TECHNICAL REPORT
CMU/SEI-2006-TR-006
ESC-TR-2006-006

Specifications for
Managed Strings

Hal Burch
CERT/CC
Software Engineering Institute

Fred Long
Department of Computer Science
University of Wales, Aberystwyth

Robert Seacord

CERT/CC
Software Engineering Institute

May 2006

Carnegie Mellon
Software Engineering Institute

Pittsburgh, PA 15213-3890

Specifications for Managed
Strings

CMU/SEI-2006-TR-006
ESC-TR-2006-006

Hal Burch, CERT/CC, Software Engineering Institute

Fred Long, Department of Computer Science,
University of Wales, Aberystwyth

Robert Seacord, CERT/CC, Software Engineering Institute

May 2006

Networked Systems Survivability Program

Unlimited distribution subject to the copyright.

This report was prepared for the

SEI Administrative Agent
ESC/XPK

5 Eglin Street

Hanscom AFB, MA 01731-2100

The ideas and findings in this report should not be construed as an official DoD position. It is published in the interest of
scientific and technical information exchange.

This work is sponsored by the U.S. Department of Defense. The Software Engineering Institute is a
federally funded research and development center sponsored by the U.S. Department of Defense.

Copyright 2006 Carnegie Mellon University.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO,
WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED
FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF
ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document for internal use is
granted, provided the copyright and "No Warranty" statements are included with all reproductions and derivative works.

External use. Requests for permission to reproduce this document or prepare derivative works of this document for external
and commercial use should be addressed to the SEI Licensing Agent.

This work was created in the performance of Federal Government Contract Number FA8721-05-C-0003 with Carnegie
Mellon University for the operation of the Software Engineering Institute, a federally funded research and development
center. The Government of the United States has a royalty-free government-purpose license to use, duplicate, or disclose the
work, in whole or in part and in any manner, and to have or permit others to do so, for government purposes pursuant to the
copyright license under the clause at 252.227-7013.

For information about purchasing paper copies of SEI reports, please visit the publications portion of our Web site
(http://www.sei.cmu.edu/publications/pubweb.html).

http://www.sei.cmu.edu/publications/pubweb.html

Table of Contents

ADSTFACH.........ee s iii
1 INtrodUucCtionccoiiiiiiieee e ————————————————— 1
1.1 String Manipulation ErTOrsoooiiiiiiii e 1

1.2 PropoSed SOIULIONueeiii e e 1

1.3 The Managed String Library ... 2

1.4 Wide Character and Null-Terminated Byte Stringsccccoeeieeiiiiiiiiiiiennnn. 2

2 LiBrary . ————————— 5
2.1 USE OF BITNO ...t e e e e e e e e e e 5

2.2 Runtime-Constraint Violationsuuuviiiiiiiiiiiiiiiiiiiiiiiiieiiieeieeeieneennees 5

2.3 EIrors <Erro.N> ... 6

2.4 Common Definitions <stddef.h> ... 6

2.5 Integer Types <stdint.H>.......coooiri e 6

2.6 Managed String Type <string.M.N>.........ccccoiiiiiiiiiiiiiiiiee e, 7

2.7 General Utilities <stdlib.h>........coooiii e 7

3 Library FUNCHIONS........cceeec st r e s sness s s e e e s e s e e e e 9
3.1 ULility FUNCHONS o 9
3.1.1 Theisnull_m FUNCLON..... .. 9

3.1.2 Theisempty_ m Functionccccccceiiiiiiiiic e, 9

3.1.3 Creating @ StriNg_M.......ouiiiiiii e 10

3.1.4 Theisntbs_m FUNCON.........ccooiiiiiii e 11

3.1.5 Theiswide_m FUNCHON...... ... 11

3.1.6 The strdelete_m Function.......c..ccccooviiiiiicii e, 12

3.1.7 The strlen_m FunCtion 12

3.1.8 Extracting a conventional string..........cccccevvviiiiiiiiieeicc e, 13

3.1.9 The strdup_m FUNCON..........uu e 14

3.2 Copying FUNCLIONSooiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeee ettt 14
3.2.1 Unbounded StriNg COPYcuviiiiiiiiiiiiiiieeee et 14

3.2.2 The strncpy_m Function.........ccceeiiiiiiiic e, 16

3.3 Concatenation FUNCHONSooiiiiiiiiiiee e 16
3.3.1 Unbounded concatenationccccuuueueiiiimiimiiiiiinees 16

3.3.2 Bounded concatenationeeeeeeeueiiuiiiiiiiiiiiaaas 18

CMU/SEI-2006-TR-006 i

3.4 Comparison FUNCHONS..........uuuuiiiiiiiiiiiiiii e 19
3.4.1 Unbounded COMPariSON........cccoeiiiiiieiei e 19
3.4.2 The strcoll_m FUuNClion ..o 21
3.4.3 Bounded String COMPariSONcocuviiiiiiiieeeeiee e 21

3.5 Search FUNCLIONScoooieeee e 23
3.5.1 The strtok_m Function..............cooeeii i 23
3.5.2 The cstrchr_m FUunCtion...........coiiiiiiicc e, 23
3.5.3 The wstrchr_ m Function..............cooo o 24
3.54 The strspn_m FuncCtion...........cccoiii i, 24
3.5.5 The strespn_m Function...........cooooii 25

3.6 Configuration FUNCHONScooiiiiiiiiiiii e 25
3.6.1 The setcharset m Function..........cccccciiiii i, 25
3.6.2 The setmaxlen_m Functioncceei i 26
3.6.3 The setallocators_ m Function..........cccceeii e, 26

3.7 printf-derived FUNCIONSuuiiiiiiiiiiiiiiii e 27
3.7.1 The sprintf_m Function.............oooooi i 27
3.7.2 Thevsprintf_m Function...............ccccc 28
3.7.3 The snprintf_m Function..............coo oo 28
3.7.4 The vsnprintf_m Function................cccccc 29
3.7.5 The printf_m Function...........cooo e 29
3.7.6 The vprintf_ mFunction.................cccc 30
3.7.7 The fprintf_m Function..............o oo 30
3.7.8 The vfprintf_m Function.....................ccccc 31

3.8 scanf-derived FUNCHONSuuuuieiiii s 31
3.8.1 Thesscanf m Function...............ccccoo 32
3.8.2 Thevsscanf_m Functioncccceeiiii 33
3.8.3 Thescanf mFunction.............cooo 33
3.8.4 Thevscanf_mFunctioncccoeei 34
3.8.5 Thefscanf mFunction.............cc.ooo 35

3.9 SHHNQG SlICES. . uuuuiiiiiiiiiiiiei e ——————————————— 35
3.9.1 The strslice_m Function................ccoo i 35
3.9.2 Thestreft mFunction..............ccoo 36
3.9.3 The strright_m FUNCioN ... 36
3.9.4 Thecchar_ M FUNCtion........c.ciii i, 37
3.9.5 Thewchar_ mFunction..........cccoo oo 37

4 ReferenCe ... 39
i CMU/SEI-2006-TR-006

Abstract

This report describes a managed string library for the C programming language. Many soft-
ware vulnerabilities in C programs result from the misuse of standard C string manipulation
functions. Programming errors common to string manipulation logic include buffer overflow,
truncation errors, string termination errors, and improper data sanitation. The managed string
library provides mechanisms to eliminate or mitigate these problems and improve system
security. A proof-of-concept implementation of the managed string library is available from
the Secure Coding area of the CERT Web site.

