
Technical Report
CMU/SEI-87-TR-7
ESD-TR-87-108

Tool Interface Technology
Joe Newcomer

March 1987

Tool Interface Technology

��

Software Engineering Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

Technical Report
CMU/SEI-87-TR-7

ESD-TR-87-108
March 1987

Joe Newcomer

Unlimited distribution subject to the copyright.

This report was prepared for the SEI Joint Program Office HQ ESC/AXS

5 Eglin Street

Hanscom AFB, MA 01731-2116

The ideas and findings in this report should not be construed as an official DoD position. It is
published in the interest of scientific and technical information exchange.

FOR THE COMMANDER

(signature on file)

Thomas R. Miller, Lt Col, USAF, SEI Joint Program Office

This work is sponsored by the U.S. Department of Defense.

Copyright 1987 by Carnegie Mellon University.

Permission to reproduce this document and to prepare derivative works from this document for internal use is granted, provided the copyright and \‘No Warranty\’

statements are included with all reproductions and derivative works. Requests for permission to reproduce this document or to prepare derivative works of this

document for external and commercial use should be addressed to the SEI Licensing Agent.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN \‘AS-IS\’ BASIS. CARNEGIE

MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED

TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTIBILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL.

CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR

COPYRIGHT INFRINGEMENT.

This work was created in the performance of Federal Government Contract Number F19628-95-C-0003 with Carnegie Mellon University for the operation of the

Software Engineering Institute, a federally funded research and development center. The Government of the United States has a royalty-free government-purpose

license to use, duplicate, or disclose the work, in whole or in part and in any manner, and to have or permit others to do so, for government purposes pursuant to

the copyright license under the clause at 52.227-7013.

This document is available through Research Access, Inc. / 800 Vinial Street / Pittsburgh, PA 15212. Phone: 1-800-685-6510. FAX: (412) 321-2994. RAI also

maintains a World Wide Web home page at http://www.rai.com

Copies of this document are available through the National Technical Information Service (NTIS). For information on ordering, please contact NTIS directly:

National Technical Information Service / U.S. Department of Commerce / Springfield, VA 22161. Phone: (703) 487-4600.

This document is also available through the Defense Technical Information Center (DTIC). DTIC provides acess to and transfer of scientific and technical

information for DoD personnel, DoD contractors and potential con tractors, and other U.S. Government agency personnel and their contractors. To obtain a copy,

please contact DTIC directly: Defense Technical Information Center / 8725 John J. Kingman Road / Suite 0944 / Ft. Belvoir, VA 22060-6218. Phone:

1-800-225-3842 or 703-767-8222.

CMU/SEI-87-TR-7 1

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

CMU/SEI-87-TR-7 1

Tool Interface Technology

Foreword

The Technology Identification and Assessment Project combined a number of related investiga-
tions to identify:

• existing technology in a specific problem area to review research and development
results, and commercially available products;

• new technologies through regular reviews of research and development results, peri-
odic surveys of specific areas, and identification of particularly good examples of the
application of specific technologies;

• requirements for new technology through continuing studies of software development
needs within the DoD, and case studies of both successful and unsuccessful
projects.

Technology assessment involves understanding the software development process, determining
the potential of new technology for solving significant problems, evaluating new software tools
and methods, matching existing technologies to needs, and determining the potential payoff of
new technologies. Assessment activities of the project focused on core technology areas for
software engineering environments.
This report is one of a series of survey reports. It is not intended to provide an exhaustive
discussion of topics pertinent to the area of user interface technology. Rather, it is intended as an
informative review of the technology surveyed. These surveys were conducted in late 1985 and
early 1986.

Members of the project recognized that more general technology surveys have been conducted
by other investigators. The project did not attempt to duplicate those surveys, but focused on
points not addressed in those surveys. The goal in conducting the SEI surveys was not to
describe the technology in general, but to emphasize issues that have either a strong impact on
or are unique to software engineering environments. The objective in presenting these reports is
to provide an overview of the technologies that are core to developing software engineering
environments.

1. Introduction

One of the key areas in which project members were interested was tool interface technology.
This report discusses the need for tool interfaces and some of the current trade-offs in tool inter-
face technology, emphasizing the trade-offs between homogeneous and heterogeneous tools.
By highlighting some of the major issues, this report reflects the state of the technology today.

