k such that PPy (last(s)) € D&, A PP(first(d)) € DE .

The set of all propagation paths in the entire model is Dp,, = U,ex Déath' Finally, note that
the propagation path is described solely in terms of the propagation points and not the type
being propagated. The edges introduced into the CFTs, therefore, must take type contain-
ment into account.

Each propagation path w € Dyp,,,, implies edges across the CFTs. As suggested by the above
interpretation of the lists of source and destination propagations, edges are implied

by sequential pairs of propagations in the list of source propagations
by sequential pairs of propagations in the list of destination propagations

between the last source propagation and first destination propagation

These are described in the following sections.

11.5.1 Edges from the Source List

Each sublist [s,d] € Pathg, (w) implies a set of edges from an instance CFT’s output ports to
the output ports of all the instance state CFTs that contain it. The set of propagation—type
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pairs identifying the destination output ports is the same for each instance state CF'T because
the system configuration is identical in each state. Specifically,

* the ports of CFTh, where semantic component O = [PPy(s)]«, are the sources of the
edges

* the set sres = {(f,t) € dom Outg | f = s} identifies the propagation—type pairs that
describe the source ports of CFTq

* the ports of instance state CFTs of component O’ = [PPy(d)]« are the nominal desti-
nations of the edges (In actuality, the destinations of the edges are the input ports of the

OR gate connected to the port as abstracted by OrGatqu/ for each state ¢ € Qpy.)

o the set dsts; = {(f',t') € dom Outry | f' = d A t C t'} identifies the propagation—
type pairs that describe the ports of CFTZ, that are the destinations for the source port
described by (f,t) € sres

Therefore, the following statements regarding edges are implied:

Vuwe DPath'
Y [s,d] € Pathg, (w).
Y (f,t) € sres.
Vqe Q.
Y (f',t) € dstsy.
INPUT(OrGatel’ (f/,1), Outny(f,t))

11.5.2 Edges from the Destination List

Each sublist [s,d] € Pathpg (w) implies a set of edges from the in propagation ports of all the
instance state CFTs in a component to the in propagation ports of a specific subcomponent
instance CFT. The set of source input ports s the same for each instance state CFT. Specifi-
cally,

* the ports of the instance state CFTs of component [0 = [PPy(s)]« are the sources of
the edges

* the set srcs = {(f,t) € dom Ing | f = s} identifies the propagation—type pairs that
describe the source ports. The actual source ports are given by InE for each ¢ € Qp.

* the ports of CF T, where semantic component [’ = [PPy(d)]k, are the nominal desti-
nations of the edges (In actuality, the destinations of the edges are the input ports of the
OR gate connected to the port as abstracted by OrGatery.)

* the set dsts; = {(f',t') € dom Ing/ | f/ =d At C t'} identifies the propagation—type pairs
that describe the ports of CFT o that are the destinations for the source port described
by (f,t) € srcs

Therefore, the following statements regarding edges are implied:

Vw € Dpyyy,.
V [s,d] € Pathpg (w).
Y (f,t) € sres.
VY q € Qn.
Y (f',t) € dstsy.
INPUT(OrGateqy, (f',t), Ing(f,t))
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11.5.3 Edges Between Siblings

When both lists of edges are non-empty, there are edges between the instance CFTs of two
sibling components. This is a simpler operation because no states are involved, and there is
only one source—destination pair:

* The set of all paths with non-empty source and destination lists is across = {w € Dp,,,, |
[Pathg,.(w)| # 0 A [Pathpg (w)] # 0}

* The source propagation is s = last(Pathg, (w)).
 The destination propagation is d = first(Pathp (w)).

* The ports of CFTq, where semantic component O = [PP(s)], are the sources of the
edges.

* The set srcs = {(f,t) € dom Outg | f = s} identifies the propagation—type pairs that
describe the source ports of CFT.

* The ports of CFT, where semantic component [’ = [PPy(d)]x, are the nominal des-
tinations of the edges. In actuality, the destinations of the edges are the input ports of
the OR gate connected to the port as abstracted by OrGateqy.

 The set dsts; = {(f’,t') € dom Ingy, | f' = d At C t'} identifies the propagation—
type pairs that describe the ports of CFT, that are the destinations for the source port
described by (f,t) € sres.

Therefore, the following statements regarding edges are implied:

YV w € across.
Y (f,t) € sres.
Y (f',t) € dsts,.
INPUT (OrGatery (f/,t'), Ing(f,t))
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12 Generating and Optimizing the Fault Tree

Assuming a syntactic AADL instance model (K, sub, kr,,) with corresponding semantic
model (K, >, Ovop), the previous section describes how to obtain set CFTx = {CFTg | O €
KC}. This section describes how to obtain a fault tree—really a cause—effect graph—from the
resulting hierarchy of CFTs:

» The definitions of fault tree and fault tree query from Section 10.1 are revisited and for-
malized.

» The process for extracting a fault tree from the CFTs is formalized.
* The simplifying transformations applied to the extracted fault tree are described.

When X is a family of functions parameterized by a semantic component, such as Nj,(-), then
the notation Xz = Jpex (XD uuy X('I:'). That is, it unifies the sets from the instance
and instance state CFTs.

9€Qn

12.1 Fault Tree Queries

Section 10.1 defines the problem of generating a fault tree from an AADL model thusly:
Given
« an AADL instance model

* a particular system operation mode of the system, that is, a one-to-one map-
ping of component instances to one of their operational modes

* a particular initial behavior state of the entire system relative to the system
operational mode, that is, a one-to-one mapping of component instances to
EMV2 error behavior states (such a thing is not currently described in the
EMV2 specification)

* a particular top event—that is, state transition, state activation, or propaga-
tion within the system—mnot necessarily from the top-level component

the problem is how to generate a dynamic fault tree that enables answering the
following two questions:

1. What are the shortest event sequences that lead to the occurrence of the top
event? Colloquially, what is the fastest way to crash the system?

