International Symposium and Workshop on Systems Engineering of Computer Based Systems,

March 1995, Tucson

A Case Study In Assessing the Maintainability of Large,
Software-Intensive Systems

Alan W. Brown, David J. Carney, and Paul C. Clements

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

Abstract: Maintenance of a computer-based system
accounts for a large proportion of the total system
cost. However, no well-established techniques exist
for assessing the maintainability of such a system.
This paper presents a case study in assessing the
maintainability of a large, software intensive system.
The techniques we used are described, and their
strengths and weaknesses discussed.

1 Introduction

Maintenance of computer-based systems can be
extremely expensive, rivaling or even dwarfing the
cost of original development. Years of empirical data
have established that in large, long-lived, software-
intensive systems, as much as 80% of the overall life-
cycle cost can accrue after initial deployment in the
field [1]. Hewlett-Packard recently reported that they
have 40-50 million lines of code in maintenance, and
that 60%-80% of their research and development per-
sonnel are involved in maintenance activities [2].

Given the proportion of costs devoted to mainte-
nance, it is clear that an assessment of the maintain-
ability of a computer-based system should play an
important role in any system evaluation, especially
during early development. However, while the costs
of maintaining existing systems are well-document-
ed, it is much more difficult to find techniques that al-
low maintenance costs of a system in construction to
be predicted.

As part of a larger audit of a computer-based
system the authors were recently called upon to as-
sess the maintainability of the software being written.
It is a large, real-time, embedded process control sys-
tem, comprising on the order of a million lines of Ada

code. The system was designed to be distributed,
flexibly configured, extremely reliable, and to meet
strict performance and human interface constraints.

This paper presents the approach used to make
this assessment. The remainder of this paper is as fol-
lows. Section two discusses the conceptual basis for
our assessment approach. Sections three and four di-
vide that into its two key aspects. Section five pro-
vides a summary and conclusions.

2 The Basis for Assessing
Maintainability

As with any evaluative process, assessing main-
tainability needs to rest on a foundation that provides
a reasonable basis for making any conclusions or pre-
dictions about a system’s probable maintenance
costs. This basis need not be exhaustive or complete
— we do not believe that it is as yet possible for a tru-
ly reliable quantitative predictor for maintainability
— but must yield a result that offers some qualitative
conclusions based on objective evidence. We also
stress that the assessment method itself be capable of
repeated use.

We posit that assessing maintainability has two
aspects. The first pertains to the nature of the system
itself: How well does the software lend itself to
change? How easy is it to understand when consid-
ered from various perspectives, i.e., from the architec-
tural, low-level design, and coding points of view?
With what level of fidelity does the implementation
reflect the design chosen for it? How widespread are
the effects of a particular modification? What is the
guality of its documentation?

However, a single-minded product-oriented ap-
proach ignores the capabilities of the maintenance or-

ganization. Therefore, the second key aspect in our
approach for assessing maintainability addresses the
adequacy of the maintenance infrastructure: what
processes are in place? How appropriate are the tools
and technology employed by the organization? How
familiar are the personnel with the system being
maintained?

Our approach to assessing maintainability in-
cludes both of these aspects. We now consider how
we incorporated both into the assessment of the actu-
al system.

3 Maintainability as a
Function of the System

Maintainability metrics typically concentrate on
product complexity, reasoning that errors are more
likely to occur in complex systems or complex parts
of a system, and that those will be harder to under-
stand and change (e.g., [4], [10], [8]). Complexity is
usually measured by analyzing source code.

In defining our approach, we considered exist-
ing maintenance metrics. While not without benefit,
traditional scalar maintenance metrics cannot serve
as the basis for a comprehensive assessment. First of
all, they embody a hidden set of assumptions about
the nature and frequency of maintenance operations.
Maintainability metrics should predict maintenance
cost, and maintenance cost is a function of an actual
maintenance (change) history, not a hypothetical one.
Changes cannot be predicted by analyzing the system
in isolation from its domain, development, and mar-
ketplace contexts, which is what program-analysis-
based maintainability metrics do. Suppose a shared-
data system is designed to accommodate new com-
puting platforms, but not designed to accommodate a
change in the format of the shared data. Is it maintain-
able? The right answer, we believe, is “Yes, with re-
spect to new computing platforms, but no with
respect to changing the data format.” If the develop-
ment organization expects to adopt a new data lay-
out, but does not expect to migrate to a new
computer, then the answer may be simplified to
“No.” No scalar metric can capture this multi-dimen-
sional aspect of maintainability.