2 CMU/SEI-87-TR-7

2. Tool Interface Technology

The fundamental goal of tool interface technology is to make it possible for many independent
hardware/software components to share information. While there are many low-level tech-
nologies that allow the sharing of information (e.g., object file formats common among many
languages), the growing complexity of tooling and information, and the realization that coding is
but a small part of the problem indicates that more sophisticated tools are needed.

The notion of software development environment technology implies that information is shared at
all levels — not only at the "manufacturing" level, but also at administrative and support levels —
and shared at all times during the complete product life cycle. Initial requirements specification,
problem analysis, system design, coding, testing, product delivery and distribution, maintenance,
and even obsolescence are all activities that need to share complex information in increasingly
critical ways.

Part of the technological problem is that many of the tools currently employed at these levels are
not designed to work together toward a common goal. Word processing/document processing
systems used in the requirements documents do not create structures that can be used to trace
design decision. Project planning and management tools do not have interfaces to the actual
task tools, e.g., directing the development of the program by direct input of the project plan.
Implementation tools do not have provisions to feed information back to the project management
tools, e.g., project tracking by direct analysis of the programming environment database.

Even within tasks there is little provision for sharing; for example, some project management
tasks can best be handled by a spreadsheet capability, while the output from the spreadsheet
might then be used to manipulate the project dependency graph. Currently such independent
programs have no connections; one must have "integrated" tools designed to handle the com-
plete task.

A limitation of monolithic integrated systems is the difficulty of incorporating new ideas into the
system. New ideas, new tools, and new needs can suddenly make the integrated system a
problem rather than a solution.

An alternative approach to the highly integrated monolithic tool sets is the nearly uncontrolled
anarchy of some other environments. It is easy to create or add new tools or replace old tools,
but there is little control or standardization at the interfaces. Interfaces that are not fully specified
can lead to surprising behavior when the valid (but undocumented) output of one tool doesn’t fit
the specification for the input of a subsequent tool. Also, growth and extension of such anarchic
toolsets presents significant managerial problems. The major thrust in tool interfacing over the
next few years should be to develop a technology that allows the following:

• controlled but uninhibited growth,

• interfacing between new technologies and existing technologies, and

• interfacing of relevant but independently developed programs — within tasks, across
tasks, and at the supra-task levels of project management and administration.

CMU/SEI-87-TR-7 3

It is important to remember that stronger type mechanisms in programming languages or better
data description mechanisms in conventional databases will not be adequate. Strong typing is
actually an extremely weak form of semantic consistency specification. To interchange infor-
mation among diverse applications, a stronger approach to semantic consistency is necessary.
The database approach is also syntactic, since it provides no intrinsic mechanisms that preserve
semantic consistency. Semantic consistency must be maintained by specifications and
mechanisms outside the applications programs that manipulate subsets of the information; other-
wise, the complexity is limited, and growth quickly becomes impossible because every application
program must be updated to maintain consistency with each new relation or its equivalent. This
suggests that future interface specification development should emphasize more precise seman-
tic specification.

Interfacing diverse tools will become a key problem in constructing sophisticated software
development environment technology. Sources of important ideas and programs or the hardware
they will use cannot be anticipated; the best or the most appropriate technology should be in-
tegrated as it emerges.

Integration may take the form of specifying and adopting standards. Many standards are in
place, but many more need to be specified. New tooling can be developed with these interface
standards in mind. However, older tooling and tooling that needs to use information in a form
different than that for which it was developed (whether non-standardized information, information
adhering to an older standard, or information in simply a different but standardized form) must be
accommodated. This can be done by providing mapping functions that transform information on
input and/or output between the desired forms. In the presence of pervasive information, this
again demonstrates the value of handling semantic consistency with data specification in an
active database rather than with the mapping programs.

For example, a simple "UNIX1 pipe" approach to interfacing data in form "A" to data in form "B"
suitable for processing via a program "B" might be:

1UNIX is a registered trademark of Bell Laboratories.

4 CMU/SEI-87-TR-7

But the problem is much more serious when the scenario is:

The A format view represents a way to get the information from the database, but it is still in a
database-relative format (e.g., a set of relations). The A-to-B transformer must convert this infor-
mation to a suitable form for B to manipulate, and the output from B must be fed back into the
database, possibly updating the information that produced the original A format view. Consis-
tency and correctness of the database must be maintained, even though the A view is a subset of
the total information available and other relations might be affected by the updating process as
the output from B is fed back into the database.

The technology for dealing with these mappings is new; there is now a product available [5] that
handles some of the remapping problems, but the deeper problems remain.