2. What is the probability of the top event occurring? Colloquially, what is the
probability of crashing the system?

Collectively these inputs are known as the fault tree query.
The components of a fault tree query are now formalized:

* The first two aspects of the query are already formalized as the semantic AADL model:
recall it is assumed that the syntactic AADL model is already projected into a specific
system operation mode; see Section 4.

* A system behavior state is a function 8 whose domain is C.! The function is total (i.e.,
has a value for each domain element), and §(0) € Qn for each O € K. In plain English,

13 for behavior.
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a system behavior state maps each component to a specific error behavior state.

* A top event p is any output port of an AADL instance CFT or AADL instance state

CFT: p e NG, or pe N for €K and g € Qn.2

Now, a fault tree query for a semantic AADL model (K, >, Otop) with component fault trees
CFTy is a pair (8, p). Based on the definitions of Ng'ut and NEOUt, a rich set of queries is en-
abled:

* p = Currentg(q) — How can, or with what probability does, component [J reach state ¢?
(This is the same as p € Activateq(q).)

* p = Outp(f,t) — How can, or with what probability does, component O propagate error
type t over propagation point f7

s p= OutqD( f,t) — How can, or with what probability does, component [ propagate error
type t over propagation point f when in state ¢7

c p= TransqD (¢') — How can, or with what probability does, component O transition from
state ¢ to state ¢'?

12.2 Fault Tree Generation

The general description of fault tree generation from CFTs from Section 10.3.4 is elaborated
here. First, the manner of inserting the system behavior state into the CFT's is described.
Then, the cause—effect graph is formally defined. Finally, the fault tree for a fault tree query
(8, p) is defined.

12.2.1 Setting the Initial System State

The instance CFTs leave the initial state ports described by Initg without inputs. (All ports
in ran In" do have inputs because they are primed with an OR gate that has a FALSE input.)
This must be remedied before a fault tree is generated from them. The initial system state £
from the fault tree query is used to produce the initial state component fault trees CFT-. For
each O € K where CFT = (N, G, Og, S, En), let CFT5 = (N, G'n, 0'n, S0, E'n):

* G'g=GpU({t, [}, where t, f are fresh symbols

* O'n=0gU{t— TRUE, f — FALSE}

* E'no = Eg U{(t.out, Initg(go))} U {(f.out,Initg(q)) | ¢ € Qo \ {qo}}, where B(0) = qo
Let C’FTE = {CFTE | O € K} be the full set of initial state CFTs for the AADL model.

12.2.2 Cause—Effect Graph

While Kaiser and colleagues do not formally describe the cause—effect graph (CEG) extracted
from a hierarchy of CFTs [15], here it is considered a special form of a component fault

tree in which nodes representing ports and subcomponents have been eliminated. A CEG
(V.,G,0, E,r) for a semantic AADL model (KC,>>, Ovop) with component fault trees CFTx

is a rooted directed graph with nodes V U G, edges E, and root node r € V U Goyt:

« VCNK where N

intern K . = Vk, is the set of basic event nodes in the graph.®

* (G C G is the set of gate nodes in the graph.

* O C Ok is the total gate node—operator mapping.

2, for root.
3Again, V for eVent.
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* £ C (VUGou) x Gy is the set of edges in the graph: for (s,d) € E, s is the source of
the edge and d is the destination of the edge. Here the edges are not necessarily a subset
of the edges of those in the CFTs due to port nodes being elided.

An important property of a CEG is that every node in V' U G is reachable from the root r.
This is formalized using the definition of reachable from Section 2.4.1. A modified version of
the edges set must be used because reachable expects edges to point away from the root, and
the input and output ports of the gate nodes must be elided:

1. Let B/ € G x (V UQG) be set of edges: E' = {(¢',9) | (g.out,¢".in;) € E} U {(¢',v) |
(v,¢'.in;) € E}.
2. ¥n € (V UQG). reachable(r,n) when the set of edges is F’.

12.2.3 Generating the Fault Tree

Given a set of component fault trees CFT i, the fact that subcomponents (the sets Sp) are
directly replaced with their associated CFT means that CFT ¢ essentially implies a giant
graph structure with nodes N U Ggut U G,’E and edges Fx. Recall that subcomponent replace-
ment means that the edges to/from subcomponents are really edges to/from nodes in N;% and
N(’)Cut, respectively. A CEG can be constructed via a depth-first traversal over this graph.

12.2.3.1 Depth-First Traversal

Given a set of component fault trees CFT ¢ and a node n € NxUGx, then DFTx(n) produces
the graph rooted at n inductively defined by the process below.* Based on the definition of
CEG above, the purpose is to collect reachable nodes and to elide port nodes.® Induction is
over the lengths of the paths implied by the edges in Ex. The base cases (for a path length of
0) are when n is an event node or inputless gate:

« When n is an event node, n € NN, DFTx(n) = ({n},0,0,0,n).

« When g is a Boolean literal, g.out € G5, A Ox(9) = o Ao € {TRUE, FALSE},
DFTk(g.out) = (0,{g},{g — 0},0, g.out).

The remaining inductive cases are when n € NN, n € N& ., and g.out € G§,. A Ox(g) €
{OR, AND, PAND}.

