Software Engineering Institute

Software Assurance Curriculum Project
Volume IV: Community College
Education

Nancy R. Mead, Software Engineering Institute
Elizabeth K. Hawthorne, Union County College
Mark Ardis, Stevens Institute of Technology

September 2011

TECHNICAL REPORT
CMU/SEI-2011-TR-017
ESC-TR-2011-017

CERT® Program

http://www.sei.cmu.edu

Carnegie Mellon

Copyright 2011 Carnegie Mellon University.

This material is based upon work funded and supported by the United States Department of Homeland Security under
Contract No. FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software Engineering
Institute, a federally funded research and development center sponsored by the United States Department of Defense.

Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do
not necessarily reflect the views of the United States Department of Homeland Security or the United States Department
of Defense.

This report was prepared for the

SEI Administrative Agent
ESC/XPK

5 Eglin Street

Hanscom AFB, MA 01731-2100

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO,
WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS
OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY
WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT
INFRINGEMENT.

This material has been approved for public release and unlimited distribution except as restricted below.

Internal use:* Permission to reproduce this material and to prepare derivative works from this material for internal use is
granted, provided the copyright and “No Warranty” statements are included with all reproductions and derivative works.

External use:* This material may be reproduced in its entirety, without modification, and freely distributed in written or
electronic form without requesting formal permission. Permission is required for any other external and/or commercial
use. Requests for permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu.

* These restrictions do not apply to U.S. government entities.

SEI markings v3.2 / 30 August 2011

mailto:permission@sei.cmu.edu

Table of Contents

Table of Contents

List of Tables

Acknowledgments

Abstract

1 Introduction

2 Review of Related Curricula

3 Outcomes and Body of Knowledge

4 Target Audience and Expected Background
5 Overview of Courses

6 Computer Science |

7 Computer Science Il

8 Computer Science lll

9 Introduction to Computer Security

10 Secure Coding

1 Introduction to Assured Software Engineering
12 Resources

Appendix A: Related Curricula

Appendix B: Bloom’s Taxonomy and the GSwWE2009

Appendix C: Community College Profiles

Appendix D: Relevant Research Articles

Bibliography

vii

12
13
15
18
21
25
27
29
32
35
43
44
47

49

CMU/SEI-2011-TR-017 | i

CMU/SEI-2011-TR-017 | ii

List of Tables

Table 1: Software Assurance BOK Across Curriculum Levels

Table 2: Syllabus for Computer Science | Course

Table 3: Course Assessment Features for Computer Science | Course

Table 4: Syllabus for Computer Science Il Course

Table 5: Course Assessment Features for Computer Science Il Course

Table 6: Syllabus for Computer Science Ill Course

Table 7: Course Assessment Features for Computer Science Ill Course

Table 8: Outline for Introduction to Computer Security Course

Table 9: Syllabus for Secure Coding Course

Table 10: Syllabus for Introduction to Assured Software Engineering Course

Table 11: Typical Introduction to Assured Software Engineering Course Sequence Option 1
Table 12: Typical Introduction to Assured Software Engineering Course Sequence Option 2

Table 13: Bloom's Taxonomy

15
17
18
19
21
23
25
27
29
31
31
43

CMU/SEI-2011-TR-017 | ifi

CMU/SEI-2011-TR-017 | iv

Acknowledgments

The authors thank the following individuals for their contributions to this report. We greatly

appreciate their insights and efforts.

e Our sponsor Joe Jarzombek, U.S. Department of Homeland Security (DHS) National Cyber
Security Division (NCSD), had the insight to recognize the need for such a curriculum and
support its development.

o The DHS NCSD Workforce Education & Training Working Group provided valuable review
comments on the draft document.

The following individuals contributed to the earlier Association for Computing Machinery (ACM)
Community College Course Outlines:
e Robert D. Campbell, City University of New York Graduate Center

o KarlJ. Klee, Alfred State College of Technology
e Anita M. Wright, Camden County College

We also appreciate the thoughtful peer review provided by
e Julia H. Allen, Software Engineering Institute

o Thomas B. Hilburn, Embry-Riddle Aeronautical University
o Andrew J. Kornecki, Embry-Riddle Aeronautical University

We acknowledge the contributions by Jennifer Kent as report editor and Shannon Haas in helping
to assemble the report.

CMU/SEI-2011-TR-017 | v

CMU/SEI-2011-TR-017 | vi

Abstract

The fourth volume in the Software Assurance Curriculum Project led by a team at the Software
Engineering Institute, this report focuses on community college courses for software assurance.
The report includes a review of related curricula, outcomes and body of knowledge, expected
background of target audiences, and outlines of six courses. The courses are intended to provide
students with fundamental skills for continuing with graduate-level education or to provide
supplementary education for students with prior undergraduate technical degrees who wish to
become more specialized in software assurance.

Previous volumes of this project are Volume I: Master of Software Assurance Reference
Curriculum, Volume II: Undergraduate Course Outlines, and Volume I1I: Software Assurance
Course Syllabi.

CMU/SEI-2011-TR-017 | vii

CMU/SEI-2011-TR-017 | viii

1 Introduction

Nearly every facet of modern society depends heavily on highly complex software systems. The
business, energy, transportation, education, communication, government, and defense
communities rely on software to function, and software is an intrinsic part of our personal lives.
Software assurance is an important discipline to ensure that software systems and services
function dependably and are secure.

Recognizing the importance of the software assurance discipline for protecting national
infrastructures and systems, the U.S. Department of Homeland Security (DHS) has recognized the
growing need for skilled practitioners in this area. At the direction of the DHS, the Software
Engineering Institute (SEI) at Carnegie Mellon University developed the Software Assurance
Curriculum Project. Volume I is the Master of Software Assurance Reference Curriculum
(MSwA2010) [Mead 2010a], Volume 11 is the Undergraduate Course Outlines [Mead 2010b],
and Volume III is the Master of Software Assurance Course Syllabi [Mead 2011].

This report, Volume IV, focuses on community college courses for software assurance. In
addition to the earlier volumes of the Software Assurance Curriculum Project, the Association for
Computing Machinery (ACM) Committee for Computing Education in Community Colleges
(CCECC) Computer Science Curriculum was a primary resource in the development of this report
[ACM 2009]. The foundation of the Software Assurance Curriculum Project includes the SEI’s
work on the DHS Build Security In website [DHS 2011a] and work by DHS on the Software
Assurance Curriculum Body of Knowledge (SWACBK) [DHS 2011b].

The courses outlined in this document are intended to provide students with fundamental skills for
continuing with undergraduate-level education or supplementary education for students with prior
undergraduate technical degrees who wish to become more specialized in software assurance.

Definition of Software Assurance

In developing the Master of Software Assurance Reference Curriculum, the authors started with a
clear definition of “software assurance.” They used as the foundation the definition from the
Committee on National Security Systems as follows [CNSS 2009]:

Software assurance (SwA) is the level of confidence that software is free from vulnerabilities,
either intentionally designed into the software or accidentally inserted at any time during its
life cycle, and that the software functions in the intended manner.

For purposes of the Master of Software Assurance Reference Curriculum report, the authors
expanded the CNSS definition as follows [Mead 2010a]:

Application of technologies and processes to achieve a required level of confidence’ that
software systems and services function in the intended manner, are free from accidental or

! In the CNSS definition, the use of the word “confidence” implies that there is a basis for the belief that software

systems and services function in the intended manner.

CMU/SEI-2011-TR-017 | 1

intentional vulnerabilities, provide security capabilities appropriate to the threat
environment, and recover from intrusions and failures.

The expanded definition emphasizes the importance of both technologies and processes in
software assurance, observes that computing capabilities may be acquired through services as well
as new development, recognizes that security capabilities must be appropriate to the expected
threat environment, and identifies recovery from intrusions and failures as an important capability
for organizational continuity and survival.

CMU/SEI-2011-TR-017 | 2

2 Review of Related Curricula

Based on our team’s expertise, we did a brief literature search and considered the following
existing curricula as possible sources for this report:

e CyberWatch Information Assurance Curriculum

e Software Engineering 2004 (SE 2004) Curriculum Guidelines for Undergraduate Degree
Programs in Software Engineering [IEEE-CS 2004b]

e ACM Committee for Computing Education in Community Colleges (CCECC) Computer
Science Curriculum [ACM CCECC 2009a]

o Information Assurance (IA) Curricula Guidelines (ITiCSE Working Group Guidelines)
[Cooper 2010]

e Survivability and Information Assurance (SIA) Curriculum [CERT 2007]

o Computer Society of the Institute for Electrical and Electronic Engineers (IEEE-CS) and the
Association for Computing Machinery (ACM) Computing Curricula 2001 (CC 2001) [IEEE-
CS 2001]

e IEEE-CS and ACM Computing Curricula 2008 (CS 2008) [TIEEE-CS 2008]
o SEI SwA Undergraduate Course Outlines [Mead 2010b]

Brief synopses of the publicly available materials follow, and additional details are in
Appendix A.

CyberWatch Information Assurance Curriculum

CyberWatch is an Advanced Technological Education (ATE) Center, headquartered at Prince
George’s Community College and funded by a grant from the National Science Foundation
(NSF). CyberWatch has four model information assurance programs available:

o Associate of Applied Science (A.A.S.) in Information Assurance

e Associate of Science (A.S.) in Information Assurance

o Certificate in Information Assurance

o Certificate in Information Assurance Management

CyberWatch has six of the eight model courses it developed currently available for download. In
addition, CyberWatch has virtual lab facilities to assist its member institutions in delivering the TA

courses and assists with curriculum development that emphasizes creating associate’s degree and
certificate programs from a core set of technical and industry certification courses.

Software Engineering 2004 (SE 2004) Curriculum Guidelines for Undergraduate Degree
Programs in Software Engineering

These curriculum guidelines provide guidance on what should be included in an undergraduate
software engineering education. The recommendations include the skills and knowledge that

CMU/SEI-2011-TR-017 | 3

http://www.cert.org/sia/

every software engineering graduates should know as well as ways to teach those skills and
knowledge.

ACM Committee for Computing Education in Community Colleges (CCECC) Computer
Science Curriculum

The foundation for the computer science associate-degree transfer program is the three-course
sequence of Computer Science I, Computer Science II, and Computer Science III. Students can
take additional computing courses based on factors like transfer requirements, institutional
specializations, and student interests.

Information Assurance (lA) Curricula Guidelines (ITICSE WG Guidelines)

The ACM Conference on Innovation and Technology in Computer Science Education (ITiCSE)
Information Assurance (IA) Curriculum Guidelines Working Group examined existing 1A
academic program curricula and governmental and industry IA standards and guidelines. The
working group used this information as the foundation for proposing a body of knowledge for IA.

Survivability and Information Assurance (SIA) Curriculum

The CERT® Program at the SEI published the SIA Curriculum in 2006. The three-course

curriculum offers a problem-solving methodology built on key SIA principles that are

independent of specific technologies. The major topic areas that correspond to each course are

1. Principles of Survivability and Information Assurance: This course details the ten principles
on which the entire SIA curriculum is based.

2. Information Assurance Networking Fundamentals: This course applies the ten principles to
the concepts and an implementation of Transmission Control Protocol (TCP)/Internet
Protocol (TCP/IP) networking.

3. Sustaining, Improving, and Building Survivable Functional Units (SFUs)

IEEE-CS and ACM Computing Curricula 2001 (CC 2001)

The Computing Curricula 2001 project is a joint effort of [IEEE-CS and ACM. CC 2001 makes
recommendations for undergraduate programs in computer science based on the report’s computer
science body of knowledge, the computer science undergraduate core material, learning
objectives, curriculum models, and course descriptions.

IEEE-CS and ACM Computing Curricula 2008 (CS 2008)

After the Computing Curricula was published in 2001, which focused on recommendations for
computer science undergraduate programs, IEEE-CS and ACM published additional volumes of
recommendations for computer engineering, information systems, information technology, and
software engineering. CS 2008 is an interim review report of the original CC 2001 that also
considers the additional volumes and input from those in industry and academia. CS 2008

® CERT is a registered trademark owned by Carnegie Mellon University.

CMU/SEI-2011-TR-017 | 4

http://www.cert.org/sia/
http://en.wikipedia.org/wiki/Transmission_Control_Protocol
http://en.wikipedia.org/wiki/Internet_Protocol
http://en.wikipedia.org/wiki/Internet_Protocol

includes an update of the CC 2001 Body of Knowledge, with additional commentary and
recommendations in the text.

Software Assurance Undergraduate Course Outlines

These course outlines are the second volume in the SEI’s Software Assurance Curriculum Project.
The seven course outlines are intended to provide students with an undergraduate curriculum
specialization in software assurance. The goal is for students to be equipped with fundamental
skills for either entering the field directly or continuing with graduate-level education.

Conclusions

After reviewing the above curricula, we were able to sharpen our focus. We recognized that
existing curricular models designated as either information assurance or information security were
not the primary topics of our effort, and so curricula in those areas were less helpful to us. Rather,
we were focused on software assurance, while recognizing that in a two-year program, students
would typically not be able to complete more than three to four related courses. To this end, the
sources that we considered most useful included CS 2008, CC 2001, the ACM CCECC
Curriculum, and the ITiCSE Working Group Guidelines. SE 2004, the Undergraduate Course
Outlines, and the SIA Curriculum were considered partially useful. We did not evaluate certificate
programs, training programs leading to certificates, or individual community college curricula.

CMU/SEI-2011-TR-017 | 5

3 Outcomes and Body of Knowledge

To identify the desired outcomes for software assurance at the community college level, we
started with the Master of Software Assurance (MSwA) Body of Knowledge (BoK) taken from
the Master of Sofiware Assurance Reference Curriculum [Mead 2010a]. The MSwA BoK is
organized by outcome and indicates the level of knowledge that a student should obtain for each
topic area. The knowledge levels are represented by the following Bloom’s cognitive levels,
which are described in detail in Appendix B:

o knowledge (K)

e comprehension (C)

o application (AP)

e analysis (AN)

We started with the existing MSwA knowledge levels and refined them for bachelor of science
(BS) and associate of science (AS) degrees. The results of this exercise follow in Table 1.