3. Issues

To discuss the problems in tool interfacing, an overview is presented that is intended to capture
the essence of some of the problems without going into detail.

The basic goal of tool interface technology is to make it possible to interconnect the components
of a system by providing a mechanism for passing information among them. For simple tools and
information structures this can be quite straightforward, e.g., a trigonometric routine taking an
input value and producing an output value. However, as the nature and complexity of the infor-
mation changes, simple mechanisms are no longer adequate.

Simple type mechanisms were introduced to attempt to maintain consistency at the interface
level; thus, one could not pass an integer to a procedure expecting a double-precision real num-
ber. Even this simple type mechanism is not available in many languages that support separate

CMU/SEI-87-TR-7 5

compilation because the type consistency cannot be enforced across compilation boundaries.
More modern languages, compilers, and environments provide better support (e.g., Ada,
Modula-2 and C/lint), but mechanisms alone do not suffice if they are not used properly; for
example, one must actually define and create types. Passing a real number whose units are
degrees to a procedure that accepts a real number whose units are radians is often valid, but
produces surprising results.

Tool interface technology is well developed in the EDP/Database world. Various mechanisms
allow applications programs to run unchanged in spite of changes in the structure and organiza-
tion of the underlying database, as long as the abstractions required are preserved. Many of
these mechanisms, however, cannot be applied generally to the complex information processing
that is beginning to characterize programming and project environments.

Conventional EDP databases tend to involve a small number of scalar types, usually of fixed size,
and a small number of relations easily expressed in terms of those scalar types. Although one
can produce very complex structures in this way, the structures are usually examined along
certain restricted dimensions at any one time. A simple characterization is that there are many
instances of a few types, and any step in the processing involves a very small number of relation-
ships among these types. The patterns of computation are almost always predictable, occurring
at fixed, known intervals (e.g., daily, weekly, quarterly), and careful analysis of time/space costs
based on the known transaction style can allow the system architect to predict reasonably ac-
curately the throughput of the system.

The more complex information of lifecycle-pervasive environments — those that try to support all
aspects from the requirements assessment through post-deployment support — involves a small
number of instances, each of many types, whose fine structures are complex and not of predeter-
mined length; and there are many relationships among the types. Furthermore, the usage pat-
terns are not a priori determinable, since they depend upon particular project management
strategies, needs for information, and events that are neither regular nor frequent.

A new property that these systems introduce to software development is the presence of
persistent information, a property well-known in the EDP community. Over the lifetime of the
project, the database must not only support a heterogeneous collection of information (including
graphs, program source, documentation, test data, customer reports, etc.), but also must be
available for new tooling as it is introduced. The classical collection of text files organized by file
name or directory name is not capable of coping with this class of problems, largely because of
the unstructured nature of such information.

As more structure is imposed on the information, the needs of unanticipated new technology must
be addressed. This technology will also deal with the information and its relations in ways far
more complex than the currently available, simple relational database models can support; and
they must do so efficiently. Imposing a new structural layer onto an existing database system has
the potential of incurring unacceptably high performance costs. Nonetheless, this may be the
most effective way (given current technology) to explore the deeper issues of such a structure.

6 CMU/SEI-87-TR-7

4. Issues in Interfacing

The following subsections represent a list of issues in interfacing. For each issue, motivations for
their choice and cost/flexibility trade-offs are given. Some promising new approaches will then be
discussed.

4.1. Memory Resident Interfaces
These interfaces are characterized by data that typically have a brief existence ranging from a
few microseconds (e.g. a stack frame) to hours (a long program run). Only a few anomalous
cases occur, e.g., operating system data structures that may persist for months if the hardware
and software are reliable. However, the interfaces usually are not transmitted external to the
program’s address space. They are usually recreated when the program starts execution and do
not persist beyond the (normal or abnormal) termination of the program. Memory interfaces are
also seen as highly reliable interfaces at the bit level; there is rarely any error in the transmittal of
the physical data. The interpretation of that data, of course, is a different problem; strongly-typed
languages are an approach to syntactic correctness of the information, but not sufficiently power-
ful to guarantee its semantic correctness.

These interfaces are not particularly flexible; once an instance of such an interface strategy is
determined (usually by a compiler), a strong commitment is made to its representation. It usually
cannot be changed without regenerating the system, e.g., recompiling and relinking in the
simplest case. The cost of a change can be unacceptably high when a complex set of inter-
actions encompassing several modules, plus acceptance testing, is involved.