Second, complexity may actually improve main-
tainability. In the process control case we studied, the
program initialized by reading a large data base of
site-specific configuration data and version-specific

rules for display generation. This data affected the
program’s timing behavior, the content and layout of
operator displays, and hundreds of parameters con-
cerning its complicated user interface. The use of this
so-called “adaptation data” made the program decid-
edly more complex, but it could be tailored to pro-
duce entirely new output displays with virtually no
change to the run-time code at all. It was highly main-
tainable with respect to the changes facilitated by the ad-
aptation data, scalar complexity-based metrics to the
contrary notwithstanding.

Our assessment procedure took into account the
domain-specific, project-specific, and organization-
specific aspects of maintainability. It proceeded as
follows:

1. We enumerated the quality attributes that
were considered important to achieve and maintain.
In our example, these included ultra-high availability
(accomplished by a sophisticated distributed, fault-
tolerant design and implementation scheme), perfor-
mance, and the ability to extract a functionally useful
subset from the system.

2. We enumerated a set of change classes that
were deemed likely to occur to the system over its
lifetime. These change classes may come from antici-
pated requirements for the system, or domain knowl-
edge about changes made to legacy systems of the
same genre. In our case, likely changes included up-
grades in network and processor hardware and the
operating system, importation of third-party applica-
tion or support software, additional functional or per-
formance requirements, and extraction of functional-
ly useful subsets for staged deployment.

We were careful to consider a change class that
affected each of the quality attributes listed above
(e.g., increasing the system’s availability require-
ment). Also, we were sure to consider change classes
that affected the system at the architectural level (i.e.,
affect its highest-level components), the module lev-
el, and the code level.!

3. For each change class, we defined a specific
instance of the change as a change scenario. For in-
stance, to test the system’s ability to accommodate in-
creased performance, we posited a 50% increase in
the maximum number of vehicle radar tracks the sys-
tem was required to monitor.

1. For some systems, there may be no distinction between high-
est-level components and modules, or between modules and code
units.

4. For each change scenario, we conducted a
change exercise, in which the developers were asked to
accommodate the change by showing us all compo-
nents (from architecture-level components, to design-
level modules, to Ada packages) and documentation
that would be affected by the change. The result was
a set of active design reviews [9] in which the partici-
pants were pro-active, each in his or her own area.

The purpose of the change scenarios is to assess
the system design against likely, rather than arbitrary
changes. During each exercise, we investigated the
process to implement each change, and viewed and
catalogued the code and documentation that was or
would have been produced, accessed, or modified as
a result of the change. During some of the exercises,
we actually made code changes; for others, the devel-
oper had anticipated us by preparing working proto-
types with the change installed. Table lists some of
our change exercises, and the quality or aspect that
each one tested.

In our case, the system was implemented; we
could actually compile lines-of-code statistics for
each change exercise. However, the exercise could be
performed on a system for which design (but no
code) existed. If the design documentation was not
complete enough or detailed enough or informative
enough to identify specific areas of change, then the
exercise would serve to uncover those documenta-
tion deficiencies. In this way they could be corrected,
rather than having implementation being allowed to
proceed based on incomplete designs.

The result of the change exercises was a set of
high-confidence metrics, one per class of change,
with which project management could project the
cost of performing concrete maintenance operations
to the system.

Finally, since all changes cannot be anticipated,
we assessed whether or not generally-accepted soft-
ware engineering standards had been followed
which, in the past, have resulted in systems that were
easily modified with respect to normal life-cycle evo-
lutionary pressures. This step included the use of
standard code quality metrics, as well as traditional
documentation inspection and quality assessments.
We also inquired after the design rationale to see
what information was encapsulated at various design
levels. This encapsulation implies classes of changes
that the designers had in mind, implicitly or explicit-
ly, against which the system is insulated.

4 Maintainability as a
Function of the Environment

In addition to the inherent maintainability of the
system itself, the quality and consistency of that
maintenance environment will have a direct impact
on the maintainability of the system being supported.
We define “maintenance environment” as the set of
tools, techniques, and processes that are applied to a
system during its maintenance.? The successful long-
term maintenance of any system requires an appro-
priate maintenance environment (i.e., an appropriate
set of tools. techniques, and processes).