Table 1: Software Assurance BOK Across Curriculum Levels
BoK Topics MSwA BS AS

1. Assurance Across Life Cycles

1.1. Software Life-Cycle Processes

New development C C K
Processes associated with the full development of a software product.
Integration, assembly, and deployment C C K

Processes concerned with the final phases of the development of a new
or modified software product

Operation and evolution C K NA

Processes that guide the operation of the a software product and its
change over time

Acquisition, supply, and service C K NA

Processes that support acquisition, supply, or service of a software
product

1.2. Software Assurance Processes and Practices

Process/practice assessment AP K NA

Methods, procedures, and tools used to assess assurance processes
and practices

Software assurance integration into SDLC phases AP C K

The integration of assurance practices into typical life-cycle phases (e.g.,
requirements engineering, architecture and design, coding, test,
evolution, and acquisition)

2. Risk Management

2.1. Risk Management Concepts

Types and classification C K K
Describe the different classes of risks (e.g., business, project, technical)

Probability, impact, severity C K NA
Describe basic elements of risk analysis

Models, processes, metrics C K NA

CMU/SEI-2011-TR-017 | 6

BoK Topics MSwA BS AS

Understand various models, processes, and metrics used in risk
management

2.2.Risk Management Process

Identification AP C K

Identify and classify risks associated with a project

Analysis AP C NA

Analyze the likelihood, impact, and severity of each identified risk

Planning AP K NA

Develop a risk management plan covering risk avoidance and mitigation

Monitoring and management AP K NA

Assess and monitor risk occurrence and manage risk mitigation

2.3. Software Assurance Risk Management

Vulnerability and threat identification AP C K
Application of risk analysis techniques to vulnerability and threat risks
Analysis of software assurance risks AP C K

Analyze risks for both new and existing systems

Software assurance risk mitigation AP K NA

Plan for and mitigate software assurance risks

Assessment of software assurance processes and practices AP K NA

As part of risk avoidance and mitigation, assess the identification and
use of appropriate software assurance processes and practices

3. Assurance Assessment

3.1. Assurance Assessment Concepts

Baseline level of assurance; allowable tolerances, if quantitative AP K NA

Establish and specify the required/desired level of assurance for a
specific software application, set of applications, or a software-reliant
system (and tolerance for same)

Assessment methods C C K

Understand how various methods (such as validation of security
requirements, risk analysis, threat analysis, vulnerability
assessments/scans, and assurance cases) can be used to determine if
the software/system being assessed is sufficiently secure within
tolerances

3.2. Measurement for Assessing Assurance

Product and process measures by life-cycle phase AP K NA

Define and develop key product and process measurements that can be
used to validate the required level of software assurance appropriate to
a given life-cycle phase

Other performance indicators that test for the baseline, by life-cycle phase AP K NA

Define and develop additional performance indicators that can be used
to validate the required level of software assurance appropriate to a
given life-cycle phase

Measurement processes and frameworks C NA NA

Understand a range of software assurance measurement processes and
frameworks and how these might be used to accomplish 1.2.

Business survivability and operational continuity AP NA NA

Define and develop performance indicators that can specifically address
the software/system’s ability to meet business survivability and
operational continuity requirements, to the extent the software affects
these

3.3. Assurance Assessment Process

Comparison of selected measurements to the established baseline AP NA NA

CMU/SEI-2011-TR-017 | 7

BoK Topics MSwA BS AS

Analyze key product and process measures and performance indicators
to determine if they are within tolerance when compared to the defined
baseline

Identification of out-of-tolerance variances AP NA NA

Be able to identify measures that are out of tolerance when compared to
the defined baselines and be able to develop actions to reduce the
variance

4. Assurance Management

4.1. Making the Business Case for Assurance

Valuation and cost/benefit models, cost and loss avoidance, return on AP K NA
investment

Apply financially-based approaches, methods, models, and tools to
develop and communicate compelling cost/benefit arguments in support
of deploying software assurance practices

Risk analysis C K K

Understand how risk analysis can be used to develop cost/benefit
arguments in support of deploying software assurance practices

Compliance justification C K K

Understand how compliance with laws, regulations, standards, and
policies can be used to develop cost/benefit arguments in support of
deploying software assurance practices

Business impact/needs analysis C K NA

Understand how business impact and needs analysis can be used to
develop cost/benefit arguments in support of deploying software
assurance practices, specifically in support of business continuity and
survivability

4.2. Managing Assurance

Project management across the life cycle C K NA

Understand how to lead software and system assurance efforts as an
extension of normal software development (and acquisition) project
management skills

Integration of other knowledge units AN C K

Be able to identify, analyze, and select software assurance practices
from any knowledge units that are relevant for a specific software
development or acquisition project

4.3. Compliance Considerations for Assurance

Laws and regulations C NA K

Understand the extent to which selected laws and regulations are
relevant for a specific software development or acquisition project, and
how compliance might be demonstrated

Standards C K K

Understand the extent to which selected standards are relevant for a
specific software development or acquisition project, and how
compliance might be demonstrated

Policies C NA NA

Understand how to develop, deploy, and use organizational policies to
accelerate the adoption of software assurance practices, and how
compliance might be demonstrated

5. System Security Assurance

5.1. For Newly Developed and Acquired Software for Diverse Applications

Security/safety aspect of computer intensive critical infrastructure systems K K K
such as power, telecommunication, water, and air traffic control

CMU/SEI-2011-TR-017 | 8

BoK Topics MSwA BS AS

Know the kinds of safety and security risks associated with critical
infrastructure systems such as power, telecommunications, water, and
air traffic control systems

Potential attack methods C K K

Understand the variety of methods by which attackers can damage
software or data associated with that software via weaknesses in the
design or coding of the system

Analysis of threats to software AP K NA

Analyze the threats to which software is most likely to be vulnerable in
specific operating environments and domains

Methods of defense AP K K

Be familiar with appropriate countermeasures such as layers, access
controls, privileges, intrusion detection, encryption, and coding checklists

5.2 For Diverse Operational (Existing) Systems

Historic and potential operational attack methods C K NA

Understand and be able to duplicate the attacks that have been used to
interfere with an application’s or system’s operations

Analysis of threats to operational environments AN C NA

Analyze the threats to which software is most likely to be vulnerable in
specific operating environments and domains

Designing and planning for access control, privileges, and authentication AP C NA
Design and plan for access control and authentication
Security methods for physical and personnel environments AP C NA

Understand how gates, locks, guards, and background checks can
address risks

5.3 Ethics and Integrity in Creation, Acquisition, and Operation of Software
Systems

Overview of ethics, code of ethics, and legal constraints C K K

Understand how people who are knowledgeable about attack and
prevention methods are obligated to use their abilities, both legally and
ethically

Computer attack case studies C NA NA

Understand the legal and ethical considerations involved in analyzing a
variety of historical events and investigations

6. System Functionality Assurance

6.1. Assurance Technology

Technology evaluation AN NA NA

Evaluating capabilities and limitations of technical environments,
languages, and tools with respect to creating assured software
functionality and security

Technology improvement AP NA NA

Recommending improvements in technology as necessary within project
constraints

6.2. Assured Software Development

Development methods AP AP/C AP/C/IK

Rigorous methods for system requirements, specification, design,
implementation, verification, and testing to develop assured software

Quality attributes C C K
Software quality properties and how to achieve them
Maintenance methods AP C NA

Assurance aspects of software maintenance and evolution

6.3. Assured Software Analytics

CMU/SEI-2011-TR-017 | 9

BoK Topics MSwA BS AS

Systems analysis AP K NA
Analyzing system architectures, networks, and databases for assurance
properties

Structural analysis AP K NA

Structuring the logic of existing software to improve understandability
and modifiability

Functional analysis AP K NA

Reverse engineering of existing software to determine functionality and
security properties

Analysis methods and tools C NA NA
Capabilities and limitations of methods and tools for software analysis
Testing for assurance AN K NA

Evaluating testing methods, plans, and results for assuring software

Assurance evidence AP NA NA

Developing auditable assurance evidence

6.4. Assurance in Acquisition

Assurance of acquired software AP K NA

Assuring software acquired through supply chains, vendors, and open
sources, including developing requirements and assuring delivered
functionality and security

Assurance of software services AP K NA

Developing service-level agreements for functionality and security with
service providers and monitoring compliance

7. System Operational Assurance

7.1. Operational Procedures

Business objectives C K NA

Role of business objectives and strategic planning in system assurance

Assurance procedures AP K NA

Creation of security policies and procedures for system operations

Assurance training C NA NA

Evaluation of training for users and administrative personnel in secure
system operations

7.2. Operational Monitoring

Monitoring technology C NA NA

Capabilities and limitations of monitoring technologies, and installation
and configuration or acquisition of monitors and controls for systems,
services, and personnel

Operational evaluation AP K NA

Evaluation of operational monitoring results with respect to system and
service functionality and security

Operational maintenance AP K NA

Maintenance and evolution of operational systems while preserving
assured functionality and security

Malware analysis AP K NA

Evaluation of malicious content and application of countermeasures

7.3. System Control

Responses to adverse events AN K NA

Planning for and executing effective responses to operational system
accidents, failures, and intrusions

Business survivability AP K NA

CMU/SEI-2011-TR-017 | 10

BoK Topics MSwA

BS

AS

Maintenance of business survivability and continuity of operations in
adverse environments

Although this is a valid mapping, the BoK topics are not distributed evenly across the MSwA
curriculum. For example, item 6.2 in the BoK covers many topic areas, and this is where many of

the community college topics appear. Some of the other items in the BoK do not apply to

community college courses at all. Therefore, this exercise was not that helpful for the level of
detail needed in the community college courses. We therefore decided to build the course outlines
and associated outcomes from the bottom up. We used the proposed IA body of knowledge in the
ITiCSE workshop report [Cooper 2010] and the courses from the ACM CCECC computer science

transfer curriculum [ACM 2009] as a base.

CMU/SEI-2011-TR-017 ‘ 11

4 Target Audience and Expected Background

We did a brief survey of the profiles of community college students. Summaries of the relevant
results appear below, with extracted material in Appendix C.

According to the American Association for Community Colleges, more than half of U.S.
undergraduate students have attended community college. Community colleges provide access to
postsecondary education that minority, low income, and first-generation college students may not
otherwise have. Community colleges prepare students for transfer to four-year institutions, help
working adults prepare for new careers, and offer noncredit programs that offer a range of
knowledge and skills, like learning a new language.

According to the Community College Research Center located at Teachers College, Columbia
University, most community college students are older than 25, though many students are also
recent high school graduates who want to cost effectively start their college education.

According to the presentation CTE Dual Enrollment: Preparing Students for College and Careers

[Hughes 2011], community college computing? students include

« recent high school graduates interested in a career as computer programmers or game
developers who want to earn an associate’s degree before transferring to a four-year
institution

o students who have completed an undergraduate degree in a field other than computing and
want to learn about computing so they can either use the skills in their current career or enter
a computing career

o students who have completed an undergraduate degree in computing and want to update their
knowledge and skills

« students interested in either earning a technical certificate, indicating that they have
completed a specific set of courses in a specialty area, or who are just looking to learn a skill
and not interested in a certificate

. students in a computing career who need a credential, like CISSP, to further their career

Although the students attending community colleges are quite diverse, the courses outlined in this
report are intended to provide all these types of students with fundamental skills for continuing
with undergraduate-level education or supplementary education for students with prior
undergraduate technical degrees who wish to become more specialized in software assurance.

2 Community college computing here refers to computer science, information technology, and other broad

computing topics.

CMU/SEI-2011-TR-017 ‘ 12

5 Overview of Courses

Courses at the community college level are typically three to four credits each. The Computer
Science I-1I-1II course sequence, typical at community colleges as well as smaller four-year
colleges, is the equivalent of the Computer Science I-II course sequence at other four-year
colleges and universities. See guidance for introductory courses described in Appendix A,
Computing Curricula 2001 section. In addition, a student might form a specialty by taking two to
three elective courses. Associate computing degrees are typically in computer science (CS),
information technology (IT), or information systems (IS). The specialties (such as SWA in our
case) may be defined formally by the individual colleges and appear in the catalog, but they do
not appear on the diploma. We concluded that an appropriate selection of courses for an SwA
specialty could include Computer Science I, 11, and III and more specialized courses such as
Introduction to Computer Security, Secure Coding, and Introduction to Assured Software
Engineering. These are not intended to be an exhaustive list of possible courses but rather a set of
courses that could reasonably be taken by students wishing to pursue further education in software
assurance.

The six courses that we describe in this report appear in two different formats. Since Computer
Science I, 11, and III include updates to existing course descriptions from the ACM CCECC we
decided to retain that original format, which is closer to a syllabus with learning outcomes for
assessment than an outline of course topics. The other three courses, which are more specialized,
appear in the outline format that was used in Volume II of our software assurance education
report series [Mead 2010b]. Currently, we do not have enough information or actual experience to
describe them in more detail as community college courses. Brief descriptions of all six courses
follow, and the syllabi and outlines are in Sections 6 through 11.

Computer Science I: This course is the first in a three-course sequence that provides students
with a foundation in computer science. Students develop fundamental programming skills using a
language that supports an object-oriented approach, secure coding awareness, human-computer
interactions, and social responsibility.

Computer Science I1: This course is the second in a three-course sequence that provides students
with a foundation in computer science. Students develop intermediate programming skills using a
language that supports an object-oriented approach, with an emphasis on algorithms, software
development, secure coding techniques, and ethical conduct.

Computer Science I1I: This course is the third in a three-course sequence that provides students
with a foundation in computer science. Students develop advanced programming skills using a
language that supports an object-oriented approach, with an emphasis on data structures,
algorithmic analysis, software engineering principles, software assurance checklists, and
professionalism.

Introduction to Computer Security: This course provides an overview of the fundamentals of
computer security. Topics include security standards, policies, and best practices; principles,

CMU/SEI-2011-TR-017 ‘ 13

mechanisms, and implementation of computer security and data protection; security policy,
encryption, and authentication; access control and integrity models and mechanisms; network
security; secure systems; programming and vulnerabilities analysis; principles of ethical and
professional behavior; regulatory compliance and legal issues; information assurance; risk
management and threat assessment; business continuity and disaster recovery planning; and
security across the life cycle.

Secure Coding: This course covers security vulnerabilities of programming in weakly typed
languages like C and in more modern languages like Java. Common weaknesses exploited by
attackers are discussed, as well as mitigation strategies to prevent those weaknesses. Students
practice programming and analysis of software systems through testing and static analysis. Topics
covered include methods for preventing unauthorized access or manipulation of data, input
validation and user authentication, memory management issues related to overflow and
corruption, misuse of strings and pointers, and inter-process communication vulnerabilities.

Introduction to Assured Software Engineering: This course covers the basic principles and
concepts of assured software engineering; system requirements; secure programming in the large;
modeling and testing; object-oriented analysis and design using the unified modeling language
(UML); design patterns; frameworks and application programming interfaces (APIs); client-server
architecture; user interface technology; and the analysis, design and programming of extensible
software systems.

CMU/SEI-2011-TR-017 ‘ 14

6 Computer Science |

Course Description

This course is the first in a three-course sequence that provides students with a foundation in
computer science. Students develop fundamental programming skills using a language that
supports an object-oriented approach, incorporating secure coding, human-computer interactions,
and social responsibility.