4.2. Message Passing Interfaces
These interfaces are characterized by a brief existence (the transmittal time of the message), but
are usually transmitted external to the program’s address space. Messages are created, trans-
mitted, received, and destroyed. Significant considerations here include the fact that the infor-
mation may be transmitted in a heterogeneous environment and is frequently very simple in
structure. However, it is usually assumed that the transport mechanism is unreliable; and at
some level of abstraction, it is no longer safe to assume that a message sent is a message
received.

The need for portability often places a limitation on the complexity of the information passed
through a message. Pointers to other data structures are classically hard to encode, so what is
usually passed consists of one or more records or sequences of scalar values. However, scalars
also have their limitations (see 4.4).

Remote Procedure Call (RPC) mechanisms are an interesting extension, and one that is becom-
ing more important in modern distributed computing. In RPC, the parameter passing mechanism
may have to pass complex information structures; if it passes them by reference instead of by
value, additional complications occur; and if the structures contain pointers to other structures,
even more elaborate mechanisms must be included in the RPC mechanism. RPC also has all of
the complications engendered by message loss, receiver failure, etc., with additional complica-
tions of recovery. However, the power and flexibility of RPC are making it a potentially important

CMU/SEI-87-TR-7 7

replacement for some of the more limited message passing systems in distributed environments.
A significant contribution of RPC to programming methodology is that it frees the user from the
task of determining the site of the activation. In a fully general system this may involve schedul-
ing resources, such as finding an idle processor, in a manner that is completely transparent to the
user.

4.3. Persistent Interfaces
Persistent interfaces are those where the information being passed along the interface has an
existence quite independent of its creator. File systems and databases are classical instances.
The lifetime of such data is not only independent of the creating process, but in fact often ex-
ceeds the useful lifetime of the code that constituted the creating process. Revised programs
must be able to access this data without requiring reorganization of the information. Reorganiza-
tion may incur either prohibitive cost or simply be impossible.2 Thus, representation indepen-
dence, data dictionaries, and similar mechanisms have arisen in the EDP community in response
to a very real set of problems. These problems have been largely ignored in the computer
science community, where persistent data may have a lifetime of only weeks or months.

In programming environments, the information has the quality of the persistent interface. In a
5-year project, it should be possible not only to access the requirements documents from which
the project was created, but also to provide annotations, communication, feedback, traces, etc.,
of the current system relative to those initial documents. Change log histories from the beginning
of the project may be needed and should be accessible. However, the environment itself may
change over time, because there are new releases of tools or completely new tools introduced in
the environment, or new hardware that requires porting of the environment. None of these events
should cause critical information to be lost.

A number of factors seem to preclude the use of conventional DBMS technology from maintaining
this information. They include: structures such as graphical data structures; program sources of
indeterminate length; annotated post-semantic syntax tree representations (such as structure
editors use); and the need to establish relations at levels finer than the gross "file" level (for
example, forming a relation between a field bug report or feature upgrade request and the line or
two of code which performs it, or the paragraph in the revised requirements document that would
reflect a change in the specification.)

4.4. Structural Interfaces
As information becomes more complex, it is no longer possible to encode it effectively as simple
scalars. Some mechanisms which now exist are text encodings of trees, dags, or general cyclic
graphs. While allowing a general encoding, these mechanisms can be costly. Notably, the cost
of encoding as text, writing text, reading and parsing text, and encoding text as binary data can
be quite high. When text is used as a communication mechanism between tightly coupled com-
ponents of a system, significant performance costs can be incurred. However, such mechanisms

2The last machine that can read the magnetic tapes from the 1960 census is due for decommissioning soon. There is
apparently no way to transfer those tapes to a more modern medium, so they will be completely inaccessible.

8 CMU/SEI-87-TR-7

allow communication in heterogeneous environments; for example, if the text is limited to the 95
"printable" characters of the ASCII set, plus "newline" or other equivalent punctuation, such struc-
tures can be interchanged between various 8, 16, and 32-bit architectures.

Such changes do not occur without management and development costs. The readers and
writers must agree on the format of the information; unless a fully general mechanism (such as
extended S-expressions) can be used, each writer and reader must be individually handcrafted.
Changes in the structure will then require changes in all associated readers and writers. This can
be a formidable management task. Even with a fully general mechanism, the form and content of
the resulting data structure must be agreed upon. Ideally, existing code should be reasonably
impervious to change in the presence of upward-compatible changes.