CMU/SEI-2006-TR-006 iii

1 Introduction

1.1 String Manipulation Errors

Many software vulnerabilities in C programs arise through the use of the standard C string
manipulating functions. String manipulation programming errors include buffer overflow
through string copying, truncation errors, termination errors and improper data sanitization.

Buffer overflow can easily occur during string copying if the fixed-length destination of the
copy is not large enough to accommodate the source of the string. This is a particular prob-
lem when the source is user input, which is potentially unbounded. The usual programming
practice is to allocate a character array that is generally large enough. However, this fixed-
length array can still be exploited by a malicious user who supplies a carefully crafted string
that overflows the array in such a way that the security of the system is compromised. This
remains the most common exploit in fielded C code today.

In attempting to overcome the buffer overflow problem, some programmers limit the number
of characters that are copied. This can result in strings being improperly truncated, which in
turn results in a loss of data that may lead to a different type of software vulnerability.

A special case of truncation error is a termination error. Many of the standard C string func-
tions rely on strings being null terminated. However, the length of a string does not include
the null character. If just the non-null characters of a string are copied, the resulting string
may not be properly terminated. A subsequent access may run off the end of the string, cor-
rupting data that should not have been touched.

Finally, inadequate data sanitization can also lead to software vulnerabilities. In order to
properly function, many applications require that data not contain certain characters. Ensur-
ing that the strings used by the application do not include illegal characters can often prevent
malicious users from exploiting an application.

1.2 Proposed Solution

A secure string library should provide facilities to guard against the programming errors de-
scribed above. Furthermore, it should satisfy the following requirements:

1. Operations should succeed or fail unequivocally.

CMU/SEI-2006-TR-006 1

2. The facilities should be familiar to C programmers so that they can easily be adopted
and existing code easily converted.

3. There should be no surprises in using the facilities. The new facilities should have
similar semantics to the standard C string manipulating functions. Again, this will
help with the conversion of legacy code.

Of course, some compromises are needed to meet these requirements. For example, it is not
possible to completely preserve the existing semantics and provide protection against the
programming errors described above.

Libraries that provide string manipulation functions can be categorized as static or dynamic.
Static libraries rely on fixed-length arrays. A static approach cannot easily overcome the
problems described. With a dynamic approach, strings are resized as necessary. This ap-
proach can more easily solve the problems, but a consequence is that memory can be ex-
hausted if input is not limited. To mitigate this problem, the managed string library supports
an implementation-defined maximum string length. The minimum system-defined maximum
string length for a conforming implementation is BUFSIZ-1 (see [[SO/IEC:99, Section
7.19.2]). Additionally, the string creation function allows for the specification of a per string
maximum length.

1.3 The Managed String Library

This managed string library was developed in response to the need for a string library that
could improve the quality and security of newly developed C language programs while
eliminating obstacles to widespread adoption and possible standardization.

The managed string library is based on a dynamic approach in that memory is allocated and
reallocated as required. This approach eliminates the possibility of unbounded copies, null-
termination errors, and truncation by ensuring there is always adequate space available for
the resulting string (including the terminating null character).

A runtime-constraint violation occurs when memory cannot be allocated. In this way, the
managed string library accomplishes the goal of succeeding or failing loudly.

The managed string library also provides a mechanism for dealing with data sanitization by
(optionally) checking that all characters in a string belong to a predefined set of “safe” char-
acters.

1.4 Wide Character and Null-Terminated Byte Strings

A number of managed string functions accept either a null-terminated byte string or a wide
character string as input or provide one of these string types as a return value. The managed
string library works equally well with either type of string. For example, it is possible to cre-

2 CMU/SEI-2006-TR-006

ate a managed string from a wide character string and then extract a null-terminated byte
string (or vice versa). It is also possible to copy a null-terminated byte string and then con-
catenate a wide character string. Managed string functions will handle conversions implicitly
when possible. If a conversion cannot be performed, the operation is halted and a runtime-
constraint error reported.

Strings are maintained in the format in which they are initially provided, until such a time
that a conversion is necessary. String promotions are relatively simple: performing an opera-
tion on two null-terminated byte strings results in a null-terminated byte string. An operation
on a null-terminated byte string and a wide character string results in a wide character string.
Operations on two wide character strings results in a wide character string. Conversions are
performed as necessary in the locale defined at the time the conversion occurs.

Managed strings also support the definition of a restricted character set that identifies the set

of allowable characters for the string. When an operation requires that a null-terminated byte
string be converted to a wide character string, the restricted character set is also converted as

part of the operation.

CMU/SEI-2006-TR-006 3

CMU/SEI-2006-TR-006

2 Library

2.1 Use of errno

An implementation may set errno for the functions defined in this technical report but is
not required to do so.

2.2 Runtime-Constraint Violations

Most functions in this technical report include as part of their specifications a list of runtime-
constraints, which are requirements on the program using the library. Despite its name, a
runtime-constraint is not a kind of constraint. Implementations shall verify that the runtime-
constraints for a library function are not violated by the program.

Implementations shall check that the runtime-constraints specified for a function are met by
the program. If a runtime-constraint is violated, the implementation shall call the currently
registered constraint handler (see sSet _const r ai nt _handl er in Section 2.7, General
Utilities <stdlib.h>). Multiple runtime-constraint violations in the same call to a library func-
tion result in only one call to the constraint handler. It is unspecified which one of the multi-
ple runtime-constraint violations cause the handler to be called.

Sometimes, the runtime-constraints section for a function states an action to be performed if a
runtime-constraint violation occurs. Such actions are performed before calling the runtime-
constraint handler. Sometimes, the runtime-constraints section lists actions that are prohibited
if a runtime-constraint violation occurs. Such actions are prohibited to the function both be-
fore calling the handler and after the handler returns.

The runtime-constraint handler might not return. If it does, the library function whose run-
time-constraint was violated shall return some indication of failure as given by the returns
section in the function’s specification.

Although runtime-constraints replace many cases of undefined behavior from International
Standard ISO/IEC 9899:1999 [ISO/IEC 99], undefined behavior can still occur. Implementa-
tions are free to detect any case of undefined behavior and treat it as a runtime-constraint vio-
lation by calling the runtime-constraint handler. This license comes directly from the defini-
tion of undefined behavior.

CMU/SEI-2006-TR-006 5

2.3 Errors <errno.h>

The header <errno . h> defines a type.
The type is
errno_t

which is type int.