Port nodes, either input or output, are elided from the final CEG:
« When n is an input port, n € NN, DFTx(n) = DFTx(n’) where (n',n) € Ex. (Remem-

ber, nodes may only have a single incoming edge.)
« When n is an output port, n € N, DFTx(n) = DFTx(n') where (n’,n) € Ex.
(Remember, nodes may only have a single incoming edge.)
Gate output ports must be traced through their implicit edges to the gate’s input ports. The

CEGs defined by the subtrees below each input port must be merged with the gate itself to
form a new CEG description:

« When g.out € G5, AOx(g) € {OR, AND, PAND}, DFTx(g.out) = (V',G', O, E', g.out),

where
- (Vi, Gy, 04, Ey,r;) = DFTx(n;) for (ng, g.in;) € Ex.
-V =U

“It is convenient that DFT could stand for either “depth first search” or “dynamic fault tree”

5Keep in mind that this is a definition of the desired CEG. It is not presented as the best algorithm for computing it.
In particular, the fact that nodes might be visited multiple times by the recursive/inductive definition is not a problem
because of set union.
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- ' ={gtul; G
- 0'={g~ Ox(9)}ul; 0.
- E'=UA{(ri,gini)} UL, Ei.

12.2.3.2 Answering the Query (53, p)

Finally, the full process of producing the fault tree—really the CEG—FT@’ p) in response to
the query (8, p) about the AADL model (K, >, Orop) with component fault trees CFTk is as
follows:

1. Create the initial state CFTs CFTE.
2. Create FT%%J,) = DFTg(p).

12.3 Fault Tree Simplification

The fault tree F T’CB’ o) benefits from simplification. Generally, such a step is tantamount to
performing analysis of the fault tree and is not historically of interest because fault trees were
developed by hand. In this case, however, the fault is developed automatically from an exist-
ing model and contains, therefore, what might be termed “extraneous structure,” “required
paths,” and “dead paths”:

* Extraneous OR gates exist due to OR gates with FALSE inputs being attached to all in-
put ports representing in propagations and state activations during construction of the
CF'Ts; see Sections 11.4.1 and 11.4.2. This is done to make it possible to connect multi-
ple incoming edges to the port. These OR gates are extraneous when the port has zero
or one actual inputs.

* Required paths and dead paths originate from the TRUE and FALSE gates, respectively,
that are added when setting the initial system state. These mark events that must al-
ways or never occur, respectively.

From a human-understanding point of view, it is definitely beneficial to remove these extra
gates and paths, as it improves the readability of the fault tree. The main motivation for sim-
plification, however, is that fault trees in the literature are not presented as featuring gates
that represent the Boolean constants. In fact, doing so may be a novelty of this work. In par-
ticular, they do not feature in any of the common fault tree analysis techniques. Although
true (T) and false (L) do appear in Merle’s algebra, they are there for completeness of the
logical reasoning and as intermediate values and are not presented as being part of the origi-
nal fault tree.

With this in mind, the simplification of the fault tree is limited in scope to removing the
TRUE and FALSE gates. For each gate with inputs (i.e., PAND, AND, and OR), there are
transformations that handle the output of a TRUE or FALSE gate being used as an input.

The goal is either to remove the input or to replace the gate (and its inputs) with a TRUE

or FALSE gate and then to push the problem up to the next level in the fault tree. Ultimately,
either all uses of TRUE and FALSE gates are removed, or a single TRUE or FALSE gate re-
mains as the only item in the fault tree. Regarding the problem of interpreting TRUE and
FALSE gates in traditional fault tree analyses, in this case, the gates can be interpreted thusly:

« A TRUE gate is an event that occurs with 100% probability.
» A FALSE gate is an event that occurs with 0% probability.

The specific transformations/simplifications are described below assuming a CEG
(V,G,0, E,r). Figure 12.1 lists the referenced theorems from Merle.

CMU/SEI-2025-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 82
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.



(31) a+b=b+a (3.10) a-L=1

(32) a-b=b-a (312) a+T=T
(@ (38) a+l=-a (349) L<da=1

(39) a-T=a (350) adl=a
(b) PAND(A, B) = B - (A < B)

Figure 12.1: (a) Cited Theorems from Merle’s Algebra [19, §3]; (b) Definition of PAND [19, §4.1]

12.3.1 Transforming OR Gates
Consider an OR gate with m inputs:
cge(
* O(g) =OR

* {(n1,9.in),..., (Nm,g.inm)} C FE
The following transformations apply:

* If any of the inputs are TRUE—31 < i < m.(n; = ¢’.out A O(¢9’) = TRUE)—then the
gate can be replaced by the TRUE gate n;. This is justified by the repeated application
of theorems (3.1) and (3.12).

* When any of the inputs are FALSE, they can be removed. This is justified by repeated
application of theorems (3.1) and (3.8). There are two cases here:

— When at most one of the inputs is not FALSE—31 < j < m.V1 < i < m.(i #
j) = (n; = gj.out A O(g;) = FALSE)—then the gate can be replaced with n;.
An interesting case here is when all the inputs are FALSE, in which case any one
of the inputs may be chosen as the replacement with the effect of “evaluating” the
disjunction to FALSE.

— When at least two inputs are not FALSE—X = {1 < i < m |A¢ € G.(n; =
g'.out AO(g’) = FALSE)} A |X| > 2—the FALSE inputs can be dropped.

12.3.2 Transforming AND Gates
Consider an AND gate with m inputs:

cgeG

* O(g) = AND

* {(n1,g.in1),...,(Nm,g.in,)} CFE
The following transformations apply:

* If any of the inputs are FALSE—31 < ¢ < m. (n; = ¢’.out A O(g') = FALSE)—then the
gate can be replaced by the FALSE gate n;. This is justified by the repeated application
of theorems (3.2) and (3.10).