Prerequisites
e Computer fluency (no previous programming or computer science experience expected)
e Precalculus-ready (that is, proficiency sufficient to enter college-level precalculus course)

« English Composition I-ready (that is, proficiency sufficient to enter college-level English I
course)

Co-Requisite
Discrete Structures
Syllabus

Course Minimum Contact Hours: 42 (recommended hours per topic identified below)

Table 2: Syllabus for Computer Science | Course

Topic Bloom’s
Level
Secure coding (2 hours): data protection techniques of input validation, data encapsulation, A

information hiding and integrity, and strict data typing

Fundamental programming constructs (11 hours): basic syntax and semantics of a higher-level A
language; variables (scope and lifetime), types, expressions, and assignment; self-documentation;
standard and file input/output; conditional and iterative control structures; structured decomposition;
pseudo-random number generator

Fundamental algorithms and problem-solving (6 hours): problem-solving strategies; the role of A
algorithms in the problem-solving process; implementation strategies for algorithms; debugging
strategies; the concept and properties of algorithms

Fundamental data structures (6 hours): primitive types, arrays, records, strings, references A

Object-oriented principles (6 hours): abstraction, objects, classes, methods, parameter passing, A
encapsulation, inheritance, polymorphism

Program development (3 hours): program development phases, with emphasis on design, A
implementation, and testing and debugging strategies

Software tools and integrated development environment (IDE) (2 hours): compiling, interpreting, A
linking, executing, testing, and debugging

Programming languages (1 hour): comparison of object-oriented, procedural, functional programming |C

Human-computer interaction (1 hour): sound design concepts and fundamental graphical interface C
design; standard API graphics

Machine-level representation of data (1 hour): overview of the storage of instructions, numbers, and |C
characters in a Von Neumann machine

CMU/SEI-2011-TR-017 ‘ 15

Topic Bloom’s
Level

Ethical conduct (1 hour): codes of ethics and responsible conduct; intellectual property, copyright, and [C
plagiarism; “Ten Commandments for Computer Ethics”

Overview of operating systems (1 hour): role and purpose of operating systems; simple file C
management

Historical context of computing (1 hour): history of computing ideas, computing, and programming K
Sources

ACM Committee for Computing Education in Community Colleges. ACM Computing Curricula
2009: Guidelines for Associate-Degree Transfer Curriculum in Computer Science. [ACM 2009]

Taylor, B. & Shiva Azadegan, “Moving beyond security tracks: Integrating security in CS0 and
CS1.” [Taylor 2008]

Additional Items
Course Student Learning Outcomes

Upon successful completion of this course, the student will be able to
« choose professional behavior in response to ethical issues inherent in computing

e produce algorithms for solving simple problems and trace the execution of computer
programs

o compare and contrast the primitive data types of a programming language; describe how
each is stored in memory; and identify the criteria for selection

e apply the program development and testing process to problems that are solved using
fundamental programming constructs and predefined data structures

o explain the need for secure coding techniques as applied to object-oriented programming
solutions

o decompose a program into subtasks and use parameter passing to exchange information
between the subparts

« differentiate between object-oriented, structured, and functional programming methodologies

e describe the language translation phases of compiling, interpreting, linking, and executing
and differentiate the error conditions associated with each phase

Course Assessment Features

The following table was taken from the ACM CCECC Assessment Rubric for Computer Science |
[ACM CCECC 2009a].

CMU/SEI-2011-TR-017 ‘ 16

Table 3: Course Assessment Features for Computer Science | Course

Course Learning Outcome

Apply secure coding
techniques to object-
oriented programming
solutions.

Apply the program
development process to
problems that are solved
using fundamental
programming constructs
and predefined data
structures.

Choose professional
behavior in response to
ethical issues inherent in
computing.

Compare and contrast the
primitive data types of a
programming language;
describe how each is stored
in memory; and identify the
criteria for selection.

Decompose a program into
subtasks and use parameter
passing to exchange
information between the
subparts.

Describe the language
translation phases of
compiling, interpreting,
linking, and executing and
differentiate the error
conditions associated with
each phase.

Differentiate between the
object-oriented, structured,
and functional programming
methodologies.

Produce algorithms for
solving simple problems and
trace the execution of
computer programs.

Approaches Goal

Describes secure coding
techniques of an object-
oriented program, such as
public versus private
members, data integrity,
and data typing.

Summarizes the phases of
the program development
cycle.

Explains the concepts of
intellectual property,
plagiarism, and software
piracy.

Names the built-in data
types of the programming
language.

With guidance, translates
a problem into a
programming solution with
subtasks.

Defines the programming
language terms of
compiling, interpreting,
linking, executing, and
error conditions.

Recognizes the
differences ald
similarities of the object-
oriented, structured, and
functional programming
methodologies.

Defines the steps
necessary to solve a
programming problem.

Meets Goal

Applies secure coding
techniques to an object-
oriented program.

With guidance during the
design phase, produces
working code and
performs some testing.

Chooses to respond
professionally to ethical
issues in computing,
such as intellectual
property, plagiarism, and
software piracy.

Differentiates among the
built-in data types and
explains when it is
appropriate to choose
one over another.

With guidance for
program analysis and
design, decomposes a
problem into program
components that share
data.

Describes the
programming language
translation phases of
compiling, interpreting,
linking, and executing.

Differentiates between
the object-oriented,
structured, and functional
programming
methodologies.

Produces a working
programming solution for
a given algorithm.

Surpasses Goal

Devises a fully secure
object-oriented program.

Develops a working program
solution by implementing
design, coding, and testing
that includes error checking.

Values and respects
intellectual property and
chooses to act
professionally.

Consistently produces
programming solutions with
the correct data types
implemented.

Independently analyzes a
problem, formulates a
design strategy, and
decomposes a problem into
program components that
share data.

Compares the programming
language translation phases
of compiling, interpreting,
linking, and executing and
distinguishes the error
conditions associated with
each.

Compares and contrasts the
three prominent
methodologies of object-
oriented, structured, and
functional programming.

Develops a generic solution
for an algorithm that can be
used to solve a range of
related problems.

CMU/SEI-2011-TR-017 ‘ 17

7 Computer Science Il

Course Description

This course is the second in a three-course sequence that provides students with a foundation in
computer science. Students develop intermediate programming skills using a language that
supports an object-oriented approach, with an emphasis on algorithms, software development,
software assurance and ethical conduct.

Prerequisites
e Computer Science |

. Discrete Structures

Co-Requisite

Calculus I

Syllabus

Course Minimum Contact Hours: 42 (recommended hours per topic identified below)

Table 4: Syllabus for Computer Science Il Course
Topic Bloom’s
Level

Secure coding (3 hours): buffer overflows; memory leaks; malicious code; unauthorized and back-door |A
access; security-aware exception handling

Software development (4 hours): software life cycle; test case design; software tools; debuggers and |A
simulators; characteristics of maintainable software; program code verification and data validation;
software inspection

Object-oriented programming (7 hours): encapsulation and information hiding; inheritance; class A
hierarchies; polymorphism; abstract and interface classes

Object-oriented design and modeling (5 hours): class constructors and destructors; abstract data A
types (ADTs); reusable software components; APIs; modeling tools; class diagrams

Intermediate programming constructs (3 hours): cohesion and decoupling; assertions, including A
pre/post conditions and loop invariants; software reuse; self-documentation

Intermediate computing algorithms (5 hours): searching; sorting; recursive algorithms; complexity of |A
algorithms

Intermediate data structures (7 hours): built-in; programmer-created; dynamic A

Event-driven programming (4 hours): graphics API; event creation; event-handling methods; exception |A
handling

Human-computer interaction (2 hours): sound design concepts; interfaces between people and C
technology

Simple database integration (1 hour): database I/0O; embedded SQL queries; SQL injection C
Societal and professional issues (1 hour): computing and the internet; social impact of computing; C
privacy

CMU/SEI-2011-TR-017 ‘ 18

Sources

ACM Committee for Computing Education in Community Colleges. ACM Computing Curricula
2009: Guidelines for Associate-Degree Transfer Curriculum in Computer Science. [ACM 2009]

Stoneburner Gary; Hayden,Clark; & Feringa, Alexis. “Engineering Principles for Information
Technology Security (A Baseline for Achieving Security), Revision A (NIST Special Publication
800-27 Rev A).” [Stoneburner 2004]

Additional Items

Course Student Learning Outcomes
Upon successful completion of this course, the student will be able to

o discuss significant trends and societal impacts related to computing, software, and the

internet

e construct object-oriented programming solutions for reuse, using ADTs that incorporate

encapsulation, data abstraction, and information hiding

o construct multiple-file or multiple-module programming solutions that use class hierarchies,

inheritance, and polymorphism to reuse existing design and code

o design and develop secure programs that mitigate the most common security vulnerabilities

o verify program correctness through the development of sound test plans and the

implementation of comprehensive test cases and software inspections

e create programming solutions that use data structures and existing libraries

Course Assessment Features

The following table was taken from the ACM CCECC Assessment Rubric for Computer Science

II [ACM CCECC 2009b].

Table 5: Course Assessment Features for Computer Science Il Course

Course Learning
Outcome

Analyze the execution of
searching and sorting
algorithms.

Construct multiple-file or
multiple-module
programming solutions
that use class
hierarchies, inheritance,
and polymorphism to
reuse existing design and
code.

Approaches Goal

Describes the execution
trace of one searching
algorithm and one sorting
algorithm.

Describes when
inheritance and the use of
class hierarchies is an
appropriate design
strategy.

Meets Goal

Analyzes the execution of
various searching and
sorting algorithms.

With guidance, produces
a programming solution
using inheritance and
polymorphism.

Surpasses Goal

Evaluates the execution
of various searching and
sorting algorithms
including a recursive
solution.

Designs and constructs a
programming solution
using the features of
inheritance and
polymorphism
appropriately.

CMU/SEI-2011-TR-017 ‘ 19

Course Learning
Outcome

Construct object-oriented
programming solutions
for reuse, using ADTs
that incorporate
encapsulation, data
abstraction, and
information hiding.

Create programming
solutions that use data
structures and existing
libraries.

Design and develop
secure and fault-tolerant
programs that mitigate
potential security
vulnerabilities.

Discuss significant trends
and societal impacts
related to computing,
software, and the
internet.

Produce graphical user
interfaces that
incorporate simple color
models and handle
events.

Verify program
correctness through the
development of sound
test plans and the
implementation of
comprehensive test
cases.

Approaches Goal

Summarizes the concepts
of encapsulation, data
abstraction, and
information hiding and
explains how they apply
to object-oriented
programming.

Produces programming
solutions that use existing
library code.

Summarizes important
characteristics of
software assurance, such
as the elimination of
buffer overflows, memory
leaks, and back-door
access.

Explains how databases
and the internet can
impact privacy and
property rights.

Differentiates between
good and bad design
concepts for human-
computer interfaces.

Produces test plans for
object-oriented
programming solutions
that consider code
coverage.

Meets Goal

Organizes programming
solutions that include
encapsulation,
information hiding, and
data abstraction.

Organizes programming
solutions that incorporate
appropriate data
structures and pre-
existing code.

Produces a program
using the foundations of
software assurance to
mitigate potential security
vulnerabilities.

Discusses the potential
uses and abuses of data
and the consequences of
the loss of privacy.

Produces programming
code of a graphical user
interface that utilizes a
simple color model
effectively, and efficiently
handles events triggered
by user interaction.

Analyzes a program and
devises a test plan that
examines code coverage
and develops test cases
for data coverage.

Surpasses Goal

Constructs reusable
software components that
incorporate
encapsulation, data
abstraction, and
information hiding.

Designs and develops
programming solutions
that use data structures,
pre-existing libraries, and
individual library code.

Designs and develops a
secure programming
solution using principles
of software assurance.

Practices ethical behavior
when addressing property
rights and privacy issues.

Develops programming
code for a graphical user
interface that
incorporates the concepts
of good human-computer
interaction (HCI) design.

Constructs a test driver
for code coverage and
creates a formal test plan
choosing comprehensive
test cases for data
coverage.

CMU/SEI-2011-TR-017 ‘ 20

8 Computer Science lll

Course Description

This course is the third in a three-course sequence that provides students with a foundation in
computer science. Students develop advanced programming skills using a language that supports
an object-oriented approach, with an emphasis on data structures, algorithmic analysis, software
engineering principles, software assurance, and professionalism.

Prerequisites
o Computer Science II

. Calculus I
Syllabus

Course Minimum Contact Hours: 42 (recommended hours per topic identified below)

Table 6: Syllabus for Computer Science Il Course

Topic Bloom’s
Level
Software assurance (3 hours): conformance with assurance coding standards and practices, A

trustworthiness, and predictable execution testing; quality reviews; engineering and security tradeoffs;
risks and liabilities of computer-based systems; fault prevention in software life-cycle stages; intentional
and unintentional software security vulnerabilities.

Formal computing algorithms (8 hours): efficiency of various sorting and searching algorithms; hashing; |A
collision-avoidance strategies; binary search trees; depth- and breadth-first traversals; shortest-path
algorithms; minimum spanning tree; transitive closure; topological sort

Canonical data structures (7 hours): stacks; queues; linked lists; hash tables; trees; graphs A

Recursion (7 hours): recursive mathematical functions; divide-and-conquer, first-and-rest, and last-and- |A
rest strategies; backtracking; recursion with linked lists; trees; graphs

Software reuse (3 hours): design patterns; parametric polymorphism (templates or generics); code A
libraries; container classes and iterators

Human-computer interaction (2 hours): universal principles; human-centered considerations; usability |C
testing and verification; design tradeoffs; secure user interfaces

Software engineering (4 hours): standard approaches and implementation tools for analysis and design;|C
measurement and metrics; software life-cycle stages, processes, and documentation; software process
maturity scale

Algorithmic strategies (2 hours): brute-force; greedy; branch-and-bound; heuristics; pattern matching; [C
string/text

Basic algorithmic analysis (3 hours): asymptotic analysis of upper and average complexity bounds; C
best, average, and worst case behaviors; Big-O and little o notations; standard complexity classes;
empirical measurements of performance; time and space tradeoffs; recurrence relations

Concurrency (2 hours): threads; scheduling, synchronization and timing; multi-threaded programs; race |C
conditions

Professionalism (1 hour): standards of professional behavior; professional computing societies and C
publications; professional responsibilities and liabilities; ACM Code of Conduct; career paths in
computing

CMU/SEI-2011-TR-017 ‘ 21

Sources

Association for Computing Machinery (ACM) Committee for Computing Education in
Community Colleges. ACM Computing Curricula 2009. Guidelines for Associate-Degree
Transfer Curriculum in Computer Science. [ACM 2009]

Stoneburner Gary; Hayden,Clark; & Feringa, Alexis. “Engineering Principles for Information
Technology Security (A Baseline for Achieving Security), Revision A (NIST Special Publication
800-27 Rev A).” [Stoneburner 2004]

Association for Computing Machinery (ACM), Inc. ACM Code of Ethics and Professional
Conduct. [ACM 2011]

Association for Computing Machinery (ACM) & IEEE Computer Society (IEEE-CS) Joint Task
Force on Software Engineering Ethics and Professional Practices (SEEPP). Software Engineering
Code of Ethics and Professional Practice (Version 5.2). [ACM 1999]

Additional Items
Course Student Learning Outcomes

Upon successful completion of this course, the student will be able to

o practice the tenets of ethical and professional behavior promoted by professional societies
and accept the professional responsibilities and liabilities associated with software
development

o use standard analysis and design techniques to produce a team-developed, medium-sized
software application that is fully implemented and formally tested for the elimination of
common software security vulnerabilities

» compare and contrast a range of searching and sorting algorithms and analyze time and space
efficiencies

o assess the appropriateness of using recursion to solve a given problem

o design and construct programming solutions using a variety of recursive techniques

o analyze the efficiency of recursive algorithms

e design and develop reusable software using appropriate data structures and templates

« create effective, efficient, and secure software, reflecting standard principles of software
engineering and software assurance

Course Assessment Features

The following table was taken from the ACM CCECC Assessment Rubric for Computer Science
III [ACM CCECC 2009c].

CMU/SEI-2011-TR-017 ‘ 22

http://www.acm.org/about/se-code
http://www.acm.org/about/se-code

Table 7: Course Assessment Features for Computer Science Il Course

Course Learning
Outcome

Analyze the efficiency of
recursive algorithms.