2.4 Common Definitions <stddef.h>

The header <st ddef . h> defines a type.
The type is
rsize t

which is the type si ze_t '

2.5 Integer Types <stdint.H>

The header <st di nt . h> defines a macro.
The macro is
RSI ZE_MAX

which expands to a value® of type Si ze_t . Functions that have parameters of type
rsi ze_t consider it a runtime-constraint violation if the values of those parameters are
greater than RSI ZE_MAX.

Recommended Practice

Extremely large object sizes are frequently a sign that an object’s size was calculated incor-
rectly. For example, negative numbers appear as very large positive numbers when converted
to an unsigned type such as si ze_t . Also, some implementations do not support objects as
large as the maximum value that can be represented by type Si ze_t.

For those reasons, it is sometimes beneficial to restrict the range of object sizes to detect pro-
gramming errors. For implementations targeting machines with large address spaces, it is
recommended that RSI ZE_MAX be defined as the smaller of the size of the largest object
supported or (SI ZE_MAX >> 1), even if this limit is smaller than the size of some legiti-
mate, but very large, objects. Implementations targeting machines with small address spaces

' See the description of the RS ZE_MAX macro in <st di nt . h>.
The macro RSI ZE_MAX need not expand to a constant expression.

6 CMU/SEI-2006-TR-006

may wish to define RSI ZE_MAX as SI ZE_MAX, which means that no object size is consid-
ered a runtime-constraint violation.

2.6 Managed String Type <string.m.h>

The header <string m.h> defines an abstract data type:
typedef void *string m;

The structure referenced by this type is private and implementation defined. All managed
strings of this type have a maximum string length that is determined when the string is cre-
ated. For functions that have parameters of type string_m, it is a runtime-constraint viola-

tion if the maximum length of a managed string is exceeded.

Managed strings may also have a defined set of valid characters that can be used in the string.
For functions that have parameters of type string m, it is a runtime-constraint violation if

a managed string contains invalid characters. For functions that have parameters of type
string_m itis a runtime-constraint if the request requires allocating more memory than

available.?

Managed strings support both null and empty strings. An empty string is a string that has
zero characters. A null string is an uninitialized string, or a string that has been explicitly set
to null.

For computing the length of a string to determine if the maximum length is exceeded, the
length of a null-terminated byte string is the number of bytes, and the length of a wide char-
acter string is the number of characters. Thus, promoting a multi-byte null-terminated byte
string may change its length.

2.7 General Utilities <stdlib.h>

The header <st dl i b. h> defines six types.
The types are

errno_t

which is type i nt ; and

rsize t

The library depends on malloc () and realloc () returning a null pointer to signify insufficient
memory. On some systems, particularly systems using optimistic memory allocation schemes,
malloc () may return a non-null pointer even when there is insufficient memory. On systems
where there is no such mechanism to detect out-of-memory conditions, the library will not be able
to properly validate this condition.

CMU/SEI-2006-TR-006 7

which is the type si ze_t ; and
constraint _handl er t

which has the following definition

typedef void (*constraint_handler_t)(
const char * restrict nsg,
void * restrict ptr,
errno_t error);

and
mal | oc_handl er _t

which has the following definition

typedef void * (*malloc_handler t)(
size t size);

and

real l oc_handl er _t

which has the following definition
typedef void * (*realloc_handler_t)(
void * ptr, size_t size);
and

free_handl er _t

which has the following definition

typedef void (*free_handler_t)(void *ptr);

CMU/SEI-2006-TR-006

3 Library Functions

3.1 Utility Functions

3.1.1 The isnull_m Function

Synopsis
#i ncl ude <string_m h>
errno_t isnull_m(const string_ms, _Bool *nullstr);

Runtime-Constraints

s shall reference a valid managed string. nullstr shall not be a null pointer.

Description
The i snul | _m function tests whether the managed string s is null and delivers this result
in the parameter referenced by nul | st r, given the managed string s.

Returns
The i snul | _m function returns zero if no runtime-constraints were violated.
Otherwise, a non-zero value is returned.

3.1.2 The isempty_m Function

Synopsis

#include <string m.h>
errno_t isempty m(const string m s,
_Bool *emptystr) ;

Runtime-Constraints

s shall reference a valid managed string. enpt yst r shall not be a null pointer.

Description

The i senpty_m function tests whether the managed string s is empty and delivers this
result in the parameter referenced by enpt yst r, given the managed string s.

CMU/SEI-2006-TR-006

Returns

The i senpt y_mfunction returns zero if no runtime-constraints were violated.
Otherwise, a non-zero value is returned.

3.1.3 Creating a string_m
3.1.31 The strcreate_m Function

Synopsis
#include <string m.h>
errno_t strcreate m(string m *s, const char *cstr,
const rsize t maxlen, const char *charset);

Runtime-Constraints

s shall not be a null pointer. charset shall not be an empty string (denoted by "").

Description

The strcreate_m function creates a managed string, referenced by s, given a conven-
tional string estr (which may be null or empty). max| en specifies the maximum length
of the string in characters. If maxlen is zero, the system-defined maximum length is used.
charset restricts the set of allowable characters to be those in the null-terminated byte
string cstr (which may be empty). If charset is a null pointer, no restricted character set
is defined. If specified, duplicate characters in a charset are ignored. Characters in the
charset may be provided in any order. The \ 0 character cannot be specified as part of
charset.

Returns

The strcreate_m function returns zero if no runtime-constraints were violated.
Otherwise, a non-zero value is returned.

3.1.3.2 The wstrcreate_m Function

Synopsis
#include <string m.h>
errno_t wstrcreate m(string m *s,
const wchar t *wcstr,
const rsize_t maxlen,
const wchar_t *charset);

Runtime-Constraints

s shall not be a null pointer. charset shall not be an empty string (denoted by L" ™).

10 CMU/SEI-2006-TR-006

Description

The wst r cr eat e_mfunction creates a managed string, referenced by s, given a wide char-
acter string westr (which may be null or empty). maxlen specifies the maximum length
of the string in characters. If maxlen is 0, the system-defined maximum length is used.
charset restricts the set of allowable characters to be those in the wide character string
westr (which may be empty). If charset is a null pointer, no restricted character set is
defined. Characters in the charset may be provided in any order. The \0 character cannot
be specified as part of charset.

Returns

The wstrcreate m function returns zero if no runtime-constraints were violated.
Otherwise, a non-zero value is returned.

3.1.4 The isntbs_m Function

Synopsis
#include <string m.h>
errno_t isntbs m(const string m s,
_Bool *ntbstr) ;

Runtime-Constraints

s shall reference a valid managed string. ntbstr shall not be a null pointer.

Description

The isntbs_m function tests whether the managed string s is a null-terminated byte string
and delivers this result in the parameter referenced by ntbstr, given the managed string s.

Returns

The isntbs m function returns zero if no runtime-constraints were violated.

Otherwise, a non-zero value is returned.

3.1.5 The iswide_m Function

Synopsis
#include <string m.h>
errno_t iswide m(const string m s,
_Bool *widestr);

Runtime-Constraints

s shall reference a valid managed string. widestr shall not be a null pointer.

CMU/SEI-2006-TR-006 11

Description

The iswide_m function tests whether the managed string s is a wide character string and
delivers this result in the parameter referenced by widestr, given the managed string s.