* When any of the inputs are TRUE, they can be removed. This is justified by repeated
application of theorems (3.2) and (3.9). There are two cases here:

— When at most one of the inputs is not TRUE—31 < j < m.V1 < i < m.(i #
j) = (n; = gl.out A O(g;) = TRUE)—then the gate can be replaced with n;.
An interesting case here is when all the inputs are TRUE, in which case, any one
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of the inputs may be chosen as the replacement with the effect of “evaluating” the
conjunction to TRUE.

— When at least two inputs are not TRUE—X = {1 < i < m |A¢ € G.(n; =
g'.out AO(¢g’) = TRUE)} A|X| > 2—the TRUE inputs can be dropped.

12.3.3 Transforming PAND Gates

Simplification of PAND gates relies on theorems whose proofs are given in Section 12.5. Con-
sider a PAND gate:

cge@G

* O(g) = PAND

* {(a,g.in1), (b, g.in2)} CF

Transformation is trickier here because the first and second inputs have different meanings.
The four cases need to be considered explicitly:

* When a is FALSE—a = ¢’.out A O(g') = FALSE—the gate can be replaced by the FALSE
gate.

* When a is TRUE—a = ¢’.out A O(¢’) = TRUE—the gate can be replaced by b.

* When b is FALSE—b = ¢’.out A O(g’) = FALSE—the gate can be replaced by the FALSE
gate.

* When b is TRUE and a is not TRUE—(b = g.out A O(gp) = TRUE) A
(Aga € G.(a = gq.0ut A O(g,) = TRUE))—the gate can be replaced by a fresh FALSE
gate. The case where both a and b are TRUE is handled by the “a is TRUE” case above.

It must be emphasized here that “not TRUE” does not mean FALSE. Recall the gates
are defined in terms of Merle’s algebra. So this condition specifically means that the
event represented by a must become true at some date after 0 (i.e., d(a) > 0), which
does allow for d(a) = +0o = a = L. What this condition cannot tolerate is a being
universally true from date 0: d(a) = 0 (i.e., a is the output of a TRUE gate).

12.3.4 Transformation/Simplification Defined

Given a CEG (V,G,0, E,r) and anode n € V U Goy, then SIMPLIFY (n) produces the
simplified version of the CEG rooted at n. So SIMPLIFY (r) is the simplified version of the
entire CEG. SIMPLIFY is defined by induction over the lengths of the paths implied by the
edges in E. The base cases (for a path length of 0) are when n is an event node or the output
of an inputless gate:

* When n is an event node, n =v € V—SIMPLIFY (v) = ({v},0,0,0,v).

* When g is a Boolean literal—g.out € Gou A O(g) = o Ao € {TRUE, FALSE}—
SIMPLIFY (g.out) = (0,{g},{g — o}, 0, g.out).

For the inductive cases, the node must an m-input gate, where m > 1:
* n=g.out € Gou
* 0 =0(g) € {AND, OR, PAND}
* {(n1,9.in1),...,(Mm,g.inp)} € E
* (Vi,Gi, 04, E; 1)) = SIMPLIFY (n;)

When none of the simplified inputs r; are TRUE or FALSE, the gate is left as is but the sub-
trees are simplified:
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* When Al <i<m.(r; =g .out AO(g') € {TRUE,FALSE}),
SIMPLIFY (g.out) = (U, Vi, {9} U, Gi, {g— o} U, Os, U;{(74,9.in;)} U, E;, g.out).
There are three cases for simplifying an OR gate (i.e., o = OR):

* When 31 <4 <m.(r; = ¢".out A O(¢') = TRUE),
SIMPLIFY (g.out) = (0, {g'}, {¢’ — TRUE}, 0, ¢’ .out).

* When 31 < j <m.V1<i<m.(i#j)= (r; = gj.out A O(g,) = FALSE),
SIMPL[FY(gOUt) = (‘/ja Gj,Oj,Ej,T‘j).

cLet X ={1<i<m|Ag €G.(ri =g .out NO(g') = FALSE)} = {i’;}. When |X| > 2,
SIMPLIFY (g-out) = (Uyex Virs {93 UUiex Girs {9 03 UlUyex Ours Uiy, g:inj)} U
Ui/GX E’L’u g.out).

Note that X is a set of indices, and transformation reindexes the input ports to the
gate, which is justified by repeated application of (3.1).

There are three similar cases for simplifying an AND gate (i.e., o = AND):

* When 31 < i <m.(n; = ¢".out A O(g’) = FALSE),
SIMPLIFY (g.out) = (0, {¢'},{g’ — FALSE}, 0, ¢'.out).

* When 31 < j <m.V1<i<m.(i#j)= (n;=g,.out AO(g;) = TRUE),
SIMPLIFY(gOLIt) = (V}, Gj,Oj,Ej,’f’j).

cLet X={1<i<m|Ag €G.(ni =g out ANO(g') = TRUE)} = {i}}. When |X| > 2,
SIMPLIFY (g-out) = (Uyex Virs {93 UUiex Girs {9 03 UlUyex Owrs Uiy, g:inj)} U
Ui’GX Ei’7 g.OUt).

Note that X is a set of indices, and transformation reindexes the input ports to the
gate, which is justified by repeated application of (3.2).

Finally, there are four cases for simplifying a PAND gate (i.e., 0 = PAND). In this case, m =
2, a =11, and b = rs.

* When a = ¢’.outAO(g') = FALSE, SIMPLIFY (g.out) = (0, {¢'},{g’ — FALSE}, 0, ¢".out).

+ When a = ¢'.out A O(g') = TRUE, SIMPLIFY (g.out) = (Va, Ga, Os, Es, 13).