Assess the
appropriateness of using
recursion to solve a given
problem.

Compare and contrast a
range of searching and
sorting algorithms and
analyze time and space
efficiencies.

Create effective, efficient
and secure software,
reflecting standard
principles of software
engineering and software
assurance.

Design and construct
programming solutions
using a variety of recursive
techniques.

Design and develop
reusable software using
appropriate data structures
and templates.

Practice the tenets of
ethics and professional
behavior promoted by
computing societies;
accept the professional
responsibilities and
liabilities associated with
software development.

Use standard analysis and
design techniques to
produce a team-
developed, medium-sized,
secure software
application that is fully
implemented and formally
tested.

Approaches Goal

With guidance, interprets
a recursive method.

Explains the utility of
recursion to solve certain
problems.

Uses various searching
and sorting algorithms,
and investigates time and
space tradeoffs.

Ranks the risks and
liabilities of a computer-
based solution using
standard software
assurance and
engineering principles.

Converts a simple
recursive algorithm into a
working recursive
method.

Differentiates among the
classic data structures
and selects a suitable
data structure for use in
an application.

Studies the tenets of
ethics and professional
behavior promoted by
international computing
societies, such as ACM
and IEEE-CS.

As part of a team,
produces an executable,
medium-sized software
application that meets
some program
requirements and
includes design

Meets Goal

Analyzes a recursive
method and correctly
predicts its output.

Compares and contrasts
the tradeoffs in terms of
recursive and non-
recursive solutions.

Compares and contrasts
a range of searching and
sorting algorithms for time
and space efficiencies.

Creates an effective,
efficient, and secure
solution, utilizing
principles of software
assurance and software
engineering.

With guidance, develops
recursive programming
solutions for applications
that use data structures
such as trees and lists.

With guidance, designs
and develops applications
using appropriate data
structures for a given
problem.

Practices the tenets of
ethics and professional
behavior promoted by
international computing
societies and recognizes
the liabilities associated
with software
development.

As part of a team,
produces a working,
medium-sized software
application on time that
meets many program
requirements including
design and some test
plan documentation.

Surpasses Goal

Evaluates recursive
algorithms in terms of
efficiency and time and
space tradeoffs.

Justifies when to choose a
recursive solution over a
non-recursive solution (and
vice versa) in terms of
efficiency, Big-O, and
comprehensibility.

Critiques searching and
sorting algorithms, including
recursive solutions, for
various algorithmic
efficiencies and evaluates
them in terms of Big-O.

Judges the security of a
software solution.

Independently designs and
develops recursive
programming solutions for
applications that use
backtracking and data
structures such as trees and
lists.

Independently designs and
develops applications using
appropriate data structures
and incorporates reusable
software components in the
solution.

Displays ethical and
professional behavior
associated with the
responsibilities of software
development.

As part of a team,
successfully develops a
medium-sized, secure
software application on time
that meets all program
requirements including
design and formal test plan
documentation.

CMU/SEI-2011-TR-017 ‘ 23

Course Learning

Outcome Approaches Goal Meets Goal Surpasses Goal

documentation and some
evidence of testing.

CMU/SEI-2011-TR-017 ‘ 24

9 Introduction to Computer Security

Course Description

This course provides an overview of the fundamentals of computer security. Topics include
security standards, policies, and best practices; principles, mechanisms, and implementation of
computer security and data protection; security policy, encryption, and authentication; access
control and integrity models and mechanisms; network security; secure systems; programming
and vulnerabilities analysis; principles of ethical and professional behavior; regulatory
compliance and legal issues; information assurance; risk management and threat assessment;
business continuity and disaster recovery planning; and security across the life cycle
(requirements, architecture and design, construction, testing, operation, maintenance, acquisition,
and services).

Prerequisites

Computer Science |

Outline

Table 8: Outline for Introduction to Computer Security Course

Topic Bloom’s
Level
Security goals and fundamentals: confidentiality, integrity, availability, reliability, etc. K
Secure systems: types, models, design, changes to non-secure systems; comparative analysis C
Access controls: controlling access to resources, access matrix model, access control lists and c
capability lists; mandatory controls, originator controls
Networks and security: internet security architecture, internet protocols, implementation c
considerations; firewalls
Integrity: cryptographic checksums, malicious logic, viruses, Trojan horses; defenses, prevention K
Cryptography fundamentals: classical, public key; implementation problems K
Authentication: passwords C

Attacks: software attacks (malicious code, buffer overflows, social engineering, injection attacks,
and related defense tools); network attacks (denial of service, flooding, sniffing and traffic K
redirection, defense tools and strategies); website attacks (cross-site scripting)

Management: planning for security; introduction to risk assessment and management; business
cases; regulatory compliance and legal issues; Federal Information Security Management Act; and K
business continuity/disaster planning

Security standards in government and industry: NIST 800-39 (risk management), NIST 800-53

(security controls), ISO 27001, and ISO 27002; sample corporate and institutional security policies K
Security issues in requirements, architecture, design, implementation, testing, operation, K
maintenance, acquisition, and services

Ethics and professionalism as related to computer security K

CMU/SEI-2011-TR-017 ‘ 25

Sources

Association for Computing Machinery (ACM) & IEEE Computer Society (IEEE-CS). “Computer
Science Curriculum 2008: An Interim Revision of CS 2001.” Computing Curriculum Series.
[ACM 2008]

Allen, Julia H.; Barnum, Sean; Ellison, Robert J.; McGraw, Gary; & Mead, Nancy R. Software
Security Engineering: A Guide for Project Managers. [Allen 2008]

Bishop, Matt. Computer Security: Art and Science. [Bishop 2002]

Redwine, Samuel T., Jr. Secure Software Engineering Education. This is a description of the first
three years of the master’s program in secure software engineering at James Madison University,
including a somewhat detailed description of a one-semester course in secure software
engineering. [Redwine 2010]

Stallings, W. Network Security Essentials. [Stallings 2007]

Wright, Marie & Kakalik, John. Information Security.: Contemporary Cases. [Wright 2006]

Additional Items
Course Delivery Features

In addition to conventional lecture and discussion methods, the following techniques are

appropriate for course delivery:

e This course provides an excellent opportunity to use case studies. Information Security:
Contemporary Cases by Wright and Kakalik provides a source for reading, study, and case-
study exercises.

e A number of hands-on individual and team projects could be assigned; for example

- an exercise or discussion of quality attributes related to security

- an exercise involving the review of program code to identify security problems

- comprehension of the security shortcomings of an existing software artifact or a
computing system (standalone application, network, operating system, website)

- presentation on a current security technology or issue

Course Assessment Features

Most of the course topics are listed at the K (Knowledge) Bloom’s level, which means that
students need a basic familiarity with the topics. They must be able to discuss and describe at a
level that shows appreciation of computer security issues. Assessment of the results of the
activities and exercises discussed in the “Course Delivery Features™ section is a good way of
judging achievement at the specified Bloom’s level.

CMU/SEI-2011-TR-017 ‘ 26

10 Secure Coding

Course Description

This course covers security vulnerabilities of programming in weakly typed languages like C and
in more modern languages like Java. Common weaknesses exploited by attackers are discussed,
as well as mitigation strategies to prevent those weaknesses. Students practice programming and
analysis of software systems through testing and static analysis.

Prerequisites and Co-Requisites
4. Computer Science I as a prerequisite (with experience programming in C or C++), or

5. Computer Science Il as a co-requisite (with experience coding in Java), otherwise

6. Computer Science Il as a prerequisite

Syllabus

Table 9: Syllabus for Secure Coding Course
Topic Bloom'’s Level
Overview of security vulnerabilities and risks in software: Common Weakness Enumeration c
(CWE), Open Web Application Security Project (OWASP) Top 10
Data protection: methods for preventing unauthorized access or manipulation of data AP
Input validation and user authentication AP
Memory management: buffer overflow, memory corruption, and privilege violations AP
Integer overflow and misuse of strings and pointers AP
Communication vulnerabilities: concurrency, secure inter-process communication and
authorization, authentication and networking protocols AP
Unit testing for security vulnerabilities: fuzzing, abuse cases AP
Code review: formal inspections and static analysis AP
Vulnerabilities in modern languages: insecurities in Java and hypertext preprocessor (PHP) C
Standard risk mitigation strategies and resources: coding standards, enterprise security API c
(ESAPI)
Professional development: OWASP, certification C

Sources

Cooper, Stephen; Nickell, Christine; Pérez, Lance C.; Oldfield, Brenda; Brynielsson, Joel; Gencer
Gokce, Asim; Hawthorne, Elizabeth K.; Klee, Karl J.; Lawrence, Andrea; & Wetzel, Susanne.
Towards Information Assurance (I14) Curricular Guidelines (ITICSE 2010 Working Group
Report). [Cooper 2010]

Merkow, Mark S. & Raghavan, Lakshmikanth. Secure and Resilient Software Development.
[Merkow 2010]

Seacord, Robert C. Secure Coding in C and C++. [Seacord 2005]

CMU/SEI-2011-TR-017 ‘ 27

Additional Items
Course Delivery Features

In addition to conventional lecture and discussion methods, a number of hands-on individual and

team projects are appropriate for course delivery; for example

o individual programming projects (including coding using a coding standard, preparation of a
unit test plan, and test results)

o individual or team review/inspections

o individual or team testing and analysis of artifacts produced by other students or available
online

Course Assessment Features

Many of the course topics are listed at the AP (Application) Bloom’s level, which means that
students must be able to use information, methods, concepts, and theories to solve problems that
require the skills or knowledge taught in the course. For topics labeled C (Comprehension),
students must be able to discuss, describe, and interpret the topics. Assessment of the results of
the activities and exercises discussed in the “Course Delivery Features” section is a good way of
judging achievement at the specified Bloom’s level.

CMU/SEI-2011-TR-017 ‘ 28

11 Introduction to Assured Software Engineering

Course Description

This course covers the basic principles and concepts of assured software engineering; system
requirements; secure programming in the large; modeling and testing; object-oriented analysis and
design using the UML; design patterns; frameworks and APIs; client-server architecture; user
interface technology; and the analysis, design, and programming of extensible software systems.

Prerequisite
Computer Science 11
Co-Requisite
Computer Science III

Syllabus

This syllabus is largely based on the ACM CCECC course descriptions modified and abstracted to
the outline level [ACM CCECC 2009d, ACM CCECC 2009¢].

Table 10: Syllabus for Introduction to Assured Software Engineering Course

Bloom’s

[RE Level

Introduction to software project management: project planning, estimation, configuration
management, risk management; and software security process models: Building Security In c
Maturity Model (BSIMM), OWASP Software Assurance Maturity Model (SAMM), Microsoft Software
Development Lifecycle (SDL)

Role of assured software engineering: software engineering for assurance and its place as an
engineering discipline

Requirements analysis: requirements analysis for functional and quality requirements AP
Introduction to software architecture: introduction to software architecture, including architectural
patterns (pipe & filter, MVC), client-server computing

Use and misuse cases: use cases, misuse cases, and user-centered design

Design patterns: abstraction-occurrence, composite, player-role, singleton, observer, delegation,
facade, adapter, etc.

UML: review of object-oriented principles, UML class diagrams, and object-oriented analysis AP

Domain modeling: examples of building class diagrams to model various domains

Reusable technologies: review of reusable technologies as a basis for software engineering, risks
associated with reuse (e.g. Ariane)

Software behavior: representing software behavior: sequence diagrams, state machines, activity
diagrams, correctness under all conditions of use

Verification and validation: inspections and reviews, integration, system, and acceptance testing AP

AP

Sources

ACM Committee for Computing Education in Community Colleges (CCECC). Program Details:
Introduction to Software Engineering. [ACM CCECC 2009d]

CMU/SEI-2011-TR-017 ‘ 29

ACM Committee for Computing Education in Community Colleges (CCECC). Course Details:
Introduction to Software Engineering. [ACM CCECC 2009¢]

IEEE Computer Society (IEEE-CS) & Association for Computing Machinery (ACM). “Software
Engineering 2004: Curriculum Guidelines for Undergraduate Degree Programs in Software
Engineering.” Computing Curriculum Series. [[EEE-CS 2004b]

Allen, Julia H.; Barnum, Sean; Ellison, Robert J.; McGraw, Gary; & Mead, Nancy R. Software
Security Engineering: A Guide for Project Managers [Allen 2008].

Redwine, Samuel T., Jr. Secure Sofiware Engineering Education. This is a description of the first
three years of the master’s program in secure software engineering at James Madison University,
including a somewhat detailed description of a one-semester course in secure software
engineering [Redwine 2010].

Additional Items
Course Delivery Features

Sample labs and assignments include the following:

« evaluating the assurance and performance of various simple software designs

o adding features, including assurance features, to an existing system

e testing a system to verify conformance to test cases including assurance

e building a graphical user interface (GUI) for an application

e numerous exercises building models in UML, particularly class diagrams and state machines

« developing and presenting a simple set of assured software requirements (to be done as a
team) for some innovative client server application of very small size

« implementing the above, using reusable technology to the greatest extent possible, while
understanding the risks associated with reuse

In addition to conventional lecture and discussion methods, the following techniques are

appropriate for course delivery:

o This course is a good starting point for exposing students to moderately sized existing
systems. With such systems, students can learn and practice the essential skills of reading
and understanding code written by others. Students should write secure code in the context
of a particular domain, for example, the biological, physical, mathematical, or chemical
sciences or even wider spectra such as game programming, business applications, and
graphics and animation.

o We suggest that a core subset of UML be taught rather than trying to cover all features.

« It may be challenging for instructors to convey the nature of software engineering to
students; however, this challenge may be addressed through strategies such as field trips to
businesses and industries that utilize large software systems, guest lectures by developers
and users of large software systems, and discussions about embedded systems in everyday

CMU/SEI-2011-TR-017 ‘ 30

life including automated teller machines (ATMs), wireless devices, cell phones, various

mobile devices, and computer games and their associated risks and vulnerabilities.

Course Assessment Features

The depth of coverage of the course topics varies, as do the associated Bloom’s levels. In many
areas, students need to be able to discuss and describe the topics, but in other areas they must be
able to apply the techniques learned in the course to actual software projects. In general they must

be able to discuss, describe, and apply the techniques at a level that shows appreciation of assured
software engineering. Assessment of the results of the activities and exercises discussed in the
“Course Delivery Features” section is a good way of judging achievement at the specified

Bloom’s level.