Returns

The iswide_m function returns zero if no runtime-constraints were violated.
Otherwise, a non-zero value is returned.

3.1.6 The strdelete_m Function

Synopsis
#include <string m.h>
errno_t strdelete m(string m *s);

Runtime-Constraints

s shall not be a null pointer. *s shall reference a valid managed string.

Description

The strdelete_m function deletes the managed string referenced by *s (which may be
null or empty). s is set to a null pointer.

Returns

The strdelete_m function returns zero if no runtime-constraints were violated.
Otherwise, a non-zero value is returned.

3.1.7 The strlen_m Function

Synopsis
#include <string m.h>
errno_t strlen m(const string m s, rsize t *size);

Runtime-Constraints

s shall reference a valid managed string. size shall not be a null pointer.

Description

The strlen m function computes the length of the managed string s and stores the result
into the variable referenced by size. If the managed string is either null or empty, the length
is computed as zero. For a null-terminated byte string, the length is the number of bytes. For
a wide character string, the length is the number of characters.

12 CMU/SEI-2006-TR-006

Returns

The strlen m function returns zero if no runtime-constraints were violated.

Otherwise, a non-zero value is returned.

3.1.8 Extracting a conventional string
3.1.81 The cgetstr_m Function

Synopsis
#include <string m.h>
errno_t cgetstr m(const string m s, char **string);

Runtime-Constraints

s shall reference a valid managed string. string shall not be a null pointer. *string
must be a null pointer.

Description

The cgetstr_m function allocates storage for, and returns a pointer to, a null-terminated
byte string represented by the managed string s and referenced by string. The caller is
responsible for freeing *string when the null-terminated byte string is no longer required.

Example
if (retvValue = cgetstr m(strl, &cstr)) ({
fprintf (stderr, "error %d from cgetstr m.\n",
retValue) ;
} else {
printf (" (%s)\n", cstr);
free(cstr); // free duplicate string

}

Returns

The cgetstr_m function returns zero if no runtime-constraints were violated.
Otherwise, a non-zero value is returned. If there is a runtime-constraint violation, *string

is set to a null pointer.

3.1.8.2 The wgetstr_m Function

Synopsis
#include <string m.h>
errno_t wgetstr m(const string m s, wchar t **wcstr);

Runtime-Constraints

s shall reference a valid managed string. westr shall not be a null pointer. *westr must
be a null pointer.

CMU/SEI-2006-TR-006 13

Description

The wgetstr_m function delivers a wide character string into the variable referenced by
westr, given the managed string s. The caller is responsible for freeing *westr when the

wide character string is no longer required.

Returns

The wgetstr_m function returns zero if no runtime-constraints were violated.
Otherwise, a non-zero value is returned. If there is a runtime-constraint violation, *westr

is set to a null pointer.

3.1.9 The strdup_m Function

Synopsis
#include <string m.h>
errno_t strdup m(string m *sl, const string m s2);

Runtime-Constraints

s1 shall not be a null pointer. s2 shall reference a valid managed string.

Description

The strdup_m function creates a duplicate of the managed string s2 and stores it in s1.
The duplicate shall have the same set of valid characters and maximum length.

Returns

The strdup_m function returns zero if no runtime-constraints were violated.
Otherwise, a non-zero value is returned.

3.2 Copying Functions
3.2.1 Unbounded string copy
3.211 The strcpy_m Function
Synopsis

#include <string m.h>

errno_t strcpy m(string m sl, const string m s2);

Runtime-Constraints

s1 and s2 shall reference valid managed strings.

14 CMU/SEI-2006-TR-006

Description

The strcpy_m function copies the managed string s2 into the managed string s1. Note

that the set of valid characters and maximum length are not copied, as these are attributes of
4
sl.

Returns

The strcpy_m function returns zero if no runtime-constraints were violated.
Otherwise, a non-zero value is returned.

3.21.2 The cstrcpy_m Function

Synopsis
#include <string m.h>
errno_t cstrcpy m(string m sl, const char *cstr);

Runtime-Constraints

s1 shall reference a valid managed string.

Description

The cstrcpy_m function copies the string estr into the managed string s1.

Returns

The cstrcpy_m function returns zero if no runtime-constraints were violated.

Otherwise, a non-zero value is returned.

3.21.3 The wstrcpy_m Function

Synopsis
#include <string m.h>
errno_t wstrcpy m(string m sl,
const wchar_t *wcstr);

Runtime-Constraints

s1 shall reference a valid managed string.

Description

The wstrcpy m function copies the string westr into the managed string s1.

* If s2 contains characters that are not in the set of valid characters or exceeds the maximum length

defined for s1, a runtime constraint violation occurs as described in Section 2.6.

CMU/SEI-2006-TR-006 15

Returns

The wstrcpy m function returns zero if no runtime-constraints were violated.

Otherwise, a non-zero value is returned.

3.2.2 The strncpy_m Function

Synopsis
#include <string m.h>
errno_t strncpy m (string m sl,
const string m s2,
rsize t n) ;

Runtime-Constraints

s1 and s2 shall reference valid managed strings.

Description

The strncpy_m function copies not more than n characters from the managed string s2 to
the managed string s1. If s2 does not contain n characters, the entire string is copied. If s2
contains more than n characters, s1 is set to the string containing the first n characters.

Returns

The strncpy_m function returns zero if no runtime-constraints were violated.

Otherwise, a non-zero value is returned.

3.3 Concatenation Functions
3.3.1 Unbounded concatenation
3.311 The strcat._ m Function

Synopsis
#include <string m.h>
errno_t strcat m(string m sl, const string m s2);

Runtime-Constraints

s1 and s2 shall reference valid managed strings.

Description

The strcat_m function concatenates the managed string s2 onto the end of the managed
string s 1.

16 CMU/SEI-2006-TR-006

Returns

The strcat_m function returns zero if no runtime-constraints were violated.

Otherwise, a non-zero value is returned.

3.3.1.2 The cstrcat_m Function

Synopsis
#include <string m.h>
errno_t cstrcat m(string m s, const char *cstr);

Runtime-Constraints

s shall reference a valid managed string.

Description

The cstrcat_m function concatenates the null-terminated byte string cstr onto the end of
the managed string s. If estr is a null pointer, this function returns without modifying s.

Returns

The estrcat_m function returns zero if no runtime-constraints were violated.
Otherwise, a non-zero value is returned.

3.31.3 The wstrcat_m Function

Synopsis
#include <string m.h>
errno_t wstrcat m(string m s,
const wchar t *wcstr);

Runtime-Constraints

s shall reference a valid managed string. westr shall not be a null pointer.

Description

The wstrcat_m function concatenates the wide character string westr onto the end of the
managed string s. If westr is a null pointer, this function returns without modifying s.

Returns

The wstrcat_m function returns zero if no runtime-constraints were violated.

Otherwise, a non-zero value is returned.