* When b= ¢’.out AO(g') = FALSE, SIMPLIFY (g.out) = (0, {¢'},{g’ — FALSE}, 0, ¢".out).

* When (b = gp.out AO(gy) = TRUE) A (Ags € G.(a = gqa.out A O(g,) = TRUE)),
SIMPLIFY (g.out) = (0, {¢'},{g’ — FALSE}, ), ¢’.out), where ¢’ is a fresh symbol.

12.3.4.1 Simplifying the Query Answer

To be clear, given the fault tree FT(%J)) = (V,G, O, E,r) that is the answer to the query (3, p)
about the AADL model (IC, >, Ovop) with component fault trees CF Tk, the simplified query

—K
response is SIMPLIFY (1) = FT g ,).

12.4 Fault Tree Analysis

This work is not about analyzing the fault tree ﬁfﬁ p)- EMV2 does, however, allow using
AADL property associations to describe probability distributions for error event declara-
tions, and even for error propagations and error types themselves, although the exact intended
meanings of the latter two cases are unclear. Thus, one last group of syntactic functions may
be described:

CMU/SEI-2025-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 85
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.



. Df;{) : DE ... — [0,1] is the absolute probability that the event occurs when a fized prob-

ability distribution is used.
. Dk - DE
D :D

Event
tion is used.

— R is the error occurrence rate when an exponential probability distribu-

These functions can be used to decorate the fault tree with any necessary error occurrence
information. The exact style of distributions that should be used in the model depends on
the tools and methods being used to analyze the fault tree. The Storm model checker [3], for
example, supports fixed probability distributions only on subgraphs that are static; dynamic
subgraphs must use exponential distributions.

Generally speaking, analysis requires the fault tree to be converted into yet another represen-
tation. These translations and their descriptions are beyond the scope of this work but in-
clude

* binary decision diagrams (BDDs)
* Markov chains
* Petri nets

* algebraic expressions

12.5 Proofs of PAND Theorems

This section provides proofs for the PAND-related transformations used in Section 12.3. See
the section on Merle’s algebra, Section 2.1.2, and Merle’s work itself [19, §3]. The cited theo-
rems from Merle are shown in Figure 12.1.

Transformation 1 PAND(L,B) — L
1. PAND(L, B) = B - (L < B) — Definition of PAND
2.B-(LIB)=B-1 — (5.49)
3. B-1L=1—(310)
Q.E.D.
Transformation 2 PAND(T,B) — B
1. PAND(T,B) = B - (T < B) — Definition of PAND
2. d(T) =0 — definition of T
3. 0 < d(B) — definition of <
4. TIAB=T — (2), (3), and definition of <
5. B-(T<IB)=B-T — (4)
6. B-T=B — (3.9)
Q.E.D.
Transformation 3 PAND(4, 1) — L
1. PAND(A, L) =1 (A< 1) — Definition of PAND
2. L-(A<1l)=1-A — (3.50)
3. L-A=A-1 — (3.2
JoA-L=1—(3.10)
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O.E.D.
Transformation 4 PAND(A,T) — L when A# T
1. PAND(A, T) =T (A< T) — Definition of PAND
2. T-(AST)=(A<T) T — (3.2)
3. (ALT) - T=AQT — (3.9)
4. Case analysis of AT, where d(a) = d(A) and d(b) =d(T)=0
» Case d(a) < d(b): d(A) < 0 is not possible
* Case d(a) = d(b): Occurs when d(A) = 0, in which case A = T and d(AQT) =
d(A)=0=4d(T)
* Case d(a) > d(b): Occurs when A # T, in which case d(ALT) =400 AIT =1
5. Thus PAND(A, T) = { I XE‘Z‘;W?S; T

Q.E.D.
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13 Conclusion

The work presented herein advances the state of the art in understanding the error behavior
of AADL models that include EMV2 annex subclauses. Specifically, the preceding sections

* provide a denotational semantics for a subset of the features of EMV?2

* formally describe how to convert each component in AADL and EMV2 models into a
behavior automata

* formally describe how to convert AADL and EMV2 models into a hierarchy of CFT's

* provide a formal definition, relative to specific AADL and EMV2 models and their CF'T
hierarchy, of the question answered by a fault tree

 formally describe how to obtain a fault tree—really a cause—effect graph—from a hierar-
chy of CFTs

The denotational semantics covers the commonly used features of EMV2. The usefulness of
the coverage is demonstrated by using the semantic framework to construct CFTs from com-
ponents in AADL and EMV2 models. Conversely, the CFT analysis provides a case study of
how to apply the semantics to a real-world model-based analysis. This work is the first to for-
mally describe the complete process for translating an AADL model—or any model-based ar-
chitecture description—to a fault tree. Having a formal semantics of the AADL model and

of EMV2 facilitated this presentation. Comments throughout, however, indicate features of
EMV2 not captured by the semantics and automata and limitations to the scenarios that can
be captured by extracted fault trees. This presentation, therefore, concludes with a discussion
of how future work might address these issues.

13.1 Component Semantics and Behavior

The denotational semantics omits some features of AADL and EMV2. Notably, AADL modes
are ignored by requiring the system model to be projected into a particular system operation
mode. This fixes the mode (i.e., configuration) for each component. The primary difficulty
with modes is that mode transitions are complicated, requiring the coordination of multiple
components and even the consideration of timing constraints. This requires a better under-
standing of how the behaviors of multiple components interact—a subject that is beyond the
scope of the current work. As stated in Section 1.2, this work contributes the description of

a behavior automata for a single component as a first step towards understanding the formal
error behavior of a collection of components.