Some existing approaches to maintainability
metrics have also considered questions of infrastruc-
ture; approaches like those of Pickard and Carter [6]
“must be embedded in a maintainability measure-
ment framework that is adapted and calibrated to a
specific software development environment.” Boe-
hm’s venerable COCOMO [1], which takes mainte-
nance organization factors into account, has a similar
viewpoint. Our approach agrees with these two.

Existing approaches to evaluating software
maintenance environments (as well as development
environments) fall into one of two categories. On one
hand, a technology-oriented view of software mainte-
nance concentrates on the selection of individual
computer-aided software engineering (CASE) tools
that may aid in supporting particular maintenance
activities. The IEEE recommended practice on the se-
lection and evaluation of CASE tools [3] is typical of
guidelines that can be used to help with tool selection.
On the other hand, a more process-oriented view of
software maintenance concentrates on assessing the
practices used during maintenance. This view can be
seen in the Software Engineering Institute’s (SEI’s)
software capability maturity model [5] through
which an organization (not the software system) is as-
sessed. The assessment is based on the extent to
which certain key practices (configuration manage-
ment, project tracking and oversight, software quality
assurance, etc.) are defined, repeated, measured, and
optimized. A similar approach is that of the Interna-
tional Standards Organization (ISO) 9000 standard
for certification of an organization’s software practic-
es [7]. These process-centered views provide a gener-

2. Itis also true that the maintenance environment is itself a
large software-intensive system that must be managed and main-
tained. This “recursive” property is common to systems that pro-
duce other systems.

al, overall impression of an organization’s ability to
define and enact processes, which in turn has impli-
cations about the success of that organization’s main-
tenance activities.

We incorporate both of these views in our ap-
proach, though with some important differences.
First, we do not consider either that tools and tech-
niques or that processes should be considered in iso-
lation: our notion of an “environment” is the
combination of all three, each providing context for
the other two. From this, it follows that an assessment
of an environment must also take this view: an assess-
ment must consider tools, techniques, and processes
as a whole, and not as separable factors to be evaluat-
ed. Tool selection can only be understood and evalu-
ated in the context of the techniques and process
being supported, and the appropriateness, repeat-
ability, and cost-effectiveness of the process being
employed during maintenance can only be consid-
ered with a knowledge of the available automation
for those processes.

We have also found it essential to concentrate at-
tention on how the maintenance environment specif-
ically applies to the current system being maintained;
in particular, this attention includes examining the
goals of the organization that developed, is maintain-
ing, and is using the system in question.

These considerations lead us to suggest that the
wide range of activities carried out in assessing a
maintenance environment fall into the following cat-
egories:

= Comparing the development and maintenance
environments;

= Evaluating the plan for transition of responsibil-
ity;
= Assessing the key maintenance practices;

= Examining the organization’s maintenance of
other systems.

We discuss each of these in detail below.

4.1 Comparingthe Developmentand
Maintenance Environments

To examine the maintenance environment for a
system, a necessary place to start is the development
environment that produced that system. The devel-
opment environment leaves a legacy of documents,
data, and knowledge concerning the system that

must be brought forward into maintenance. The
form, format, and accessibility of these artifacts are
strongly affected by the environment through which
they came into being; to the extent that the mainte-
nance environment is similar or different, the use of
those artifacts will either be facilitated, constrained,
or even impossible. In our assessment, therefore, we
compared the two environments by focussing on four
key questions:

< When in the system’s development cycle is the
maintenance environment ready for use?

= |s the tool makeup consistent between the devel-
opment and maintenance environments?

= Aside from consistency, what is the intrinsic
quality of the tools?

= |s the maintenance environment documentation
complete and consistent?

Creation of the Maintenance Environment

The maintenance environment must be in place
long before the system is brought into maintenance.
An environment is itself a system that needs to be de-
bugged, and that has a breaking-in period. Maintain-
ers are typically different persons from developers,
and gaining tool expertise is commonly a time-con-
suming process. Finally, without a precise specifica-
tion of the maintenance environment, there is no way
to assess the consistency of the tools between the two
environments. In the system under examination, the
maintenance environment was largely in place; as far
as could be determined, the maintenance personnel
were gaining experience using the tools.