Table 11: Typical Introduction to Assured Software Engineering Course Sequence Option 1

Term 1 Term 2 Term 3 Term 4
CS| Csli Cs il Secure Coding
Discrete Structures | Calculus | Assured Software Engineering

Introduction to
Computer Security

Table 12: Typical In

troduction to Assured Software Engineering Course Sequence Option 2

Computer Security

Term 1 Term 2 Term 3 Term 4
CSI (O] CcS i Secure Coding
Discrete Structures | Calculus | | Introduction to Assured Software Engineering

CMU/SEI-2011-TR-017 ‘ 31

12 Resources

Computer Science |

Association for Computing Machinery (ACM) Committee for Computing Education in
Community Colleges. ACM Computing Curricula 2009: Guidelines for Associate-Degree
Transfer Curriculum in Computer Science. [ACM 2009]

Computer Science Il

Association for Computing Machinery (ACM) Committee for Computing Education in
Community Colleges. ACM Computing Curricula 2009. Guidelines for Associate-Degree
Transfer Curriculum in Computer Science. [ACM 2009]

Stoneburner Gary; Hayden,Clark; & Feringa, Alexis. “Engineering Principles for Information
Technology Security (A Baseline for Achieving Security), Revision A (NIST Special Publication
800-27 Rev A).” [Stoneburner 2004]

Computer Science Il

Association for Computing Machinery (ACM) Committee for Computing Education in
Community Colleges. ACM Computing Curricula 2009 Guidelines for Associate-Degree
Transfer Curriculum in Computer Science. [ACM 2009]

Stoneburner Gary; Hayden,Clark; & Feringa, Alexis. “Engineering Principles for Information
Technology Security (A Baseline for Achieving Security), Revision A (NIST Special Publication
800-27 Rev A).” [Stoneburner 2004]

Association for Computing Machinery (ACM), Inc. ACM Code of Ethics and Professional
Conduct. [ACM 2011]

Association for Computing Machinery (ACM) & IEEE Computer Society (IEEE-CS) Joint Task
Force on Software Engineering Ethics and Professional Practices (SEEPP). Software Engineering
Code of Ethics and Professional Practice (Version 5.2). [ACM 1999]

Introduction to Computer Security

Association for Computing Machinery (ACM) & IEEE Computer Society (IEEE-CS). “Computer
Science Curriculum 2008: An Interim Revision of CS 2001.” Computing Curriculum Series.
[ACM 2008]

Allen, Julia H.; Barnum, Sean; Ellison, Robert J.; McGraw, Gary; & Mead, Nancy R. Software
Security Engineering: A Guide for Project Managers. [Allen 2008]

Bishop, Matt. Computer Security: Art and Science. [Bishop 2002]

CMU/SEI-2011-TR-017 ‘ 32

http://www.acm.org/about/se-code
http://www.acm.org/about/se-code

Redwine, Samuel T., Jr. Secure Sofiware Engineering Education. This is a description of the first
three years of the master’s program in secure software engineering at James Madison University,
including a somewhat detailed description of a one-semester course in secure software
engineering. [Redwine 2010]

Stallings, W. Network Security Essentials. [Stallings 2007]

Wright, Marie & Kakalik, John. Information Security: Contemporary Cases. [Wright 2006]

Secure Coding

Cooper, Stephen; Nickell, Christine; Pérez, Lance C.; Oldfield, Brenda; Brynielsson, Joel; Gencer
Gokce, Asim; Hawthorne, Elizabeth K.; Klee, Karl J.; Lawrence, Andrea; & Wetzel, Susanne.
Towards Information Assurance (I4) Curricular Guidelines (ACM ITiCSE 2010 Working Group
Report). [Cooper 2010]

Merkow, Mark S. & Raghavan, Lakshmikanth. Secure and Resilient Software Development.
[Merkow 2010]

Seacord, Robert C. Secure Coding in C and C++. [Seacord 2005]

Introduction to Assured Software Engineering

Association for Computing Machinery (ACM) Committee for Computing Education in
Community Colleges (CCECC). Program Details: Introduction to Software Engineering. [ACM
CCECC 2009d]

Association for Computing Machinery (ACM) Committee for Computing Education in
Community Colleges (CCECC). Course Details: Introduction to Software Engineering. [ACM
CCECC 2009¢]

IEEE Computer Society (IEEE-CS) & Association for Computing Machinery (ACM). “Software
Engineering 2004: Curriculum Guidelines for Undergraduate Degree Programs in Software
Engineering.” Computing Curriculum Series. [IEEE-CS 2004b]

Allen, Julia H.; Barnum, Sean; Ellison, Robert J.; McGraw, Gary; & Mead, Nancy R. Software
Security Engineering: A Guide for Project Managers [Allen 2008].

Redwine, Samuel T., Jr. Secure Software Engineering Education. This is a description of the first
three years of the master’s program in secure software engineering at James Madison University,
including a somewhat detailed description of a one-semester course in secure software
engineering [Redwine 2010].

Websites of Interest
Build Security In

Sponsored by the DHS National Cyber Security Division (NCSD), this website provides
practices, tools, guidelines, rules, principles, and other resources that software developers,

CMU/SEI-2011-TR-017 ‘ 33

architects, and security practitioners can use to build security into software in every phase of its
development.

https://buildsecurityin.us-cert.gov/bsi/home.html
CERT Podcasts

The CERT podcast series provides both general principles and specific starting points for business
leaders who want to launch an enterprise-wide security effort or make sure their existing security
program is as good as it can be.

http://www.cert.org/podcast/
National Software Assurance Repository

The National Software Assurance Repository (NSAR) is a Department of Defense/National
Security Agency funded knowledge base of commonly accepted current practices, principles,
methodologies, and tools for software assurance. The NSAR incorporates as many life-cycle
methodologies and tools for assuring software as could be identified in the literature. It also
itemizes all related supporting principles and concepts to ensure the security of internally and
externally developed and sustained software.

http://cybersecurity.udmercy.edu/manage/search.php
SEI Virtual Training Environment

The SEI Virtual Training Environment (VTE) amplifies the training and best practices the SEI has
developed and delivered in the classroom. Because of the rich media instruction and hands-on
training labs, VTE allows users to access high-quality training material anywhere in the world,
with only a Web browser and an Internet connection.

https://www.vte.cert.org/vteWeb/
Software Assurance Community Resource Information Clearinghouse

Also sponsored by the DHS NCSD, this website provides additional resources on many software
assurance topics including workforce education and training, processes and practices, technology
and tools, acquisition and outsourcing, measurement, establishing a business case, and malware.

https://buildsecurityin.us-cert.gov/swa/

CMU/SEI-2011-TR-017 ‘ 34

https://buildsecurityin.us-cert.gov/bsi/home.html
http://www.cert.org/podcast/
http://cybersecurity.udmercy.edu/manage/search.php
https://buildsecurityin.us-cert.gov/swa/

Appendix A: Related Curricula

CyberWatch Curriculum

The following information is from http://www.cyberwatchcenter.org [CyberWatch 2011].

Four CyberWatch model Information Assurance programs have been developed and are
available from CyberWatch:

o A.A.S. in Information Assurance

o A.S. in Information Assurance

Certificate in Information Assurance

Certificate in Information Assurance Management

CyberWatch has developed eight model courses, six of which are currently available for

download. We have an active program to make all of these courses also available in an online
format, with an expected completion date of Fall 2010:

CW 110 Ethics in the Information Age

CW 130 Microcomputer Operating Systems

CW 160 Security+

CW 225 Hardening the Infrastructure

CW 230 Microsoft Windows Server 2003

CW 235 Network Defense and Countermeasures

CW xxx Computer Forensics I (not yet available for download)

CW xxx Disaster Recovery and Risk Management (not yet available for download)

CyberWatch maintains virtual lab facilities to assist member institutions in the delivery of IA
courses. These include the CyberWatch Virtual Lab, the Digital Forensics Lab, and the
CyberWatch Underground Tunnel System.

CyberWatch provides assistance to member institutions for curriculum development and for
mapping of courses to the Committee on National Security Systems (CNSS) 4011 and 4013
national IA training standards. Curriculum development emphasizes building associate's degree

and certificate programs from a set of core technical courses that, in addition to meeting 4011
and/or 4013 standards, help prepare students for several industry certifications including:

CompTIA's Network+ and Security+

Cisco Certified Network Associate (CCNA)
Microsoft Certified Professional (MCP)
Security Certified Network Professional (SCNP)

CMU/SEI-2011-TR-017 | 35

http://www.cyberwatchcenter.org/

Software Engineering 2004 (SE 2004) Curriculum Guidelines for Undergraduate Degree
Programs in Software Engineering

The following information is from http://sites.computer.org/ccse [[EEE-CS 2004b]

The primary purpose of this volume is to provide guidance to academic institutions and
accreditation agencies about what should constitute an undergraduate software engineering
education. These recommendations have been developed by a broad, internationally based
group of volunteer participants. This group has taken into account much of the work that has
been done in software engineering education over the last quarter of a century. Software
engineering curriculum recommendations are of particular relevance, since there is currently a
surge in the creation of software engineering degree programs and accreditation processes for
such programs have been established in a number of countries.

The recommendations included in this volume are based on a high-level set of characteristics of
software engineering graduates presented in Chapter 3. Flowing from these outcomes are the
two main contributions of this document:

o SEEK: Software Engineering Education Knowledge - what every SE graduate must know

o Curriculum: ways that this knowledge and the skills fundamental to software engineering
can be taught in various contexts

ACM Committee for Computing Education in Community Colleges (CCECC) Computer
Science Curriculum

The following information is from
http://www.acmccecc.org/pgm_inventory/programdetail.aspx?pID=38 [ACM CCECC 2009a].

The foundation for the Computer Science associate-degree transfer program is the three-course
computing sequence CS I - CS II - CS III. This sequence should be accompanied by the
opportunity for additional computing courses based on a variety of factors, including transfer
requirements, institutional specializations, and student interests.

Past computer science model curricula have identified at least three “paradigms” or approaches
that one could take to computer science content: objects-first (centered on object-oriented
programming), breadth-first (an initial holistic view subsequently progressing deeper), and
imperative-first (centered on procedural programming). The Computer Science associate-
degree transfer program now calls for a blended approach:

e Object-oriented programming is emphasized in CS I, but not necessarily early in the
semester.

 The topics of algorithms and fundamental programming constructs are important
components of CS I and are consistent with the Béhm-Jacopini theory for procedural
programming.

CMU/SEI-2011-TR-017 | 36

http://sites.computer.org/ccse
http://www.acmccecc.org/pgm_inventory/programdetail.aspx?pID=38

o The breadth-first approach is used in the coverage of three important topics: ethics and
professionalism, security, and software engineering principles.

These topics are covered in deeper and deeper fashion as the student progresses from CS I to
CSIIto CSIIL

Conference on Innovation and Technology in Computer Science Education (ITiCSE)
Information Assurance Curriculum Guidelines Working Group Guidelines

The following information is from http://delivery.acm.org/10.1145/1980000/1971686/p49-
cooper.pdf?key1=1971686&key2=7516375031&coll=DL&dI=ACM&ip=128.237.28.14&CFID=
23747146&CFTOKEN=92148513 [Cooper 2010].

Information assurance and information security are serious worldwide concerns. Computer
security is one of the three new focal areas of the ACM/IEEE's Computer Science Curriculum
update in 2008. This ACM/IEEE report describes, as the first of its three recent trends, "the
emergence of security as a major area of concern.

The purpose of this working group report is to continue the work of the 2009 working group on
information assurance (IA) education. The focus of the 2010 working group is to examine the
curricula of existing academic programs, as well as at the key academic governmental and
industry IA education standards and guidelines identified by the 2009 1A working group in
order to begin defining the IA education space as a first step towards developing curricular
guidelines.

Survivability and Information Assurance (SIA) Curriculum
The following information comes from http://www.cert.org/sia/ [CERT 2007].
Introduction

Today's organizations rely on networked systems powered by fast-changing technology. This
reliance makes them more vulnerable to attacks and forces system administrators to seek new
approaches to computer and network security. To help them, CERT has developed a
downloadable three-course curriculum in survivability and information assurance (SIA). This
curriculum offers a problem-solving methodology built on key SIA principles that are
independent of specific technologies. These principles form the foundation of CERT’s SIA
Curriculum. A summary of the curriculum is provided below.

SIA Curriculum Foundations

We based the SIA Curriculum on five key foundations. Each is detailed in Foundations of the
SIA Curriculum:

1. Principles of Survivability and Information Assurance: Making decisions through an
organized thought process

2. The Enterprise Network Supports the Mission of the Business: Understanding how
technology choices and applications impact the mission of the business

CMU/SEI-2011-TR-017 | 37

http://delivery.acm.org/10.1145/1980000/1971686/p49-cooper.pdf?key1=1971686&key2=7516375031&coll=DL&dl=ACM&ip=128.237.28.14&CFID=23747146&CFTOKEN=92148513
http://delivery.acm.org/10.1145/1980000/1971686/p49-cooper.pdf?key1=1971686&key2=7516375031&coll=DL&dl=ACM&ip=128.237.28.14&CFID=23747146&CFTOKEN=92148513
http://delivery.acm.org/10.1145/1980000/1971686/p49-cooper.pdf?key1=1971686&key2=7516375031&coll=DL&dl=ACM&ip=128.237.28.14&CFID=23747146&CFTOKEN=92148513
http://www.cert.org/sia/
http://www.cert.org/sia/
http://www.cert.org/sia/Foundations.pdf
http://www.cert.org/sia/Foundations.pdf

3. Survivable Functional Units: Reducing the complexity of the enterprise to a manageable
size

4. Inherit an Enterprise Network: Integrating seamlessly new functionality in the network
while keeping mission and constraints of the business in focus

5. Challenge Assumptions: Understanding first the assumptions, challenging them, and then
making an informed decision

These foundations inform the courseware in the SIA Curriculum. Understanding them is the
key to successfully teaching and implementing it.

SIA Curriculum Overview

The SIA Curriculum Overview explains the key features of the SIA curriculum: its audience,
structure, the technology used, and the characteristics students and teachers should possess to
be able to get the most out of the curriculum.

The curriculum consists of the following major topic areas, each of which corresponds to one
course:

1. Principles of Survivability and Information Assurance: This course presents in detail the
ten principles of survivability and information assurance, on which the entire SIA
curriculum is based.

2. Information Assurance Networking Fundamentals: This course applies the ten principles
to the concepts and an implementation of TCP/IP networking.

3. Sustaining, Improving, and Building Survivable Functional Units (SFUs)

Computing Curricula 2001

The following information is from Computing Curricula 2001: Computer Science, Final Report
[IEEE-CS 2001].

CC 2001- Executive Summary
This document represents the final report of the Computing Curricula 2001 project

(CC2001)—a joint undertaking of the Computer Society of the Institute for Electrical and
Electronic Engineers (IEEE-CS) and the Association for Computing Machinery (ACM) to
develop curricular guidelines for undergraduate programs in computing. The report continues a
long tradition of recommendations for academic programs in computing related fields dating
back to 1965, as described in Chapter 2 of the report.

This volume of the report outlines a set of recommendations for undergraduate programs in
computer science. As described in Chapter 1, the CC2001 report will eventually consist of
several volumes containing separate recommendations for other computing disciplines,
including computer engineering, software engineering, and information systems. Those reports
are each under the control of separate committees and will be published as they are completed.