13.1.1 Omitted Features of EMV2

Omitted features of EMV2 include typed state machines, recover and repair events, type map-
pings and transformations, composite error behavior, and error detection. EMV2 error behav-
iors can be typed [27, E.8]:

The error behavior state machine can be defined as a typed token state transition
system similar to a Colored Petri net, resulting in a more compact representation.
This is accomplished by associating error types and type sets with error behavior
events, states and error propagations to specify acceptable types of tokens. The
current state, when typed, is represented by a type instance.

This is not a commonly used or understood feature of EMV2, so it was not included in the
current semantics. EMV2 actually supports three kinds of events [27, E.8.1]:
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The Error Model language distinguishes between three kinds of error behavior
events: error events, recover events, and repair events. An error event instance rep-
resents fault activation within a component and will result in a state transition

to an error state that represents the resulting failure mode and in an outgoing er-
ror propagation. Recover events represent recovery from a nonworking state to a
working state. This is used to model recovery from transient errors. Repair events
represent longer duration repair action, whose completion results in a transition
back to a working state.

This distinction is ignored in the semantics because
* the distinction between recover and repair in the specification itself is unclear

* making a distinction between kinds of events does not seem to affect the rest of the se-
mantics (i.e., no other features depend on a distinction being made)

* a key assumption in fault tree modeling is that errors are unrecoverable (i.e., cannot be
undone), so explicitly supporting the notion of recovery is not currently necessary

Error type mappings and transformations, composite error behavior, and error detection are
omitted because they relate to intercomponent behavioral issues, which, again, are beyond the
scope of this work. In particular,

* a significant scenario in which type mappings apply is when a propagation may be af-
fected by the outgoing propagations of the components (e.g., bus or virtual bus) that
the connection “carrying” the propagation is bound to

* composite error behavior directly relates the error state of a component to the error
states of its subcomponents. It is unclear, furthermore, how this is intended to interact
with the component’s declared component behavior state.

* error detection allows a component to declare under what conditions—condition expres-
sions again—the component detects particular error occurrences. Furthermore, these
detections result in the AADL component sending data over a core AADL event port
or event data port (not to be confused with EMV2 behavior events). These appear
to be meant to trigger component mode transitions, but the exact intended use of detec-
tions is unclear.

13.1.2 Towards a Collection of Automata

Section 1.2 introduces the idea of modeling the behavior of a system by a hierarchical collec-
tion of automata; see Figure 1.1. The behavior automaton of an individual component (e.g.,
C in the figure) interacts with the automata of

* the component’s subcomponents (e.g., S)
* the component’s sibling components (e.g., D)
* the component’s containing component (e.g., B)

Furthermore, each event (e.g., E or F') is represented by an automaton. An occurrence of
the event is represented by the event’s automaton outputting a particular symbol. This cor-
responds to what the EMV2 standard refers to as an “occurrence instance of an event” [27,
E.6.(1)] or “error event instance” [27, E.8.1.(1)]. The following observations about the collec-
tion of automata can be made:

* The behavior automaton of a single component (e.g., C'), as described in this work, is
only part of the ultimate behavior of C'. The full behavior of the component is deter-
mined by its behavior automaton together with the full behavior of each subcomponent
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and the automata of the component’s events. Of course, this is hierarchical: the full be-
havior of each subcomponent depends on the subcomponent’s behavior automaton, the
full behaviors of the subcomponent’s subcomponents, and the automata of the subcom-
ponent’s events.

Thus, the component’s behavior automaton, event automata, and subcomponent au-
tomata must be composed into an automaton representing the component’s complete
behavior.

* Implementing an event as an automaton provides flexibility in the behavior of the event.
The EMV2 standard says little about an event except that it can be associated with
a probability distribution. But this does not address, for example, whether an event
can have multiple occurrences. As an automaton, an event could occur multiple times
by outputting its occurrence symbol more than once, or it might transfer to a terminal
state after emitting the symbol exactly once.

* Each output symbol from a behavior automaton represents zero or more error type prop-
agations; see Section 9.4. The output from subcomponent automata, event automata,
and any sibling automata must be integrated and converted into an environment input
symbol of the component’s behavior automata. Similarly, the output of the behavior au-
tomaton must be converted to an output symbol of the component’s full behavior au-
tomaton.

These desiderata suggest that DEVS [6] could be a good fit, or at least an inspiration, for ag-
gregating the different automata. In particular, it supports hierarchical decomposition and
aggregation of automata and provides a mechanism for translating between alphabets.

13.2 Fault Trees

Future work on fault tree generation falls into two categories:
1. how to express more of the EMV2 semantics in the fault tree

2. how to capture more details of the system architecture in the fault tree

13.2.1 Expressing More EMV2 Semantics

As discussed in Section 10.5, the full expressiveness of EMV2 is beyond what can be expressed
in typical fault tree formulations. The implied logical negation required by some of the prim-
itive operators and by silencing leads to non-coherent fault trees. The logical foundation for
fault trees used by this work, Merle’s algebra, does not incorporate negation. An alternative
foundational logic by Shilling [31] does include negation and could provide the means to ex-
pand the translation of EMV2 condition expressions to fault trees. But it does not provide

a behavior model of the dynamic gates as comprehensive as the one provided by Merle. Ad-
ditionally, as already mentioned, it is unclear if any tool support exists for evaluating non-
coherent dynamic fault trees.

13.2.2 Capturing More Architecture Details

AADL models contain detailed information about the architecture of a system and the re-
lationships of the components in the system—indeed, this is a significant purpose of AADL.
This information can be exploited to add additional structure to generated fault trees:

» Component relationships can be analyzed to introduce instances of the functional depen-
dency gate FDEP.