CMU/SEI-2006-TR-006 17

3.3.2 Bounded concatenation
3.3.21 The strncat_m Function

Synopsis
#include <string m.h>
errno_t strncat m (string m sl,
const string m s2,
rsize t n) ;

Runtime-Constraints

s1 and s2 shall reference valid managed strings.

Description

The strncat_m function appends not more than n characters from the managed string s2
to the end of the managed string s1. If s2 is a null pointer, strncat_mreturns without
modifying s1.

Returns

The strncat_m function returns zero if no runtime-constraints were violated.
Otherwise, a non-zero value is returned.

3.3.2.2 The cstrncat_m Function

Synopsis
#include <string m.h>
errno_t cstrncat m (string m s,
const char *cstr,
rsize_t n);

Runtime-Constraints

s shall reference a valid managed string.

Description

The cstrncat_m function appends not more than n bytes from the null-terminated byte
string cstr to the end of the managed string s. If estr is null, cstrncat_m returns with-
out modifying s. The cstrncat_m function guarantees that the resulting string s is prop-
erly terminated.

Returns

The estrncat_m function returns zero if no runtime-constraints were violated.
Otherwise, a non-zero value is returned.

18 CMU/SEI-2006-TR-006

3.3.23 The wstrncat_m Function

Synopsis
#include <string m.h>
errno_t wstrncat m (string m s,
const wchar_ t *wcstr,
rsize_t n);

Runtime-Constraints

s shall reference a valid managed string.

Description

The wstrncat_m function appends not more than n characters from the wide character
string westr to the end of the managed string s. If westr is a null pointer, the
wstrncat_m function returns without modifying s. The wstrncat_m function guaran-
tees that the resulting string s is properly terminated.

Returns

The wstrncat_m function returns zero if no runtime-constraints were violated.

Otherwise, a non-zero value is returned.

3.4 Comparison Functions

The sign of a non-zero value delivered by the comparison functions strcmp_m, and
strncmp_m is determined by the sign of the difference between the values of the first pair
of characters (both interpreted as unsigned char but promoted to int) that differ in the
objects being compared.

For the purpose of comparison, a null string is less than any other string including an empty
string. Null strings are equal and empty strings are equal.

The set of valid characters defined for each string is not a factor in the evaluation although it
is held as an invariant that each managed string contains only characters identified as valid
for that string.

3.4.1 Unbounded comparison
3411 The strcmp_m Function

Synopsis
#include <string m.h>
errno_t strcmp m (const string m sl,
const string m s2,
int *cmp);

CMU/SEI-2006-TR-006 19

Runtime-Constraints

s1 and s2 shall reference valid managed strings. cmp shall not be a null pointer.

Description

The stremp_m function compares the managed string s1 to the managed string s2 and sets
cmp to an integer value greater than, equal to, or less than zero, accordingly as s1 is greater
than, equal to, or less than s2.

Returns

The stremp_m function returns zero if no runtime-constraints were violated.

Otherwise, a non-zero value is returned.

3.41.2 The cstrcmp_m Function

Synopsis
#include <string m.h>
errno_t cstrcmp m (const string m sl,
const char *cstr,
int *cmp);

Runtime-Constraints

s1 shall reference a valid managed string. cmp shall not be a null pointer.

Description

The cstrcmp_m function compares the managed string s1 to the null-terminated byte
string cstr and sets cmp to an integer value greater than, equal to, or less than zero, accord-
ingly as s1 is greater than, equal to, or less than cstr.

Returns

The estremp_m function returns zero if no runtime-constraints were violated.
Otherwise, a non-zero value is returned.

3413 The wstrcmp_m Function

Synopsis
#include <string m.h>
errno_t wstrcmp m (const string m sl,
const wchar t *wstr,
int *cmp);

Runtime-Constraints

s1 shall reference a valid managed string. cmp shall not be a null pointer.

20 CMU/SEI-2006-TR-006

Description

The wstrcemp_m function compares the managed string s1 to the wide character string
wstr and sets cmp to an integer value greater than, equal to, or less than zero, accordingly
as s1 is greater than, equal to, or less than wstr.

Returns

The wstremp_m function returns zero if no runtime-constraints were violated.
Otherwise, a non-zero value is returned.

3.4.2 The strcoll_m Function

Synopsis
#include <string m.h>
errno_t strcoll m (const string m sl,
const string m s2,
int *cmp) ;

Runtime-Constraints

s1 and s2 shall reference valid managed strings. ecmp shall not be a null pointer.

Description

The strcoll m function compares the managed string s1 to the managed string s2, both
interpreted as appropriate to the LC_COLLATE category of the current locale. The
strcoll m function then sets cmp to an integer value greater than, equal to, or less than
zero, accordingly as s1 is greater than, equal to, or less than s2 when both are interpreted as
appropriate to the current locale.

Returns

The strcoll_m function returns zero if no runtime-constraints were violated.

Otherwise, a non-zero value is returned.

3.4.3 Bounded string comparison
3.4.31 The strncmp_m Function

Synopsis
#include <string m.h>
errno_t strncmp m (const string m si,
const string m s2,rsize_t n,
int *cmp) ;

Runtime-Constraints

s1 and s2 shall reference valid managed strings. cmp shall not be a null pointer.

CMU/SEI-2006-TR-006 21

Description

The strncmp_m function compares not more than n characters from the managed string s1
to the managed string s2 and sets cmp to an integer value greater than, equal to, or less than
zero, accordingly as s1 is greater than, equal to, or less than s2. If n is equal to 0, the
strncmp_m function sets cmp to the integer value zero, regardless of the contents of the

string.

Returns

The strnemp_m function returns zero if no runtime-constraints were violated.
Otherwise, a non-zero value is returned.

3.4.3.2 The cstrncmp_m Function

Synopsis
#include <string m.h>
errno_t cstrncmp m (const string m sl,
const char *cstr, rsize t n,
int *cmp) ;

Runtime-Constraints

s1 shall reference a valid managed string. cmp shall not be a null pointer.

Description

The cstrncmp_m function compares not more than n bytes (bytes that follow a null charac-
ter are not compared) from the managed string s1 to the null-terminated byte string cstr
and sets cmp to an integer value greater than, equal to, or less than zero, accordingly as s1

is greater than, equal to, or less than cstr. If n is equal to 0, the cstrncmp_m function
sets cmp to the integer value zero, regardless of the contents of the string.

Returns

The cstrncmp_m function returns zero if no runtime-constraints were violated.

Otherwise, a non-zero value is returned.

3.43.3 The wstrncmp_m Function

Synopsis
#include <string m.h>
errno_t wstrncmp m (const string m sli,
const wchar t *wstr, rsize t n,
int *cmp) ;

Runtime-Constraints

s1 shall reference a valid managed string. cmp shall not be a null pointer.

22 CMU/SEI-2006-TR-006

Description

The wstrncmp_m function compares not more than n characters (characters that follow a
null character are not compared) from managed string s1 to the wide character string wstr
and sets cmp to an integer value greater than, equal to, or less than zero, accordingly as s1
is greater than, equal to, or less than wstr. If n is equal to zero, the wstrncmp_m function
sets cmp to the integer value zero, regardless of the contents of the string.