Highlights of this report include the following:

CMU/SEI-2011-TR-017 | 38

http://www.cert.org/sia/Curriculum_Overview.pdf

The CS body of knowledge. We have identified a body of knowledge appropriate to

undergraduate computer science programs. Drawing on the structure of earlier curriculum
reports, we have arranged that body of knowledge hierarchically, subdividing the field
into areas, which are then broken down further into units and individual topics. An
overview of the body of knowledge appears in Chapter 5.

o The CS undergraduate core. From the 132 units in the body of knowledge, we have selected
64 that represent core material, accounting for approximately 280 hours of instruction. As
noted in our statement of principles in Chapter 4, we defined the core as the set of units
for which there is a broad consensus that the material is essential to an undergraduate
degree in computer science. The philosophy behind the definition of the core is described
in more detail in Chapter 5.

o Learning objectives. For each of the units in the body of knowledge, we have developed a set
of learning objectives designed to promote assessment of student achievement. These
learning objectives appear as part of the detailed description of the body of knowledge in
Appendix A. In addition to the individual learning objectives, Chapter 11 of the report
outlines a more general set of objectives that all computer science graduates should be
able to meet.

o Curriculum models. The report identifies six approaches to introductory computer science
that have proven successful in practice, as described in Chapter 7. Building on that
foundation, Chapter 8 offers a set of four thematic approaches for presenting the core
material in intermediate-level courses. The discussion of curricular models continues in
Chapter 9, which offers several models for the curriculum as a whole.

o Course descriptions. Appendix B contains detailed course descriptions for 47 courses that
are part of the various curriculum models. In addition, we have identified over 80
additional advanced courses that would be appropriate for undergraduate programs.

The process of developing the report has been highly inclusive. More than 150 people have
been directly involved in the focus groups established to contribute to the process. In addition,
the report has been widely reviewed by academics and practitioners through a series of three
public drafts. We have also held a series of feedback sessions at conferences and meetings,
including the Special Interest Group on Computer Science Education symposium (SIGCSE),
the Frontiers in Education conference (FIE), the World Congress on Computers and Education
(WCCE), along with various smaller meetings in Europe, Asia, and various parts of the United
States. These meetings have provided us with critically important feedback, which we have
used to shape the final report.

The length of the introductory sequence

Although the philosophy and structure of introductory courses have varied widely over the
years, one aspect of the computer science curriculum has remained surprisingly constant: the
length of the introductory sequence. For several decades, the vast majority of institutions have
used a two-course sequence to introduce students to computer science. In the computer science
education community, these two courses are generally known as CS1 and CS2, following the
lead of Curriculum *78 [ACM78]. While the content of these courses has evolved over time in

CMU/SEI-2011-TR-017 | 39

response to changes in technology and pedagogical approach, the length of the sequence has
remained the same.

We believe the time is right to question this two-course assumption. The number and
complexity of topics that entering students must understand have increased substantially, just as
the problems we ask them to solve and the tools they must use have become more
sophisticated. An increasing number of institutions are finding that a two-course sequence is no
longer sufficient to cover the fundamental concepts of programming, particularly when those
same courses seek to offer a broader vision of the field. Expanding the introductory sequence to
three courses makes it far easier to cover the growing body of knowledge in a way that gives
students adequate time to assimilate the material.

The CC2001 Task Force strongly endorses the concept of moving to a three-course
introductory sequence and believes that this option will prove optimal for a relatively wide
range of institutions. At the same time, the three-course approach will not be right for everyone.
The fact that the traditional two-course approach fits into a single year of study at semester-
based institutions often makes it easier to fit the introductory material into the whole of the
curriculum without interfering with the scheduling of sophomore level courses. Similarly, the
task of assigning credit for courses taken at other institutions, including advanced placement
programs in secondary schools, becomes more complicated if one institution follows a two-
semester calendar while the other covers the introductory material in three.

To support both two- and three-course introductions, the CC2001 Task Force has developed
both options. . . [[EEE-CS 2001, p. 29]

Computer Science Curriculum 2008

The following information is from Computer Science Curriculum 2008: An Interim Revision of
CS 2001 [ACM 2008].

Preface to the Interim Revision

In recent times, the ACM and the IEEE Computer Society have sought to provide curriculum
guidance on computing at approximately ten-year intervals. Thus 1968, 1978, 1991, and 2001
were the dates of publication of previous guidance on Computer Science.

Around the time of the publication of the most recent Computer Science volume, in December
2001, a commitment was made by the ACM and the Computer Society to provide curriculum
guidance on a more regular basis. This was to recognize the rapid rate of change in the
discipline and the consequent need for guidance to the community. It was felt that after a period
of around 5 years steps should be taken to address this. Yet such guidance should not be seen to
create revolution or confusion in the community; rather it should help and support. This present
volume is provided in that spirit.

Since 2001, much has happened in computing. Today there is talk of a crisis, with enrollments
having plummeted in many countries, often by as much as 60 — 70% from the peak of 2001.
This fall in numbers has come at a time when there is increased recognition of the role of

CMU/SEI-2011-TR-017 | 40

computing in innovation across engineering, in science, in business, in education, in
entertainment and indeed in all walks of life. At the same time, the number of jobs in
computing has risen while the supply of good graduates has fallen and some data suggests is
failing to meet the demand in certain countries. The reasons for this are many and complex.
However, many argue that the traditional curriculum in computing is unattractive to present-
day students and that creates a challenge.

Part of the CC 2001 endeavor was to create documents that would complement the Computer
Science guidance document. This resulted in the publication, over recent years, of volumes in
Computer Engineering, Information Systems, Information Technology, and Software
Engineering. An Overview volume has also been published; this sought to highlight the
differences and draw out the similarities, but basically to provide a framework within which the
various volumes could be seen to fit. This creates a different kind of environment in which to
review the Computer Science volume.

Taking all these various matters into consideration, this review of the computer science volume
comes at a crucial time. In addition, there is wide recognition that a considerable amount of
work is needed to discover better and more effective ways of presenting the discipline of
computing. This has enormous importance, economic and strategic.

Yet it would be misleading to recommend ideas that were not regarded as sound advice and
best practice based on appropriate trials and testing.

This interim review has benefited from input from many (from industry, academia, etc.)
through consultation and through discussion. It should be seen as a necessary updating of the
influential CS2001 volume. More precisely, the CS2001 Body of Knowledge has been updated
and there is additional commentary / advice in the accompanying text. The process has lead to
wide recognition of the need to find new and better ways to present and portray the discipline
of computer science; that remains a challenge for us all.

December 2008

Software Assurance Undergraduate Course Outlines

The following is the abstract from Sofiware Assurance Curriculum Project Volume II:
Undergraduate Course Outlines [Mead 2010b].

Modern society depends on software systems of ever-increasing scope and complexity.
Virtually every sphere of human activity is impacted by these systems, from social interaction
in our personal lives to business, energy, transportation, education, communication,
government, and defense. Because the consequences of failure can be severe, dependable
functionality and security are essential. As a result, software assurance is emerging as an
important discipline for the development, acquisition, and operation of software systems and
services that provide requisite levels of dependability and security. This report is the second
volume in the Software Assurance Curriculum Project sponsored by the Department of
Homeland Security. The first volume, the Master of Software Assurance Reference Curriculum
(CMU/SEI-2010-TR-005), presented a body of knowledge from which to create a Master of

CMU/SEI-2011-TR-017 | a1

Software Assurance degree program, as both a standalone offering and as a track within
existing software engineering and computer science master’s degree programs. This report
focuses on an undergraduate curriculum specialization for software assurance. The seven
courses in this specialization are intended to provide students with fundamental skills for either
entering the field directly or continuing with graduate-level education.

CMU/SEI-2011-TR-017 | 42

Appendix B: Bloom’s Taxonomy and the GSwE2009

Bloom’s Taxonomy is a classification system devised in 1956 by a group of educators lead by
Benjamin Bloom [Bloom 1956]. The taxonomy can be used by educators to set the level of
educational and learning objectives required for students engaged in an education unit, course, or

program. Bloom’s Taxonomy divides educational objectives into three domains: affective,

psychomotor, and cognitive. In this report, the focus is on the cognitive domain, which is

concerned with what we know and how we know it [Huitt 2006]. Conventional education systems

tend to stress outcomes in the cognitive domain, particularly the lower-level objectives.

Bloom’s taxonomy is hierarchical; that is, learning at a higher level is dependent on attaining

prerequisite knowledge and skills at the lower levels. Table 13 provides a description of the

Bloom’s Levels for the Cognitive Domain.

Note: This table was adapted from an appendix in the GSWE2009 [iSSec 2009].

Table 13: Bloom's Taxonomy

Level
Knowledge (K)

Comprehension (C)

Application (AP)

Analysis (AN)

Synthesis (S)

Evaluation (E)

Competency

(Lowest level) Remembering previously learned material.
Test observation and recall of information, i.e., “bring to
mind the appropriate information” (e.g., dates, events,
places, knowledge of major ideas, and mastery of subject
matter).

Understanding information and ability to grasp meaning of
material presented. For example, translate knowledge
into new context, interpret facts, compare, contrast, order,
group, infer causes, predict consequences, etc.

Ability to use learned material in new and concrete
situations. For example, use information, methods,
concepts, and theories to solve problems requiring the
skills or knowledge presented.

Ability to decompose learned material into constituent
parts in order to understand structure of the whole. This
includes seeing patterns, organization of parts,
recognition of hidden meanings, and identification of
parts.

Ability to put parts together to form a new whole. This
involves using existing ideas to create new ones,
generalizing from facts, relating knowledge from several
areas, and predicting and drawing conclusions. It may
also involve adapting general solution principles to the
embodiment of a specific problem.

(Highest level) Ability to pass judgment on value of
material within a given context or purpose. This involves
making comparisons and discriminating between ideas,
assessing value of theories, making choices based on
reasoned arguments, verifying value of evidence, and
recognizing subjectivity.

Objective Descriptors

list, define, tell, describe,
identify, show, label, collect,
examine, tabulate, quote,
name (who, when, where,
etc.)

summarize, describe,
interpret, contrast, predict,
associate, distinguish,
estimate, differentiate,
discuss, extend

apply, demonstrate, calculate,
complete, illustrate, show,
solve, examine, modify, relate,
change, classify, experiment,
discover

analyze, separate, order,
explain, connect, classify,
arrange, divide, compare,
select, explain, infer

combine, integrate, modify,
rearrange, substitute, plan,
create, design, invent, what
if?, compose, formulate,

prepare, generalize, rewrite

assess, decide, rank, grade,
test, measure, recommend,
convince, select, judge,
explain, discriminate, support,
conclude, compare,
summarize

CMU/SEI-2011-TR-017 ‘ 43

Appendix C: Community College Profiles

Students at Community Colleges (According to the American Association for
Community Colleges)

The information below was taken from
http://www.aacc.nche.edu/AboutCC/Trends/Pages/studentsatcommunitycolleges.aspx [AACC
2011].

Community colleges are a vital part of the postsecondary education delivery system. They
serve almost half of the undergraduate students in the United States, providing open access to
postsecondary education, preparing students for transfer to 4-year institutions, providing
workforce development and skills training, and offering noncredit programs ranging from
English as a second language to skills retraining to community enrichment programs or cultural
activities.

Community colleges serve close to half of the undergraduate students in the United States,
which included more than 6.5 million credit students in the fall of 2010. The comprehensive
mission of community colleges makes them attractive to a broad range of people who seek
particular programs or opportunities of special interest. Community colleges are the gateway to
postsecondary education for many minority, low income, and first-generation postsecondary
education students. Since 1985, more than half of all community college students have been
women. In addition, the majority of Black and Hispanic undergraduate students in this country
study at these colleges.

Community colleges also provide access to education for many nontraditional students who are
adults and working while enrolled. The average age of a community college student is 29 years
old, and two thirds of community college students attend part-time. At the same time,
community colleges are not only providing access for adult students but also serving an
increasing number of traditional age and high school students who take specific courses to get
ahead in their studies. In fact, half of the students who receive a baccalaureate degree attend
community college in the course of their undergraduate studies.

The costs to attain a postsecondary degree are on the rise. As a result, increasing numbers of
students at community colleges (and 4-year institutions) are looking to the federal financial aid
programs to help offset or finance the costs of their education. Almost half of the students
attending community college receive some form of financial aid to help finance their studies. In
2005, more than 2 million community college students received Pell grant dollars. However, in
recent years, there has been a shift in government policies away from grants toward student
loans. Because of the low costs to attend community college, the amounts borrowed are lower
for community college students than they are for their counterparts at 4-year institutions (public
and private).

Community colleges are diverse institutions that serve a wide variety of needs. These include
the students who come to upgrade their skills for a particular job, students who are pursuing an

CMU/SEI-2011-TR-017 | 44

http://www.aacc.nche.edu/AboutCC/Trends/Pages/studentsatcommunitycolleges.aspx

associate degree to transfer to a 4-year institution and students who come to pursue a hobby
(such as learning a language). The educational outcomes of community college students reflect
this diversity.

According to the Community College Research Center located at Columbia University,
Teachers College, most community college students are older than 25 though many students are
also high school graduates who want to cost-effectively start their college education.

Community College Research Center located at Columbia University, Teachers College
The following information was taken from http://ccre.tc.columbia.edu/History.asp [CCRC 2011].

The Community College Research Center (CCRC) is the leading independent authority on the
nation’s more than 1,200 two-year colleges. Since our inception, CCRC’s consortium of
researchers has strategically assessed the problems and performances of community colleges.
Our mission is to conduct research on the major issues affecting community colleges in the
United States and to contribute to the development of practice and policy that expands access to
higher education and promotes success for all students. CCRC’s extensive body of research
provides a strong foundation on which to build new policies and initiatives to improve the
outcomes of these institutions so integral to the higher education system, employment
landscape, and national economy.

Community colleges serve high numbers of non-traditional students who are often older than
25, working part- or full-time, parents with dependent children, from ethnic minorities, and
from low-income households. These institutions cater to high school students seeking enhanced
learning opportunities, high school graduates looking for a cost-effective way to begin their
college education, individuals interested in obtaining technical or vocational certification, and
full-time employees who seek special training.

CTE Dual Enrollment: Preparing Students for College and Careers

The following information was taken from http://ccrc.tc.columbia.edu/Presentation.asp?UID=357
[Hughes 2011].

Conference: California Community College Association for Occupational Education
(CCCAOQE) 2011 Conference

Date: March 23, 2011 4:00PM
Location: Oakland Marriott City Center, Oakland, CA
Additional relevant research articles are summarized in the appendix.

A few scenarios of typical community college “computing” students include: (“computing” in
this context is used broadly referring to computer science, information technology, etc.)

« High school students who want to become computer programmers and/or game developers.

CMU/SEI-2011-TR-017 | 45

http://ccrc.tc.columbia.edu/History.asp
http://ccrc.tc.columbia.edu/Presentation.asp?UID=357
http://ccrc.tc.columbia.edu/Conference.asp?uid=142
http://ccrc.tc.columbia.edu/Conference.asp?uid=142

- Typically want to earn associates degree intending either to enter the workforce
(A.A.S) or transfer to a baccalaureate program (A.S.).

o Non-computing baccalaureate degree holders who need to learn about computers so they can
either apply these skills to their field or enter into a career in “computing.”
- Typically want to earn either associates degree or technical certificate.

o “Computing” baccalaureate degree holders who need to update their knowledge and skills
(lifelong learning). For example, the waning programming languages of COBOL and
RPG.

- Typically want to earn a technical certificate or not interested in any credential just the
knowledge and skill.

« “Computing” professional in need of a credential to further their career, such as CISSP or
Security +.

For our purposes, we narrowed down our audience to include:

o High school students intending to earn an A.S. degree in order to transfer to a 4-year college

o Baccalaureate degree holders with degrees in computing, math, science, or engineering who
want to update their skills

« Existing computing professionals in need of a credential to further their career

We do not include high school students who want a two year degree in order to immediately
enter the workforce, or baccalaureate degree holders in “non-computing” or non-technical
fields in our target audience.