» Basic events can be replicated to analyze scenarios in which EMV2 events may occur
more than once.
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* Component relationships can be analyzed to introduce SPARE gates.

13.2.2.1 Functional Dependency
From Dugan, Bavuso, and Boyd,

A functional dependency gate has: trigger-input (either a basic event or the output
of another a gate in the tree), a non-dependent output (reflecting the status of the
trigger event, one or more dependent basic events. The dependent basic events are
functionally dependent on the trigger event. When the trigger event occurs, the
dependent basic events are forced to occur. [8]

There is controversy around the FDEP gate. Many have observed that it is similar to an OR
gate (e.g., Vesely and colleagues [34]), and Merle is able to prove this using his algebra [19,
§4.2]. Some argue that the FDEP gate is misleading and poorly defined, claim that it confuses
the true natures of the failures associated with the trigger and dependent events, and, there-
fore, discourage its use (e.g., Xiang and colleagues [35]). It is the opinion of the authors herein
that

* it is best to express functional dependency using an explicit FDEP gate and not a logi-
cally equivalent OR gate. An FDEP expresses the intent that one component influences
the accessibility or usability of other components. Using an OR gate downplays and ob-
fuscates this intent. It is, of course, appropriate to treat the FDEP gate as an OR gate
during subsequent analysis of the fault tree.

* while the arguments of Xiang and colleagues [35] have merit, it is undeniable that sce-
narios exist wherein the failure of one component makes it appear to other components
in the system as if the dependent components have failed. As far as those other compo-
nents are concerned, the dependent components are inaccessible; therefore, the system
must behave as if the dependent components have indeed failed.

Existing work on deriving fault trees from architecture models does attempt to introduce
FDEP gates. Both Baklouti [2] and Ghadhab and colleagues [11] use a pattern-based ap-
proach to generating fault trees from a system architecture: specific arrangements of compo-
nents in the architecture are replaced by specific subtrees in the generated fault tree. Some

of these fault tree templates include FDEP gates. It is clear, however, that functional de-
pendency is intimately related to the communication structure of components. This informa-
tion is captured by AADL models as semantic connections and end-to-end flows. A directed
graph could be constructed describing the flow of information between components. Generally
speaking, it is then the case that a subset of components whose communication with other
components must always flow through a single component C can be said to be functionally de-
pendent on C. That is, it should be possible to define functional dependency for AADL mod-
els based on the semantics of AADL. This would only be a first step, however, because it is
not clear how the dependent components should be perceived as failed. Which of their EMV?2
error events should be triggered by the dependency? This may require additional intent to be
expressed as AADL property associations.

13.2.2.2 Repeated Events

Nothing in the EMV2 specification says an error event cannot have multiple occurrences,

and although nothing clearly states that it is permitted to have multiple occurrences, it is
certainly implied. This creates a problem when converting AADL and EMV2 models to

a fault tree. Consider the model in Listing 13.1: the Checker component tolerates two
LateDelivery errors from the Sensor. On the third, the checker propagates an error of
its own. Clearly, for the Sensor component to propagate LateDelivery more than once,
the Stutter event must occur more than once. This is fine within the context of EMV2, but
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when an instance of Main. i is used to generate a fault tree, the process described in Sec-
tion 11 only introduces a single internal node representing the event Stutter. This fault tree
does not correctly represent the intention of the Checker component:

* The fault tree represents each state transition from None to One, One to Two, and Two
to Three as occurring when the event Stutter occurs.

* Once a basic event occurs, however, it is true forever.

* Therefore, the fault tree models that all three transitions occur simultaneously and that
the Checker component propagates TooManyStutters when only a single Stutter
event has occurred.

(The discussion continues after the AADL listing.)

package StateProblem
public
annex EMV2 {*x
error types
TooManyStutters: type;
end types;

error behavior SensorBehavior
events

Stutter: error event;
states

Normal: initial state;
end behavior;

error behavior MonitorBehavior
states
None: initial state;
One: state;
Two: state;
Three: state;
end behavior;
*%x};

device Sensor
features
output: out data port;
annex EMV2 {xx
use behavior StateProblem::SensorBehavior;

error propagations
output: out propagation {ErrorLibrary::LateDelivery};
end propagations;

component error behavior
propagations
p2: Normal —-[Stutter]-> output {ErrorLibrary::LateDelivery};
end component;
*%x};
end Sensor;

device Checker
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43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

features
input: in data port;
output: out data port;
annex EMV2 {*x*
use behavior StateProblem::MonitorBehavior;

error propagations
input: in propagation {ErrorLibrary::LateDelivery};
output: out propagation {StateProblem::TooManyStutters};
end propagations;

component error behavior

transitions
tl: None —[input {ErrorLibrary::LateDelivery}]-> One;
t2: One —[input {ErrorLibrary::LateDelivery}]-> Two;
t3: Two —[input {ErrorLibrary::LateDelivery}]-=> Three;

propagations
pl: Three —=[]-> output {StateProblem::TooManyStutters};

end component;

*%};
end Checker;

system Main
end Main;

system implementation Main.i
subcomponents
sensor: device Sensor;
checker: device Checker;
connections
cl: port sensor.output -> checker.input;
end Main.i;
end StateProblem;

Listing 13.1: An Example Exploiting Repeated Events

The Desired Fault Tree

Because the intention of the Checker component is to transition on separate occurrences of
the Stutter event, the fault tree should be generated differently:

* In the CFT for the Sensor component,

— there should be (at least) three basic events that represent distinct occurrences of
the Stutter event

— there should be one out propagation port for each occurrence (i.e., for each error
type event), triggered by that basic event. This is based on the specific propagation
expression Stutter.