Returns

The wstrncmp_m function returns zero if no runtime-constraints were violated.
Otherwise, a non-zero value is returned.

3.5 Search Functions

3.5.1 The strtok_m Function

Synopsis
#include <string m.h>
errno_t strtok m(string m token, string m str,
const string m delim, string m ptr);

Runtime-Constraints

token, str, delim, and ptr shall reference valid managed strings.

Description

The strtok_m function scans the managed string str. The substring of stx up to but not
including the first occurrence of any of the characters contained in the managed string
delim is returned as the managed string token. The remainder of the managed string str
(after but not including the first character found from delim) is returned as the managed
string ptr. If str does not contain any characters in delim (or if delim is either empty or
null), token shall be set to str, and ptr will be set to the null string.

Returns

The strtok_m function returns zero if there was no runtime-constraint violation.
Otherwise, a non-zero value is returned.

3.5.2 The cstrchr_m Function

Synopsis
#include <string m.h>
errno_t cstrchr m(string m out, const string m str,
char c);

CMU/SEI-2006-TR-006 23

Runtime-Constraints

out and str shall reference valid managed strings.

Description

The estrchr_m function scans the managed string stxr for the first occurrence of c.
out is set to the string containing and following the first occurrence of ¢. If str does not
contain ¢, out is set to the null string.

Returns

The cstrchr_m function returns zero if there was no runtime-constraint violation.

Otherwise, a non-zero value is returned.

3.5.3 The wstrchr_m Function

Synopsis
#include <string m.h>
errno_t wstrchr m(string m out, const string m str,
wchar_t wc);

Runtime-Constraints

out and str shall reference valid managed strings.

Description

The wstrchr_m function scans the managed string str for the first occurrence of we.
out is set to the string containing and following the first occurrence of we. If str does not
contain we, out is set to the null string.

Returns
The wstrchr_m function returns zero if there was no runtime-constraint violation.

Otherwise, a non-zero value is returned.

3.5.4 The strspn_m Function

Synopsis
#include <string m.h>
errno_t strspn m(string m str, string m accept,
rsize t *len) ;

Runtime-Constraints

str and accept shall reference a valid managed string. len shall not be a null pointer.

24 CMU/SEI-2006-TR-006

Description

The strspn_m function computes the length of the maximum initial segment of the man-
aged string str which consists entirely of characters from the managed string accept. The
strspn_m function sets *1en to this length. If the managed string str is null or empty,
*1en is set to zero.

Returns

The strspn_m function returns zero if there was no runtime-constraint violation.

Otherwise, a non-zero value is returned.

3.5.5 The strcspn_m Function

Synopsis
#include <string m.h>
errno_t strcspn m(string m str, string m reject,
rsize_t *len) ;

Runtime-Constraints

str and accept shall reference valid managed strings. len shall not be a null pointer.

Description

The strespn_m function computes the length of the maximum initial segment of the man-
aged string str , which consists entirely of characters not from the managed string reject.
The strespn_m function sets *1en to this length. If the managed string stxr is null or
empty *1len is set to zero. If the managed string reject is null or empty, *1en is set to the
length of str.

Returns

The strespn_m function returns zero if there was no runtime-constraint violation.
Otherwise, a non-zero value is returned.

3.6 Configuration Functions
3.6.1 The setcharset_m Function

Synopsis
#include <string m.h>
errno_t setcharset m(string m s,
const string m charset);

Runtime-Constraints

s shall reference a valid managed string.

CMU/SEI-2006-TR-006 25

Description

The setcharset_m function sets the subset of allowable characters to be those in the
managed string charset (which may be null or empty). If charset is a null pointer or
the managed string represented by charset is null, a restricted subset of valid characters is
not enforced. If the managed string charset is empty, then only empty or null strings can
be created.

Returns

The setcharset_m function returns zero if no runtime-constraints were violated.
Otherwise, a non-zero value is returned.

3.6.2 The setmaxlen_m Function

Synopsis
#include <string m.h>
errno_t setmaxlen m(string m s, rsize_t maxlen);

Runtime-Constraints

s shall reference a valid managed string.

Description

The setmaxlen m function sets the maximum length of the managed string s. If maxlen
is 0, the system-defined maximum length is used.

Returns

The setmaxlen_m function returns zero if no runtime-constraints were violated.

Otherwise, a non-zero value is returned.

3.6.3 The setallocators_m Function

Synopsis
#include <string m.h>
errno_t setallocators m m(malloc_handler_ t mh,
realloc_handler_t rh, free_handler_t fh);

Runtime-Constraints

mh, rh, and £h shall not be a null pointer and shall point to valid functions.

Description

26 CMU/SEI-2006-TR-006

The setallocators_m function sets the memory allocation functions used by the man-
aged string library. If not explicitly set, mh defaults to malloc (), rh defaults to real-
loc (), and £h defaults to free ().

Returns

The setallocators_m function returns zero if no runtime-constraints were violated.
Otherwise, a non-zero value is returned.

3.7 printf-derived Functions

These functions are the managed string equivalents to the print£-derived functions in C.

The ‘% s’ specification refers to a managed string, rather than a null-terminated byte string or
wide character string. The format specification ‘%$1s’ indicates that the managed string
should be output as a wide character string. The format specification ‘$hs’ indicates that the
managed string should be output as a null-terminated byte string. All print£-derived func-
tions will output a null-terminated byte string if (1) any specified output stream is byte ori-
ented and (2) the format string and all argument strings are null-terminated byte strings; oth-
erwise the output will be a wide-character string.

Applying a byte output function to a wide-oriented stream or a wide character output function
to a byte-oriented stream will result in a runtime-constraint error.

The ‘%n’ specification is not recognized.

3.7.1 The sprintf_m Function

Synopsis
#include <string m.h>
errno_t sprintf m(string m buf, const string m fmt, int
*count, ...);

Runtime-Constraints

buf and £mt shall reference valid managed strings. The managed string £mt shall be a
valid format compatible with the arguments after £mt.

Description

The sprintf m function formats its parameters after the third parameter into a string ac-
cording to the format contained in the managed string £mt and stores the result in the man-
aged string buf.

CMU/SEI-2006-TR-006 27

If not a null pointer, *count is set to the number of characters written in buf, not including

the terminating null character.

Returns

The sprintf m function returns zero if no runtime-constraints were violated.

Otherwise, a non-zero value is returned.

3.7.2 The vsprintf_m Function

Synopsis
#include <string m.h>
errno_t vsprintf m(string m buf,
const string m fmt,
int *count,
va_list args);

Runtime-Constraints

buf and £mt shall reference a valid managed string. £mt shall not be a null pointer. The
managed string £mt shall be a valid format compatible with the arguments args.

Description

The vsprintf m function formats its parameters args into a string according to the for-
mat contained in the managed string £mt and stores the result in the managed string buf.

If not a null pointer, *count is set to the number of characters written in buf, not including
the terminating null character.

Returns

The vsprintf m function returns zero if no runtime-constraints were violated.
Otherwise, a non-zero value is returned.