CMU/SEI-2011-TR-017 | 46

Appendix D: Relevant Research Articles

The authors reviewed the following research articles that are relevant to community college
education.

“The Reverse Transfer Process” in Community College Review [Chen 2008]

“These reverse transfer students have graduated high school, and they have attended college
for a period of time or, in some cases, have even graduated from a traditional four-year college.
For a variety of reasons, though, these students decide that the traditional four-year college is
just not for them, and they embrace the opportunity to enroll in and to attend a two-year
community college.

Subsequently, they transfer from their four-year college and join a two-year college, and while
they are moving forward in terms of their education, they are ‘taking a step back’ by switching
from a traditional college or university to a community college. Hence, they are reverse
transfer students.”

“The New Reverse Transfer” in Inside Higher Ed [Moltz 2009]

“Stephanie Jamiot is a community college transfer student, but not the kind one might expect.
Instead of following the steady flow of students who move from two-year institutions to four-
year institutions, she is one of a growing number of so-called ‘reverse transfers’ who leave
four-year universities to attend community college.

Cuyahoga Community College in Cleveland — Ohio’s largest two-year institution and the one
Jamiot currently attends — had an 11 percent increase in the number of ‘reverse transfers’ this
spring compared to last. These students mostly come from public and private institutions
around Ohio. Nationally, the American Association of Community Colleges notes that a third
of all two-year students previously attended a four-year institution. The recession had led to a
surge in community college enrollments this year, and some experts believe these ‘reverse
transfers’ are an important and sometimes overlooked portion of that growing student body at
two-year institutions.”

“Four-Year Graduates Attending Community Colleges As Serious Credit Students” by
Community College Research Center [Quinley 1988]

“This [CCRC] Brief is drawn from a report of a qualitative study conducted at Central
Piedmont Community College in Charlotte, North Carolina. The study took two approaches — a
telephone survey of four-year graduates who had completed at least 15 credit hours at that
community college, and an examination of student records to describe the enrollment trends of
this population over a ten-year period. The results from these two approaches were compared
with the findings reported in the literature.

CMU/SEI-2011-TR-017 | 47

In the fall of 1996, Central Piedmont Community College had over one thousand students
(1,104) — a little more than 7 percent of the school’s total enrollment — who had previously
earned a baccalaureate degree.”

“The College of 2020: Students” by Chronicle Research Services [Chronicle Research Services
2009]

“This is the first Chronicle Research Services report in a three-part series on what higher
education will look like in the year 2020. It is based on reviews of research and data on trends
in higher education, interviews with experts who are shaping the future of colleges, and the
results of a poll of members of a Chronicle Research Services panel of admissions officials.

The traditional model of college is changing, as demonstrated by the proliferation of
colleges, hybrid class schedules with night and weekend meetings, and, most significantly,
online learning. The idyll of four years away from home—spent living and learning and
growing into adulthood—will continue to wane. It will still have a place in higher education,
but it will be a smaller piece of the overall picture.

Students’ convenience is the future. More students will attend classes online, study part time,
take courses from multiple universities, and jump in and out of colleges. Students will demand
more options for taking courses to make it easier for them to do what they want when they want
to do it. And they will make those demands for economic reasons, too. The full-time residential
model of higher education is getting too expensive for a larger share of the American
population. More and more students are looking for lower cost alternatives to attending college.
Three-year degree programs, which some colleges are now launching, will almost assuredly
proliferate. The trend toward low-cost options also will open doors for more inexpensive online
options.

Community colleges and for-profit institutions should continue to thrive because of their
reputations for convenience. The rest of colleges—regional public universities, small liberal-
arts colleges, and private universities without national followings—can expect to compete for
students based on price, convenience, and the perceived strengths of the institutions.”

CMU/SEI-2011-TR-017 | 48

Bibliography

URLs are valid as of the publication date of this document.

[AACC 2011]
American Association of Community Colleges (AACC). Students at Community Colleges.
http://www.aacc.nche.edu/AboutCC/Trends/Pages/studentsatcommunitycolleges.aspx (2011).

[ABET 2010]
ABET, Inc. ABET: Leadership and Quality Assurance in Applied Science, Computing,
Engineering, and Technology Education. http://www.abet.org/ (2010).

[ACM 1991]

Association for Computing Machinery (ACM) & IEEE Computer Society (IEEE-CS) Joint
Curriculum Task Force. Computing Curricula 1991. ACM Press and IEEE Computer Society
Press (1991).

[ACM 1993]

Association for Computing Machinery (ACM) Two-Year College Computing Curricula Task
Force. Computing Curricula Guidelines for Associate-Degree Programs: Computing Sciences.
ACM Press (1993).

[ACM 1999]

Association for Computing Machinery (ACM) & IEEE Computer Society (IEEE-CS) Joint Task
Force on Software Engineering Ethics and Professional Practices (SEEPP). Software Engineering
Code of Ethics and Professional Practice (Version 5.2). ACM & IEEE-CS, 1999.
http://www.acm.org/serving/se/code.htm

[ACM 2003]

Association for Computing Machinery (ACM) Two-Year College Computing Curricula Task
Force. Computing Curricula 2003: Guidelines for Associate-Degree Curricula in Computer
Science. ACM Press (2003).

[ACM 2008]

Association for Computing Machinery (ACM) & IEEE Computer Society (IEEE-CS). “Computer
Science Curriculum 2008: An Interim Revision of CS 2001.” Computing Curriculum Series.
http://www.acm.org/education/curricula/ComputerScience2008.pdf (2008).

[ACM 2009]

Association for Computing Machinery (ACM) Committee for Computing Education in
Community Colleges. Computing Curricula 2009: Guidelines for Associate-Degree Transfer
Curriculum in Computer Science. ACM and IEEE Computer Society, 2009.
http://www.acmccecc.org/committee/CommitteeFileUploads/2009ComputerScience TransferGuid
elines.pdf

CMU/SEI-2011-TR-017 ‘ 49

http://www.aacc.nche.edu/AboutCC/Trends/Pages/studentsatcommunitycolleges.aspx
http://www.abet.org/
http://www.acm.org/about/se-code
http://www.acm.org/about/se-code
http://www.acm.org/serving/se/code.htm

[ACM 2011]
Association for Computing Machinery (ACM) Inc. ACM Code of Ethics and Professional
Conduct. http://www.acm.org/constitution/code.html (2011).

[ACM CCECC 2009a]
ACM Committee for Computing Education in Community Colleges (CCECC). Program Details:
Computer Science. http://www.acmccecc.org/pgm_inventory/programdetail.aspx?pID=38 (2009).

[ACM CCECC 2009b]

ACM Committee for Computing Education in Community Colleges (CCECC). Assessment
Rubric for Course Learning Outcomes: Computer Science I.
http://www.acmccecc.org/reports/report_assessmentRubric.aspx?cID=43 (2009).

[ACM CCECC 2009c]

ACM Committee for Computing Education in Community Colleges (CCECC). Assessment
Rubric for Course Learning Outcomes: Computer Science I1.
http://www.acmccecc.org/reports/report_assessmentRubric.aspx?cID=47 (2009).

[ACM CCECC 2009d]

ACM Committee for Computing Education in Community Colleges (CCECC). Assessment
Rubric for Course Learning Outcomes: Computer Science II1. http://www.
acmccecc.org/reports/report_assessmentRubric.aspx?cID=98 (2009).

[ACM CCECC 2009¢]
ACM Committee for Computing Education in Community Colleges (CCECC). Program Details:
Software Engineering. http://acmccecc.org/pgm_inventory/programdetail.aspx?pID=40 (2009).

[ACM CCECC 2009f]

ACM Committee for Computing Education in Community Colleges (CCECC). Course Details:
Introduction to Software Engineering.

http://acmccecc.org/course _inventory/coursedetail.aspx?cID=113 (2009).

[Allen 2008]

Allen, Julia H.; Barnum, Sean; Ellison, Robert J.; McGraw, Gary; & Mead, Nancy R. Chapters 1,
7, and 8 in Software Security Engineering: A Guide for Project Managers. Addison-Wesley
Professional, 2008.

[Bishop 2003]
Bishop, Matt. Computer Security: Art and Science. Addison-Wesley, 2003.

[Bloom 1956]

Bloom, B. S., ed. Taxonomy of Educational Objectives: The Classification of Educational Goals:
Handbook I, Cognitive Domain. Longmans, 1956.

CMU/SEI-2011-TR-017 ‘ 50

http://www.acm.org/constitution/code.html
http://www.acmccecc.org/pgm_inventory/programdetail.aspx?pID=38
http://www.acmccecc.org/reports/report_assessmentRubric.aspx?cID=43
http://www.acmccecc.org/reports/report_assessmentRubric.aspx?cID=47
http://www.capspace.org/reports/report_assessmentRubric.aspx?cID=98
http://www.capspace.org/reports/report_assessmentRubric.aspx?cID=98
http://acmccecc.org/pgm_inventory/programdetail.aspx?pID=40
http://acmccecc.org/course_inventory/coursedetail.aspx?cID=113

[CERT 2007]
CERT. Survivability and Information Assurance Curriculum. Software Engineering Institute,
Carnegie Mellon University. http://www.cert.org/sia/ (2007).

[Chen 2008]
Chen, Grace. “The Reverse Transfer Process.” Community College Review. 2008.
http://www.communitycollegereview.com/articles/22

[Chronicle Research Services 2009]

Chronicle Research Services. The College of 2020: Students. 2009.
http://www.compassknowledge.com/wp-content/uploads/2010/04/06-2009-The-2020-Students-
Part-10f-3-The-Chronicle-of-HE.pdf

[CNSS 2009]
Committee on National Security Systems (CNSS). Instruction No. 4009, National Information
Assurance Glossary. Revised June 2009.

[CCRC 2011]
Community College Research Center (CCRC). History/Mission.
http://ccre.tc.columbia.edu/History.asp (2011).

[Cooper 2010]

Cooper, Stephen; Nickell, Christine; Pérez, Lance C.; Oldfield, Brenda; Brynielsson, Joel; Gencer
Gokce, Asim; Hawthorne, Elizabeth K.; Klee, Karl J.; Lawrence, Andrea; & Wetzel, Susanne.
Towards Information Assurance (I4) Curricular Guidelines (ITiICSE 2010 Working Group
Report). ACM, 2010. http://delivery.acm.org/10.1145/1980000/1971686/p49-
cooper.pdf?key1=1971686&key2=6295195031&coll=DL&dI=ACM&ip=128.237.28.14&CFID=
22435773&CFTOKEN=11620354

[CyberWatch 2011]

CyberWatch. College Curriculum.
http://www.cyberwatchcenter.org/index.php?option=com_content&view=article&id=99&Itemid=
64 (Accessed June 2011). Note: Downloading the curriculum requires registration.

[DHS 2011a]
Department of Homeland Security (DHS) Software Assurance (SwWA). Build Security In.
https://buildsecurityin.us-cert.gov/daisy/bsi/home.html (2011).

[DHS 2011b]
Department of Homeland Security (DHS) Software Assurance (SwA) Workforce Education and

Training Working Group. Software Assurance CBK/Principles Organization.
https://buildsecurityin.us-cert.gov/bsi/dhs/927-BSLhtml (2011).

CMU/SEI-2011-TR-017 ‘ 51

http://www.cert.org/sia/
http://ccrc.tc.columbia.edu/History.asp
http://delivery.acm.org/10.1145/1980000/1971686/p49-cooper.pdf?key1=1971686&key2=6295195031&coll=DL&dl=ACM&ip=128.237.28.14&CFID=22435773&CFTOKEN=11620354
http://delivery.acm.org/10.1145/1980000/1971686/p49-cooper.pdf?key1=1971686&key2=6295195031&coll=DL&dl=ACM&ip=128.237.28.14&CFID=22435773&CFTOKEN=11620354
http://delivery.acm.org/10.1145/1980000/1971686/p49-cooper.pdf?key1=1971686&key2=6295195031&coll=DL&dl=ACM&ip=128.237.28.14&CFID=22435773&CFTOKEN=11620354
https://buildsecurityin.us-cert.gov/daisy/bsi/home.html
https://buildsecurityin.us-cert.gov/bsi/dhs/927-BSI.html

[Hughes 2011]

Hughes, Katherine. “CTE Dual Enrollment: Preparing Students for College and Careers.”
Presented at the CA Community College Association for Occupational Education Conference.
2011.
http://ccre.te.columbia.edu/DefaultFiles/SendFileToPublic.asp?ft=pdf&FilePath=c:\Websites\ccrc
_tc_columbia_edu documents\332 914.pdf&fid=332 914&aid=47&RID=914&pf=Publication.a
sp?UID=914

[Huitt 2006]
Huitt, W. “The cognitive system.” Educational Psychology Interactive. Valdosta State University,
http://www.edpsycinteractive.org/topics/cogsys/cogsys.html (2006).

[IEEE-CS 2001]

IEEE Computer Society (IEEE-CS) & Association for Computing Machinery (ACM). Computing
Curricula 2001: Computer Science, Final Report.
http://www.acm.org/education/curric_vols/cc2001.pdf (2001).

[IEEE-CS 2004a]

IEEE Computer Society (IEEE-CS) & Association for Computing Machinery (ACM). “Computer
Engineering 2004: Curriculum Guidelines for Undergraduate Degree Programs in Computer
Engineering.” Computing Curriculum Series.
http://www.acm.org/education/education/curric_vols/CE-Final-Report.pdf (2004).

[IEEE-CS 2004b]

IEEE Computer Society (IEEE-CS) & Association for Computing Machinery (ACM). “Software
Engineering 2004: Curriculum Guidelines for Undergraduate Degree Programs in Software
Engineering.” Computing Curriculum Series. http:/sites.computer.org/ccse/SE2004Volume.pdf
(2004).

[IEEE-CS 2008]

The Association for Computing Machinery (ACM) & IEEE Computer Society (IEEE-CS).
“Computer Science Curriculum 2008: An Interim Revision of CS 2001.” Computing Curriculum
Series. http://www.acm.org/education/curricula/ComputerScience2008.pdf (2008).

[IEEE-CS 2011]
IEEE Computer Society. [EEE Computer Society Educational Activities Board.
http://www.computer.org/education/ (2011).

[ISSEc 2009]

Integrated Software & Systems Engineering Curriculum (iSSEc) Project. Graduate Sofiware
Engineering 2009 (GSwE2009) Curriculum Guidelines for Graduate Degree Programs in
Software Engineering, Version 1.0. Stevens Institute of Technology, 2009.