Consistency of Tools

Any inconsistencies between the development
and maintenance environments represent potential
problems, and in making an assessment, such incon-
sistencies should be analyzed, their reasons recorded,
and their impact noted. It should also be noted that
inconsistencies may have a positive as well as a nega-
tive aspect, and both must be examined.

We saw two examples of this in the system we
examined. First, the code development tool suite was
proprietary to the development organization, and a
different set of coding tools was planned for mainte-
nance. For example, the likely impact of changing
Ada compilers and other essential development tools

had a huge element of risk from a maintenance point
of view.

Second, many thousands of pages of documen-
tation were recorded in the proprietary form of an ar-
chaic documentation system. The maintenance
organization, however, had invested heavily in the
use of Interleaf as the means for storing and browsing
all on-line documentation. While this divergence of
documentation technology needed to be resolved,
both the development and maintenance organiza-
tions were under internal pressures not to change.

Quality of Maintenance Tools

The questions of tool quality and of tool consis-
tency are different, yet almost impossible to separate.
As the previous section mentioned, some tool choices
might be made on a basis of consistency, be driven by
factors such as cost-effectiveness, yet result in the
maintenance environment containing tools of very
poor quality.

It is clear that regardless of the consistency ques-
tion, the inherent quality of the tools to be used will
have a significant impact on maintainability. One
typical example is the complexity and comprehen-
siveness of the configuration management system
used. This can be a major constraining factor through-
out the maintenance process.

Consistency of Documentation

In addition to examining documentation on the
maintenance environment itself, and seeing demon-
strations of the tools and techniques that were avail-
able, it is important to talk with some of the
development engineers in person in order to evaluate
the fidelity of the available documentation. The de-
velopment engineer is perhaps the most obvious, but
often ignored repository of information concerning
development practices that ought to transition to
maintenance.

For example, it is through discussions with de-
velopment engineers that key optimizations in devel-
opment practices can be identified. For instance,
through such discussions it may be found that many
home-grown scripts and filters are used during de-
bugging and testing.

4.2 Evaluating the Plan for
Transition of Responsibility

For many large, software-intensive systems, the
development and maintenance organizations are en-
tirely separate. This may be due to the fact that differ-
ent organizations have been contracted for
development and maintenance aspects of the system,
or that a single organization is internally structured
with separate development and maintenance divi-
sions. In either case, it is inevitable that much valu-
able information about the system will be lost in
transitioning it from development to maintenance.

To aid transition from development to mainte-
nance, a humber of key documents need to be in
place, up-to-date, and of high quality. In our experi-
ences, we have found that the following documents
are essential:

= A high-level overview of the architecture of the
system. This should establish the major design
requirements for the system, the choices made in
implementing the system to meet those require-
ments, the basic functional components of the
system, and the typical operation of the system.
Again, while the need for such a document may
seem obvious, we have found that members of
the development organization have a shared un-
derstanding of the basic design of the system
which has been built up over the course of devel-
opment (often a number of years). They find
such a document unnecessary for their own
needs, and forget the needs of the maintainers.

= A detailed, agreed transition plan for moving
the system to maintenance. This plan must de-
fine in detail the tools, techniques, and practices
to be used in maintenance, the responsibilities
and expectations of each of the participants, op-
erating procedures for finding and eliminating
system errors, and so on. In the system we exam-
ined we found that there were three conflicting
versions of this plan — one produced by the
maintenance organization, one produced by the
development organization, and one produced
by the project monitoring organization.

4.3 Assessing the Key Maintenance
Processes
There are a number of key processes that take

place during maintenance; these practices parallel the
key practices that occur during development. Itis our

experience that while most software developments
consider these as critical aspects of the development
phases, they are often severely neglected when estab-
lishing the maintenance environment. The quality, ef-
ficiency, and effectiveness of these processes is
essential. The maturity of these processes in the con-
text of the maintenance environment must be examined
in detail to ensure that they are well-defined. Auto-
mation of these processes can ensure that the data is
accurate, quickly accessible, and easily manipulated.

The key process areas include:

= Code inspection processes: These include tech-
niques for fixes and enhancements to the system.
Such inspections are just as critical during main-
tenance as they were during development.
These processes must be applied consistently
and effectively to ensure the integrity of the sys-
tem. In fact, inspection processes may need to be
more rigorous during maintenance than devel-
opment.3

= Test procedures: Just as in development, ade-
guate testing using test scripts and acceptance
test suites is an essential component of mainte-
nance. In most cases these should mirror those
used during development of the system

= Build and release practices: Developing new sys-
tem releases, fielding those releases, and moving
users from one release to the next must be care-
fully defined. A number of choices concerning
system releases must be made, and rationale for
those choices documented and periodically ex-
amined. Examples of choices include frequency
of new releases, whether some or all of the sites
are upgraded at the same time, handling of
emergency fixes for critical errors, and customi-
zations at different sites.