3.7.3 The snprintf_m Function

Synopsis
#include <string m.h>
errno_t snprintf m(string m buf, int max,
const string m fmt, int *count, ...);

Runtime-Constraints

buf and £mt shall reference a valid managed string. £mt shall not be a null pointer. The
managed string £mt shall be a valid format compatible with the arguments after £mt.

Description

28 CMU/SEI-2006-TR-006

The snprintf m function formats its parameters after the fourth parameter into a string
according to the format contained in the managed string £mt and stores the result in the man-
aged string buf. If the resulting string contains more than max characters, it is truncated.

If not a null pointer, *count is set to the number of characters that would have been written
had max been sufficiently large, not counting the terminating null character. Thus, the output
will be completely written if and only if the returned value is nonnegative and less than max.

Returns

The snprintf m function returns zero if no runtime-constraints were violated.

Otherwise, a non-zero value is returned.

3.7.4 The vsnprintf_m Function

Synopsis
#include <string m.h>
errno_t vsnprintf m(string m buf, int max,
const string m fmt, int *count,
va_list args);

Runtime-Constraints

Buf and £mt shall reference a valid managed string. £mt shall not be a null pointer. The
managed string £mt shall be a valid format compatible with the arguments args.

Description

The vsprintf m function formats its parameters args into a string according to the for-
mat contained in the managed string £mt and stores the result in the managed string buf. If
the resulting string contains more than max characters, it is truncated.

If not a null pointer, *count is set to the number of characters that would have been written
had max been sufficiently large, not counting the terminating null character. Thus, the output
will be completely written if and only if the returned value is nonnegative and less than max.

Returns

The vsprintf m function returns zero if no runtime-constraints were violated.
Otherwise, a non-zero value is returned.

3.7.5 The printf_m Function

Synopsis
#include <string m.h>
errno_t printf m(const string m fmt, int *count, ...);

CMU/SEI-2006-TR-006 29

Runtime-Constraints

fmt shall reference a valid managed string. £mt shall not be a null pointer. The managed
string £mt shall be a valid format compatible with the arguments after £mt.

Description

The printf m function formats its parameters after the second parameter into a string ac-
cording to the format contained in the managed string £mt and outputs the result to standard
output.

If not a null pointer, *count is set to the number of characters transmitted.

Returns

The printf m function returns zero if no runtime-constraints were violated.

Otherwise, a non-zero value is returned.

3.7.6 The vprintf_m Function

Synopsis
#include <string m.h>
errno_t vprintf m(const string m fmt, int *count,
va_list args);

Runtime-Constraints

£fmt shall reference a valid managed string. £mt shall not be a null pointer. The managed
string £mt shall be a valid format compatible with the arguments args.

Description

The vprintf m function formats its parameters args into a string according to the format
contained in the managed string £mt and outputs the result to standard output.

If not a null pointer, *count is set to the number of characters transmitted.

Returns

The vprint£ m function returns zero if no runtime-constraints were violated.

Otherwise, a non-zero value is returned.

3.7.7 The fprintf_m Function

Synopsis
#include <string m.h>
errno_t fprintf m(FILE *file, const string m fmt, int
*count, ...);

30 CMU/SEI-2006-TR-006

Runtime-Constraints

fmt shall reference a valid managed string. £mt shall not be a null pointer. The managed
string £mt shall be a valid format compatible with the arguments after £mt. £ile shall not
be a null pointer.

If not a null pointer, *count is set to the number of characters transmitted.

Description

The fprintf m function formats its parameters after the third parameter into a string ac-
cording to the format contained in the managed string £mt and outputs the result to £ile.

Returns
The fprintf m function returns zero if no runtime-constraints were violated.

Otherwise, a non-zero value is returned.

3.7.8 The vfprintf_m Function

Synopsis
#include <string m.h>
errno_t vfprintf m(FILE *file, const string m fmt,
int *count, va_list args);

Runtime-Constraints

fmt shall reference a valid managed string. £mt shall not be a null pointer. The managed
string £mt shall be a valid format compatible with the arguments args. £ile shall not be a

null pointer.

Description

The vEprintf m function formats its parameters args into a string according to the for-
mat contained in the managed string £mt and outputs the result to £ile.

If not a null pointer, *count is set to the number of characters transmitted.

Returns

The vEprintf m function returns zero if no runtime-constraints were violated.

Otherwise, a non-zero value is returned.

3.8 scanf-derived Functions

These functions are the managed string equivalents to the scan£-derived functions in C.

Managed string format strings differ from standard C format strings primarily in that they are
represented as managed strings. The ‘%s’ specification refers to a managed string, rather than

CMU/SEI-2006-TR-006 31

a null-terminated byte string or wide character string. The use of char* or wchar t*
pointers in the varargs list will result in a runtime-constraint if detected. The managed
string read by ‘%s’ is created as a null-terminated byte string if the input string is a null-
terminated byte string or the input stream has byte orientation; otherwise a wide character
string is created. The format specification ‘$1s’ indicates that the managed string should be
created as a wide character string. The format specification ‘%hs” indicates that the managed
string should be created as a null-terminated byte string.

Applying a byte input function to a wide-oriented stream or a wide character input function to
a byte-oriented stream will result in a runtime-constraint error.

3.8.1 The sscanf_m Function

Synopsis
#include <string m.h>
errno_t sscanf m(string m buf, const string m fmt,
int *count, ...);

Runtime-Constraints

buf and £mt shall reference a valid managed string. £mt shall not be a null pointer. The
managed string £mt shall be a valid format compatible with the arguments after £mt.

32 CMU/SEI-2006-TR-006

Description

The sscanf_m function processes the managed string buf according to the format con-
tained in the managed string £mt and stores the results using the arguments after count.

If not a null pointer, *count is set to the number of input items assigned, which can be
fewer than provided for, or even zero, in the event of an early matching failure.

Returns

The sscanf _m function returns zero if no runtime-constraints were violated.

Otherwise, a non-zero value is returned.

3.8.2 The vsscanf_m Function

Synopsis
#include <string m.h>
errno_t vsscanf m(string m buf,
const string m fmt,
int *count,
va_list args);

Runtime-Constraints

buf and £mt shall reference a valid managed string. £mt shall not be a null pointer. The
managed string £mt shall be a valid format compatible with the arguments args.

Description

The vsscanf_m function processes the managed string buf according to the format con-
tained in the managed string £mt and stores the results using the arguments in args.

If not a null pointer, *count is set to the number of input items assigned, which can be

fewer than provided for, or even zero, in the event of an early matching failure.
Returns

The vsscanf_m function returns zero if no runtime-constraints were violated.

Otherwise, a non-zero value is returned.

3.8.3 The scanf_m Function

Synopsis
#include <string m.h>
errno_t scanf m(const string m fmt, int *count, ...);

CMU/SEI-2006-TR-006

Runtime-Constraints

fmt shall reference a valid managed string. £mt shall not be a null pointer. The managed
string £mt shall be a valid format compatible with the arguments after count.