CMU/SEI-2011-TR-017 ‘ 52

http://chiron.valdosta.edu/whuitt/col/cogsys/cogsys.html%20(2006
http://chiron.valdosta.edu/whuitt/col/cogsys/cogsys.html%20(2006
http://www.acm.org/education/curric_vols/cc2001.pdf
http://www.acm.org/education/education/curric_vols/CE-Final-Report.pdf
http://sites.computer.org/ccse/SE2004Volume.pdf
http://www.computer.org/education/

[Mead 2010a]

Mead, Nancy R.; Allen, Julia H.; Ardis, Mark; Hilburn, Thomas B.; Kornecki, Andrew J.; Linger,
Rick; & McDonald, James. Software Assurance Curriculum Project Volume I: Master of Sofiware
Assurance Reference Curriculum (CMU/SEI-2010-TR-005). Software Engineering Institute,
Carnegie Mellon University, 2010. http://www.sei.cmu.edu/library/abstracts/reports/10tr005.cfm

[Mead 2010b]

Mead, Nancy R.; Hilburn, Thomas B.; & Linger, Rick. Sofiware Assurance Curriculum Project
Volume II: Undergraduate Course Outlines (CMU/SEI-2010-TR-019). Software Engineering
Institute, Carnegie Mellon University, 2010.
http://www.sei.cmu.edu/library/abstracts/reports/10tr019.cfm

[Mead 2011]

Mead, Nancy R.; Allen, Julia H.; Ardis, Mark; Hilburn, Thomas B.; Kornecki, Andrew J.; &
Linger, Rick. Software Assurance Curriculum Project Volume III: Master of Software Assurance
Course Syllabi (CMU/SEI-2011-TR-013). Software Engineering Institute, Carnegie Mellon
University, 2011. http://www.sei.cmu.edu/library/abstracts/reports/11tr013.cfm

[Merkow 2010]
Merkow, Mark S. & Raghavan, Lakshmikanth. Secure and Resilient Software Development. CRC
Press, 2010 (ISBN: 9781439826966).

[Moltz 2009]
Moltz, David. “The New Reverse Transfer.” Inside Higher Ed. 2009.
http://www.insidehighered.com/news/2009/02/18/reverse

[Quinley 1988]

Quinley, John W. & Quinley, Melissa P. Four-Year Graduates Attending Community Colleges.: A
New Meaning for the Term “Second Chance.” Community College Research Center, 1988.
http://ccre.te.columbia.edu/DefaultFiles/SendFileToPublic.asp?ft=pdf&FilePath=c:\Websites\ccrc
_tc_columbia_edu documents\332 41.pdf&fid=332 41&aid=47&RID=41&pf=Publication.asp?
UID=41

[Seacord 2005]
Seacord, Robert C. Secure Coding in C and C++. Addison-Wesley, 2005.

[Stallings 2007]
Stallings, W. Network Security Essentials, 3" Ed. Prentice Hall, Upper Saddle River, NJ, 2007.

[Stevens 2004]

Stevens, Danielle D. & Levi, Antonia J. Introduction to Rubrics: An Assessment Tool to Save
Grading Time, Convey Effective Feedback, and Promote Student Learning, Stylus Publishing,
Virginia (2004).

CMU/SEI-2011-TR-017 ‘ 53

http://www.sei.cmu.edu/library/abstracts/reports/10tr005.cfm
http://www.sei.cmu.edu/library/abstracts/reports/10tr019.cfm

[Redwine 2010]
Redwine, Samuel T., Jr. Secure Sofiware Engineering Education. https://buildsecurityin.us-
cert.gov/swa/downloads/JMU_SSE.pdf (Accessed August 2010).

[Stoneburner 2004]

Stoneburner Gary; Hayden,Clark; & Feringa, Alexis. “Engineering Principles for Information
Technology Security (A Baseline for Achieving Security), Revision A (NIST Special Publication
800-27 Rev A).” Computer Security. Computer Science Division, Information Technology
Laboratory, National Institute of Standards and Technology, 2004.
http://csrc.nist.gov/publications/nistpubs/800-27A/SP800-27-RevA.pdf

[Taylor 2008]
Taylor, B. & Shiva Azadegan, “Moving beyond security tracks: Integrating security in CS0 and
CS1.” Presented at Special Interest Group Computer Science Education (SIGCSE). ACM, 2008.

[Wright 2006]
Wright, Marie & Kakalik, John. Information Security: Contemporary Cases. Jones & Bartlett
Publishers, 2006.

CMU/SEI-2011-TR-017 ‘ 54

http://csrc.nist.gov/publications/nistpubs/800-27A/SP800-27-RevA.pdf

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments
regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington
Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to
the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY 2. REPORT DATE
(Leave Blank) September 2011

3. REPORT TYPE AND DATES
COVERED

Final

4. TITLE AND SUBTITLE

5. FUNDING NUMBERS

Software Assurance Curriculum Project Volume IV: Community College Education FA8721-05-C-0003

6. AUTHOR(S)
Nancy R. Mead, Elizabeth K. Hawthorne, and Mark Ardis

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

CMU/SEI-2011-TR-017

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

HQ ESC/XPK
5 Eglin Street
Hanscom AFB, MA 01731-2116

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

ESC-TR-2011-017

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT
Unclassified/Unlimited, DTIC, NTIS

12B DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)

The fourth volume in the Software Assurance Curriculum Project led by a team at the Software Engineering Institute, this report focuses
on community college courses for software assurance. The report includes a review of related curricula, outcomes and body of
knowledge, expected background of target audiences, and outlines of six courses. The courses are intended to provide students with
fundamental skills for continuing with graduate-level education or to provide supplementary education for students with prior
undergraduate technical degrees who wish to become more specialized in software assurance.

Previous volumes of this project are Volume I: Master of Software Assurance Reference Curriculum, Volume II: Undergraduate Course

Outlines, and Volume IlI: Software Assurance Course Syllabi.

14. SUBJECT TERMS

15. NUMBER OF PAGES

software assurance, software assurance education, software engineering education, software 65

security education, community college education

16. PRICE CODE

17. SECURITY CLASSIFICATION OF 18. SECURITY CLASSIFICATION
REPORT OF THIS PAGE
Unclassified Unclassified

19. SECURITY CLASSIFICATION | 20. LIMITATION OF
OF ABSTRACT ABSTRACT

Unclassified UL

NSN 7540-01-280-5500

Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18

298-102

CMU/SEI-2011-TR-017 ‘ 55

	Software Assurance Curriculum Project Volume IV: Community College Education
	Table of Contents
	List of Tables
	Acknowledgments
	Abstract
	1 Introduction
	Definition of Software Assurance

	2 Review of Related Curricula
	CyberWatch Information Assurance Curriculum
	Software Engineering 2004 (SE 2004) Curriculum Guidelines for Undergraduate Degree Programs in Software Engineering
	ACM Committee for Computing Education in Community Colleges (CCECC) Computer Science Curriculum
	Information Assurance (IA) Curricula Guidelines (ITiCSE WG Guidelines)
	Survivability and Information Assurance (SIA) Curriculum
	IEEE-CS and ACM Computing Curricula 2001 (CC 2001)
	IEEE-CS and ACM Computing Curricula 2008 (CS 2008)
	Software Assurance Undergraduate Course Outlines
	Conclusions

	3 Outcomes and Body of Knowledge
	4 Target Audience and Expected Background
	5 Overview of Courses
	6 Computer Science I
	Course Description
	Prerequisites
	Co-Requisite
	Syllabus
	Sources
	Additional Items
	Course Assessment Features

	7 Computer Science II
	Course Description
	Prerequisites
	Co-Requisite
	Syllabus
	Sources
	Additional Items
	Course Assessment Features

	8 Computer Science III
	Course Description
	Prerequisites
	Syllabus
	Sources
	Additional Items
	Course Assessment Features

	9 Introduction to Computer Security
	Course Description
	Prerequisites
	Outline
	Sources
	Additional Items
	Course Delivery Features

	Course Assessment Features

	10 Secure Coding
	Course Description
	Prerequisites and Co-Requisites
	Syllabus
	Sources
	Additional Items
	Course Delivery Features

	Course Assessment Features

	11 Introduction to Assured Software Engineering
	Course Description
	Prerequisite
	Co-Requisite
	Syllabus
	Sources
	Additional Items
	Course Delivery Features

	Course Assessment Features

	12 Resources
	Computer Science I
	Computer Science II
	Computer Science III
	Introduction to Computer Security
	Secure Coding
	Introduction to Assured Software Engineering
	Websites of Interest
	Build Security In
	CERT Podcasts
	National Software Assurance Repository
	SEI Virtual Training Environment
	Software Assurance Community Resource Information Clearinghouse

	Appendix A: Related Curricula
	Software Engineering 2004 (SE 2004) Curriculum Guidelines for Undergraduate Degree Programs in Software Engineering
	ACM Committee for Computing Education in Community Colleges (CCECC) Computer Science Curriculum
	Conference on Innovation and Technology in Computer Science Education (ITiCSE) Information Assurance Curriculum Guidelines Working Group Guidelines
	Survivability and Information Assurance (SIA) Curriculum
	Computing Curricula 2001
	Computer Science Curriculum 2008
	Software Assurance Undergraduate Course Outlines

	Appendix B: Bloom’s Taxonomy and the GSwE2009
	Appendix C: Community College Profiles
	Students at Community Colleges (According to the American Association for Community Colleges)
	Community College Research Center located at Columbia University, Teachers College
	CTE Dual Enrollment: Preparing Students for College and Careers

	Appendix D: Relevant Research Articles
	Bibliography

<<

 /ASCII85EncodePages false

 /AllowTransparency false

 /AutoPositionEPSFiles true

 /AutoRotatePages /None

 /Binding /Left

 /CalGrayProfile (Dot Gain 20%)

 /CalRGBProfile (sRGB IEC61966-2.1)

 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)

 /sRGBProfile (sRGB IEC61966-2.1)

 /CannotEmbedFontPolicy /Error

 /CompatibilityLevel 1.4

 /CompressObjects /Tags

 /CompressPages true

 /ConvertImagesToIndexed true

 /PassThroughJPEGImages true

 /CreateJobTicket false

 /DefaultRenderingIntent /Default

 /DetectBlends true

 /DetectCurves 0.0000

 /ColorConversionStrategy /CMYK

 /DoThumbnails false

 /EmbedAllFonts true

 /EmbedOpenType false

 /ParseICCProfilesInComments true

 /EmbedJobOptions true

 /DSCReportingLevel 0

 /EmitDSCWarnings false

 /EndPage -1

 /ImageMemory 1048576

 /LockDistillerParams false

 /MaxSubsetPct 100

 /Optimize true

 /OPM 1

 /ParseDSCComments true

 /ParseDSCCommentsForDocInfo true

 /PreserveCopyPage true

 /PreserveDICMYKValues true

 /PreserveEPSInfo true

 /PreserveFlatness true

 /PreserveHalftoneInfo false

 /PreserveOPIComments true

 /PreserveOverprintSettings true

 /StartPage 1

 /SubsetFonts true

 /TransferFunctionInfo /Apply

 /UCRandBGInfo /Preserve

 /UsePrologue false

 /ColorSettingsFile ()

 /AlwaysEmbed [true

]

 /NeverEmbed [true

]

 /AntiAliasColorImages false

 /CropColorImages true

 /ColorImageMinResolution 300

 /ColorImageMinResolutionPolicy /OK

 /DownsampleColorImages true

 /ColorImageDownsampleType /Bicubic

 /ColorImageResolution 300

 /ColorImageDepth -1

 /ColorImageMinDownsampleDepth 1

 /ColorImageDownsampleThreshold 1.50000

 /EncodeColorImages true

 /ColorImageFilter /DCTEncode

 /AutoFilterColorImages true

 /ColorImageAutoFilterStrategy /JPEG

 /ColorACSImageDict <<

 /QFactor 0.15

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /ColorImageDict <<

 /QFactor 0.15

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /JPEG2000ColorACSImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 30

 >>

 /JPEG2000ColorImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 30

 >>

 /AntiAliasGrayImages false

 /CropGrayImages true

 /GrayImageMinResolution 300

 /GrayImageMinResolutionPolicy /OK

 /DownsampleGrayImages true

 /GrayImageDownsampleType /Bicubic

 /GrayImageResolution 300

 /GrayImageDepth -1

 /GrayImageMinDownsampleDepth 2

 /GrayImageDownsampleThreshold 1.50000

 /EncodeGrayImages true

 /GrayImageFilter /DCTEncode

 /AutoFilterGrayImages true

 /GrayImageAutoFilterStrategy /JPEG

 /GrayACSImageDict <<

 /QFactor 0.15

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /GrayImageDict <<

 /QFactor 0.15

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /JPEG2000GrayACSImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 30

 >>

 /JPEG2000GrayImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 30

 >>

 /AntiAliasMonoImages false

 /CropMonoImages true

 /MonoImageMinResolution 1200

 /MonoImageMinResolutionPolicy /OK

 /DownsampleMonoImages true

 /MonoImageDownsampleType /Bicubic

 /MonoImageResolution 1200

 /MonoImageDepth -1

 /MonoImageDownsampleThreshold 1.50000

 /EncodeMonoImages true

 /MonoImageFilter /CCITTFaxEncode

 /MonoImageDict <<

 /K -1

 >>

 /AllowPSXObjects false

 /CheckCompliance [

 /None

]

 /PDFX1aCheck false

 /PDFX3Check false

 /PDFXCompliantPDFOnly false

 /PDFXNoTrimBoxError true

 /PDFXTrimBoxToMediaBoxOffset [

 0.00000

 0.00000

 0.00000

 0.00000

]

 /PDFXSetBleedBoxToMediaBox true

 /PDFXBleedBoxToTrimBoxOffset [

 0.00000

 0.00000

 0.00000

 0.00000

]

 /PDFXOutputIntentProfile ()

 /PDFXOutputConditionIdentifier ()

 /PDFXOutputCondition ()

 /PDFXRegistryName ()

 /PDFXTrapped /False

 /CreateJDFFile false

 /Description <<

 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>

 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>

 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>

 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>

 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>

 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>

 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>

 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>

 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>

 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>

 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>

 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>

 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)

 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>

 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>

 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>

 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>

 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>

 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>

 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)

 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>

 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>

 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>

 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>

 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>

 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>

 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>

 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>

 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>

 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>

 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>

 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)

 >>

 /Namespace [

 (Adobe)

 (Common)

 (1.0)

]

 /OtherNamespaces [

 <<

 /AsReaderSpreads false

 /CropImagesToFrames true

 /ErrorControl /WarnAndContinue

 /FlattenerIgnoreSpreadOverrides false

 /IncludeGuidesGrids false

 /IncludeNonPrinting false

 /IncludeSlug false

 /Namespace [

 (Adobe)

 (InDesign)

 (4.0)

]

 /OmitPlacedBitmaps false

 /OmitPlacedEPS false

 /OmitPlacedPDF false

 /SimulateOverprint /Legacy

 >>

 <<

 /AddBleedMarks false

 /AddColorBars false

 /AddCropMarks false

 /AddPageInfo false

 /AddRegMarks false

 /ConvertColors /ConvertToCMYK

 /DestinationProfileName ()

 /DestinationProfileSelector /DocumentCMYK

 /Downsample16BitImages true

 /FlattenerPreset <<

 /PresetSelector /MediumResolution

 >>

 /FormElements false

 /GenerateStructure false

 /IncludeBookmarks false

 /IncludeHyperlinks false

 /IncludeInteractive false

 /IncludeLayers false

 /IncludeProfiles false

 /MultimediaHandling /UseObjectSettings

 /Namespace [

 (Adobe)

 (CreativeSuite)

 (2.0)

]

 /PDFXOutputIntentProfileSelector /DocumentCMYK

 /PreserveEditing true

 /UntaggedCMYKHandling /LeaveUntagged

 /UntaggedRGBHandling /UseDocumentProfile

 /UseDocumentBleed false

 >>

]

>> setdistillerparams

<<

 /HWResolution [72 72]

 /PageSize [612.000 792.000]

>> setpagedevice