= Change request procedures: Handling the influx
of change requests based on unanticipated be-
havior of the system, or suggested enhance-
ments to the system is an important task. For
large systems there are likely to be many thou-
sands of such requests. Each must be recorded,
considered, and appropriate action taken. The
change management process can be detailed and
complex, particularly for systems with high
availability, performance, and safety require-

3. As any maintainer of a large system will attest, software does
age and decay — without extreme care each “enhancement” to the
system is likely to make the system more complex and less easy to
maintain.

ments. In assessing such processes aspects to
consider include the prioritization scheme in
use, allocation of changes to releases, and report-
ing and statistics gathered on change requests
and fixes.

4.4 Examining Maintenance of Other
Systems

Most organizations employing large, software-
intensive systems are in the position of maintaining a
number of such systems. Each such system has been
developed, installed, and maintained over a long pe-
riod of time. Hence, the maintenance of one such sys-
tem cannot be considered in isolation. Many
decisions must take a wider picture of systems main-
tenance of a range of such systems. We can consider a
number of issues in this regard.

First, the system may interface with a number of
existing or planned future systems. Decisions con-
cerning system interfaces, performance, etc. may be
fixed, and may provide substantial design challenges
during maintenance. For example, the system we ex-
amined interfaced to a wide range of systems (e.g., ra-
dar systems, weather systems, collision warning
systems) constructed over a 25 year period. The con-
tinued correct operation of these existing systems
was paramount in any proposed enhancements.

Second, maintenance engineers have an existing
base of tools, techniques, and practices for maintain-
ing large, software-intensive systems. The mainte-
nance environment for a new system must harmonize
with this existing environment. This provides a sub-
stantial opportunity to build on established success-
ful aspects of the existing environment. It also
provides a major challenge in introducing new ap-
proaches that differ significantly from tried and trust-
ed methods. An obvious example seen in our system
is that the system was written in the Ada program-
ming language, while the existing systems being
maintained were in assembler, FORTRAN, JOVIAL,
and many other languages (but not Ada!).

Third, the recent climate of systems develop-
ment is toward the use of commercial off-the-shelf
(COTS) components to provide large parts of any
large software-intensive system. This provides signif-
icant maintenance challenges: large parts of the sys-
tem are maintained by COTS vendors, the ability to
change COTS software is often severely limited, new
releases of COTS occur when the vendor decides not

when you need them, and tracing errors can be prob-
lematic in systems that include COTS components.
Many organizations are struggling to come to terms
with maintenance of such systems. We know of a
number of examples of major systems that include
old, un-maintained versions of COTS components
where the COTS vendor no longer is in business.
Contingency plans for such situations must be made.

Fourth, it must be remembered that it is not just
the operational software that must be maintained.
Maintenance is required for all of the support soft-
ware necessary for the development, testing, mainte-
nance, and release of the operational software. In
comparison with the operational software, in most
large, software-intensive systems the support soft-
ware is larger in size, more varied in the languages
and styles of development (e.g., database systems for
data entry and manipulation, assembler code for net-
work support, high-level scripting languages for test
scripts). This is in addition to maintaining large
amounts of documentation, data for testing, and ad-
ministrative information on system configurations.
Maintenance for each of these is necessary and must
be considered.

5 Summary and Conclusions

In this paper we have emphasized the impor-
tance of assessing the maintainability of large, soft-
ware-intensive system, and the need to do this by
using a set of techniques that provide a range of per-
spectives on the maintainability of a system. Two as-
pects of assessing maintainability were discussed:
maintainability as a function of the system itself, and
maintainability as a function of the environment sup-
porting the system.

To assess maintainability as a function of the sys-
tem, the techniques available include:

= Scalar techniques which provide a quantitative
assessment of certain aspects of the system (e.g.,
cyclomatic complexity).

= Scenario-based techniques which provide more
specific assessments of quality attributes of the
system (e.g., availability, performance).