Description

The scanf_m function processes input from standard input according to the format con-
tained in the managed string £mt and stores the results using the arguments after count.

If not null, *count is set to the number of input items assigned, which can be fewer than

provided for, or even zero, in the event of an early matching failure.

Returns

The scanf_m function returns zero if no runtime-constraints were violated.
Otherwise, a non-zero value is returned.

3.8.4 The vscanf_m Function

Synopsis
#include <string m.h>
errno_t vscanf m(const string m fmt, int *count,
va_list args);

Runtime-Constraints

£fmt shall reference a valid managed string. £mt shall not be a null pointer. The managed
string £mt shall be a valid format compatible with the arguments args.

Description

The vscanf _m function processes input from standard input according to the format con-
tained in the managed string £mt and stores the results using the arguments in args.

If not null, *count is set to the number of input items assigned, which can be fewer than
provided for, or even zero, in the event of an early matching failure.

Returns

The vscanf m function returns zero if no runtime-constraints were violated.

Otherwise, a non-zero value is returned.

34 CMU/SEI-2006-TR-006

3.8.5 The fscanf_m Function

Synopsis
#include <string m.h>
errno_t fscanf m(FILE *file, const string m fmt,
int *count, ...);

Runtime-Constraints

fmt shall reference a valid managed string. £mt shall not be a null pointer. The managed
string £mt shall be a valid format compatible with the arguments after count.
file shall not be a null pointer.

Description

The £scanf_m function processes input from £ile according to the format contained in
the managed string £mt and stores the results using the arguments after count.

If not a null pointer, *count is set to the number of input items assigned, which can be
fewer than provided for, or even zero, in the event of an early matching failure.

Returns

The £scanf _m function returns zero if no runtime-constraints were violated.
Otherwise, a non-zero value is returned.

3.9 String Slices
3.9.1 The strslice_m Function

Synopsis
#include <string m.h>
errno_t strslice m(string m sl1,
const string m s2,
rsize t offset, rsize_t len);

Runtime-Constraints

s1 and s2 shall reference valid managed strings. There shall be sufficient memory to store
the result.

Description

The strslice_m function takes up to len characters from s2, starting at the of £set
character in the string and stores the result in s1. If there are insufficient characters to copy
len characters, all available characters are copied. If of £set is greater than the number of
characters in s2, s1 is set to the null string. If of £set is equal to the number of characters
in s2 or lenis 0, s1 is set to the empty string.

CMU/SEI-2006-TR-006 35

Returns

The strslice_m function returns zero if no runtime-constraints were violated.

Otherwise, a non-zero value is returned.

3.9.2 The strleft_m Function

Synopsis
#include <string m.h>
errno_t strleft m(string m s1l,
const string m s2,
rsize_t len) ;

Runtime-Constraints

s1 and s2 shall reference valid managed strings. There shall be sufficient memory to store
the result.

Description

The strleft_m function copies up to len characters from the start of the managed string
s2 to the managed string s1. If s2 does not have 1en characters, the entire string is copied.
If s2 is a null string, s1 is set to the null string.

Returns

The strleft m function returns zero if no runtime-constraints were violated.

Otherwise, a non-zero value is returned.

3.9.3 The strright_m Function

Synopsis
#include <string m.h>
errno_t strleft m(string m sl,
const string m s2,
rsize_t len) ;

Runtime-Constraints

s1 and s2 shall reference valid managed strings. There shall be sufficient memory to store
the result.

Description

The strright_m function copies up to the last Len characters from the managed string s2
to the managed string s1. If s2 does not have 1len characters, the entire string is copied. If
s2 is a null string, s1 is set to the null string.

36 CMU/SEI-2006-TR-006

Returns

The strright_m function returns zero if no runtime-constraints were violated.

Otherwise, a non-zero value is returned.

3.9.4 The cchar_m Function

Synopsis
#include <string m.h>
errno_t cchar m(const string m s,
rsize t offset,
char *c);

Runtime-Constraints

s shall reference a valid managed string. c shall not be a null pointer. offset shall be less
than the length of the managed string s. The character to be returned in ¢ shall be represent-
able as a char.

Description

The cchar_m function sets ¢ to the of£set character (the first character having an of£-
set of 0) in the managed string s.

Returns

The cchar_m function returns zero if no runtime-constraints were violated.

Otherwise, a non-zero value is returned.

3.9.5 The wchar_m Function

Synopsis
#include <string m.h>
errno_t wchar m(const string m s,
rsize t offset,
wchar t *wc);

Runtime-Constraints

s1 shall reference a valid managed string. we shall not be a null pointer. offset shall be
less than the length of the managed string s1.

Description

The wchar_m function sets we to the of £set character (the first character having an of £-
set of 0) in the managed string s.

CMU/SEI-2006-TR-006 37

Returns

The wehar m function returns zero if no runtime-constraints were violated.

Otherwise, a non-zero value is returned.

38 CMU/SEI-2006-TR-006

4 Reference

URL is valid as of the publication date of this document.

[ISO/IEC 99]

International Organization for Standardization, International Elec-
trotechnical Commission. ISO/IEC 9899:1999, Programming Lan-
guages—C. http://www.open-std.org/JTC1/SC22/WG14
/www/docs/n1124.pdf (May 6, 2005).

CMU/SEI-2006-TR-006

39

http://www.open-std.org/JTC1/SC22/WG14

40

CMU/SEI-2006-TR-006

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching
existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding
this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters
Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of
Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
(Leave Blank) May 2006 Final

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
Specifications for Managed Strings FA8721-05-C-0003

6. AUTHOR(S)
Hal Burch, Fred Long, Robert Seacord

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Software Engineering Institute REPORT NUMBER
Carnegie Mellon University CMU/SEI-2006-TR-06
Pittsburgh, PA 15213

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY
HQ ESC/XPK REPORT NUMBER
5 Eglin Street ESC-TR-2006-006
Hanscom AFB, MA 01731-2116

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT 12B DISTRIBUTION CODE
Unclassified/Unlimited, DTIC, NTIS

13. ABSTRACT (MAXIMUM 200 WORDS)
This report describes a managed string library for the C programming language. Many software vulnerabili-
ties in C programs result from the misuse of standard C string manipulation functions. Programming errors
common to string manipulation logic include buffer overflow, truncation errors, string termination errors, and
improper data sanitation. The managed string library provides mechanisms to eliminate or mitigate these
problems and improve system security. A proof-of-concept implementation of the managed string library is
available from the Secure Coding area of the CERT Web site.

14. SUBJECT TERMS 15. NUMBER OF PAGES
managed strings, C program language, specification, string library, 4949
ISO/IEC 9899:1999

16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION OF 19. SECURITY CLASSIFICATION OF | 20. LIMITATION OF ABSTRACT
OF REPORT THIS PAGE ABSTRACT UL
Unclassified Unclassified Unclassified

NSN 7540-01-280-5500

Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18 298-102

	Specifications for Managed Strings
	Table of Contents
	Abstract
	1Introduction
	2 Library
	3 Library Functions
	4 Reference