* Likewise, the CFT for the Checker component should have

— an identical number of in propagation ports, corresponding to the multiple poten-
tial propagations of Sensor

— state transitions driven by the different in propagations ports
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This way each occurrence of Stutter corresponds to a distinct propagation of
LateDelivery and a unique state transition.

* Finally, a dynamic SEQ gate (i.e., sequence gate [8]) should impose an order on the
events representing the multiple occurrences of Stutter.! This is necessary to enforce,
for example, that the second event in the sequence actually causes the transition from
state One to state Two.

Towards a Solution

It is not obvious how to determine automatically that an EMV2 error event should be repli-
cated as multiple basic events in the fault tree or even if it is universally possible to deter-
mine automatically. In the example shown here, it seems likely that the necessity can be in-
ferred from the event being referenced in multiple states of the component Checker (i.e.,

it appears in the condition expressions for transitions starting in different states). But this
is not straightforward because the references are indirect (i.e., via the propagation trigger
input{LateDelivery}). It is likely that, in the general case, the fault-tree generation pro-
cess would require guidance from the modeler regarding this problem. This could come in
the form of additional input to the process (e.g., “allow error event Stutter to occur three
times,” “allow error event Overflow to occur once,” and “allow error event Dirty to occur
twice”). But even this input could be provided in multiple ways:

* It could be directly provided by the user of the model analysis tool when the AADL-to-
fault tree analysis is executed.

* It could be included in the model explicitly, via AADL property associations, to per-
manently describe the intent of the modeler. In this way, it would be like a promise or
program annotation [5], but at the system-design level.

There is no inherent problem with producing a SEQ gate during the fault tree generation pro-
cess. Such gates do not have an output, but rather just serve as constraints on the evaluation
of the dynamic fault tree. So they might be thought of simply “belonging” to the CFT that
contains the events being ordered and ultimately “belonging” to the extracted CEG. However,
as mentioned in Section 2.1.2.2, Merle’s algebra that is used as the logical framework for rea-
soning about dynamic fault trees in this work does not model SEQ gates correctly. Of course,
this does not affect evaluating the fault trees using other methods or tools, but it does result
in a logical “hole” in this work. This problem would need to be addressed in the algebra, or a
different logical framework would have to be used, such as Schilling [31].

13.2.3 Capturing Redundancy in System Design

The SPARE gate—or its “hot,” “cold,” and “warm” variants—is a prominent feature of dy-
namic fault trees. It handles the case where an alternate component can become active based
on the failure of another component (e.g., a backup CPU comes online when the primary
fails). The fault tree generation process described in this work does not introduce these gates.
In fact, the semantic AADL model used throughout does not even support this concept. Acti-
vation of new components and removal of failed components are system reconfiguration prob-
lems, requiring a proper semantic description of AADL system operation modes and their
transitions. Furthermore, because this process necessarily involves the coordinated behavior
of multiple components (i.e., the failed component, the potential replacement components, a
possible monitor component), it, like the other problems discussed above, requires additional
design intent from the modeler. Which components are replaceable? What may they be re-
placed by? What indicates that a component should be replaced?

1The SEQ gate is defined in Dugan and colleagues: “The sequence-enforcing gate forces events to occur in a
particular order. ... The sequence enforcing gate can be contrasted with the priority-AND gate in that the priority-AND
gate detects whether events occur in a particular order (the events can occur in any order), whereas the sequence
enforcing gate allows the events to occur only in a specified order” [8].
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Existing work does attempt to answer these questions. The process described in Ghadhab and
associates is purely driven by architectural patterns where the relationship between compo-
nents is assumed [11]. Specific input patterns result in specific patterns in the constructed
fault tree. This work lacks a formal model for the input architecture description and uses
rather generic block diagrams to represent the architecture. The work described in Baklouti
and colleagues is more closely related to the work described herein: SysML models describe
the system architecture [2]. Furthermore, SysML is extended with a profile to describe re-
dundancy in the modeled system. Importantly, this profile is able to describe which sets of
components are considered redundant to each other, the order in which components are re-
placed, which component decides if a replacement is necessary, and the nature of the redun-
dancy (e.g., active or standby). Here, active redundancy corresponds to a “k of N” scenario
and standby to replacement via hot/warm/cold spares. The different scenarios described via
use of the redundancy profile reduce to specific patterns to generate in the fault tree.

A similar approach could be applied to AADL and EMV2. Instead of a “redundancy pro-
file,” an AADL “redundancy property set” could be defined containing properties that cap-
ture the redundancy information. Furthermore, Baklouti and colleagues [2] do not exploit the
full power of information provided by such additional information when it is considered to be
a promise about the model [5]. The redundancy information could

* inform the generation of the fault tree, specifically controlling the use of SPARE gates
* be used to derive AADL and EMV2 model fragments that ensure the desired behavior

* alternately be used to check that the existing AADL and EMV model conforms to the
desired behavior

13.3 Final Remarks

The EMV2 semantics described herein is sufficient to describe AADL models containing
EMV2 annex clauses as they are being produced today. The primary missing feature of the
AADL model is system operation modes. In this regard, this work is no different than the
many other works on AADL that also ignore modes. Describing the error behavior of inter-
acting AADL components is future work. The semantics presented in this document are suf-
ficient to enable a detailed formal description of how to generate CFTs from AADL compo-
nents and then how to, in turn, generate a fault tree from those. The translation to the fault
tree is hampered by the limited expressiveness of fault trees compared to EMV2. Finally, ex-
panding the fault tree to exploit more detail about the system architecture is also future work.
It is certainly the case that to do so effectively requires relying on explicitly provided modeler
intent that can be expressed through the use of AADL property annotations.
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