In our discussions we emphasized the second of
these approaches, with particular examples illustrat-
ing how appropriate change scenarios could be se-
lected for use as the basis of active design reviews of
the system.

To assess maintainability as a function of the en-
vironment supporting the system, the techniques
available include:

= Software process maturity assessment and certi-
fication, which provide an overall impression of
the ability of an organization to define, measure,
reuse, and optimize its key processes.

= CASE tool assessment, which supports the selec-
tion and evaluation of individual tools to be
used during system maintenance.

= Environment analyses and assessment, which
take place via a combination of qualitative as-
sessments of the development and maintenance
environment within the context of the organiza-
tion’s past, present, and future maintenance
goals.

Again, in this paper we have emphasized the lat-
ter techniques as being particularly valuable as it pro-
vides specific information that is tailored to the
current system under investigation.

During the course of our work we have had the
opportunity to examine a number of large, software-
intensive systems with the aim of assessing maintain-
ability. We have found that all of the above tech-
nigques can be valuable, and can be used to provide a
spectrum of information relevant to a system’s main-
tainability. A major difficulty is in taking this wealth
of information and defining a realistic, cost-effective
plan for improving the system based on these results.
The technical information provided by making such a
maintainability assessment suggests a number of
courses of action for restructuring the system, im-
proving documentation, increasing tool support, re-
defining key maintenance practices, and so on. These
actions can then be costed and their impact on the
project determined. It has been our experience that in
this most important step it is programmatic, political,
and economic factors that dominate the decisions
made.

Acknowledgments

The authors gratefully acknowledge the work
and good ideas of our colleagues on the audit team.

The SEI is sponsored by the U.S. Department of
Defense.

6 References

1. Barry Boehm, Software Engineering Economics, Prentice-

Hall, Englewood Cliffs, NJ, 1981.

2. Don Coleman, Dan Ash, Bruce Lowther, and Paul

Oman, “Using Metrics to Evaluate Software System

Maintainability,” IEEE Computer, Vol. 27, No. 8,

August 1994, pp. 44-49.

IEEE Recommended Practice for the Evaluation and 8.

Selection of CASE Tools, The Institute of Electrical and
Electronics Engineers, Inc. (IEEE), 345 East 47th Street,

New York, NY 10017, 1992. ANSI/IEEE Std. 1209-

1992.

David Lanning and Taghi Khoshgoftaar, “Modeling
the Relationship Between Source Code Complexity

and Maintenance Difficulty,” IEEE Computer, Vol. 27,

No. 9, September 1994, pp. 35-41.

5. Paulk, M.C., Curtis, B., & Chrissis, M.B. Capability
Maturity Model for Software. Technical Report

10.

CMU/SEI-91-TR-24, ADA240603, Software Engineer-
ing Institute, Carnegie Mellon University, Pittsburgh,
PA, August 1991.

M. Pickard and B. Carter, “Maintainability: What Is It
and How Do We Measure 1t?”” ACM SIGSOFT Software
Engineering Notes, vol. 18, no. 3, July 1993, pp. A36-9.

Charles H. Schumauch, ISO 9000 for Software Develop-
ers, ASQC Quality Press, 1994.

S. Wake and S. Henry, “A Model Based on Software
Quality Factors Which Predicts Maintainability,” Pro-
ceedings of the Conference on Software Maintenance,
Scottsdale, AZ, 1988, pp. 382-387.

David Weiss and David Parnas, “Active Design
Reviews: Principles and Practices,” Proceedings, Eighth
International Conference on Software Engineering, 1985,
pp. 132-136.

W. M. Zage and D. M. Zage, “Evaluating Design Met-
rics on Large-Scale Software,” IEEE Software, Vol. 10,
No.4, July 1993, pp. 75-80

Table 1: Change Scenarios and Their Scope

Design Level Affected

Quality Attribute Affected

Change Scenario

Archi-
tecture

Design

Code Perfor- | Subset

mance

Avail-
ability

Modify the user interface to the
Monitor & Control console posi-
tion’s user interface

Import third-party-developed
applications as major compo-
nents, testing the system’s open-
ness

Increase the system’s maximum
capacity of flight tracks by 50%

i

i

Add new output displays to the
system

i

i

Delete the requirement to sup-
port electronic flight strips by the
system

Upgrade to a higher-perfor-
mance communication network

i

i

Upgrade to a faster processor

Migrate to X-Window System

i

i