Regardless of these problems, the importance of structural interfaces is increasing as more com-
plex information must be passed among system components. An example of a highly-structured
interface with a textual representation is the POSTSCRIPT3 system [1], an interface designed for
the transmittal of complex multifont documents.

4.5. Impact of Interface Considerations on Programming-in-the-Small
There is, as usual, a trade-off between flexibility and other parameters. For example, a data
structure access of the form

A.B.C (Ada)
A^.B^.C (Pascal)
A -> B -> C (C)

encodes very strongly the notion that the B field is a component in the record referred to by A and
is found at a distinct offset within that record. Pascal and C are even more problematic, since the
programmer must also encode the fact that A is a pointer to a record instance, and B is a pointer
found within that record (at a specific offset) which refers to a record that contains a C field. Such
programs contain no representation independence. Mechanisms that create record definitions
from a data-dictionary-like specification and require recompilation of the programs with the new
definitions help only a small part of the problem, since there is still a commitment to a represen-
tation at the source level.

Procedural interfaces introduce a level of abstraction; for example, the interface
C(B(A))

simply constrains the B operation to provide a piece of information when applied to the name A,
and the C operation, when applied to this value, delivers the desired result. There are those who,
with significant justification, argue that this approach provides entirely too much representation
information, and that the correct access is

C(A)

where the implementation decides (via its data dictionary) exactly how to find the C information
when given the object A.

Procedural interfaces are extremely clumsy to write, and they only solve the right-hand-side

3POSTSCRIPT is trademark of Adobe Systems Incorporated.

CMU/SEI-87-TR-7 9

(RHS) value; languages like Ada and Pascal do not permit procedures to return left-hand-side
(LHS) values. This means that LHS values require some other mechanism, e.g., using ’store’
procedures for assignment. These do not usually work when ’var’ (Pascal) or ’out’ or ’inout’ (Ada)
parameters are required, and the result is some fairly distorted code.

Procedural interfaces are typically very expensive at runtime. They are usually implemented by
compilers as the most general procedure-call mechanism. Very few compilers allow the user to
specify that the procedure (defined in a separate module) should be compiled inline or perform
such optimizations automatically.

Many of these problems do not arise in the DBMS/EDP community because the notion of pointers
is encoded as keys in relationships. The more general mapping shown above is a common
pattern: given a tuple A and another relation R, retrieve the corresponding C data. However, as
indicated earlier, the costs associated with these are quite different, and attempting to use such a
mechanism to manipulate the abstract syntax tree in real time in a screen-based structure editor
would not give adequate performance. This is because the nature of the relations and the usage
patterns of classical DBMS systems involve coarser-grained interaction on large quantities of
structurally identical information.

A mechanism that provides data independence and works naturally within the language, and
does not incur severe cost is necessary at the programming level. Although there are some
candidates for this, they do not respond to all of the problems.

5. Flexibility Requirements

There are two extreme positions of tool integration. In one model, the tool does everything; new
features are added by integrating new components into the tool. This rapidly becomes self-
limiting. By analogy, few people use a Swiss army knife, which includes knife blades and scis-
sors. If one adds a torque wrench, an oil filter removal tool, and a small astronomical telescope,
even fewer people would use it. Further, adding a new tool to the knife becomes increasingly
difficult.

The alternate extreme is analogous to selling an empty toolbox and providing a tool catalog.
While it allows customization, there is substantial overhead involved in identifying the right tools,
and significant problems occur if the toolbox does not have a space for them (adding a chain saw
or two-man crosscut to the average toolbox does pose certain technical difficulties). Connecting
the tools together, where that analogy applies, is substantially more complicated than buying a
3/8"-to-1/2" socket wrench adapter.

Somehow, new tools that interact in ways not yet predicted must be accommodated. In the case
of future computing systems, a variety of tools from all phases of the project lifecycle must be
integrated into something that actually supports a project across its lifetime: project planning
tools, documentation tools, accounting and cost tools, program construction tools, testing tools,
maintenance support tools, and many others.

10 CMU/SEI-87-TR-7

A single vendor, tool, or machine cannot be expected to support all of these requirements or even
a subset of them effectively. As technology becomes software driven, it will be less important
which hardware is chosen since software costs are now already dominating hardware costs (e.g.,
today, it is possible to install a $40,000 CAD software package on a $12,000 computation en-
gine.) Thus, preparations must be made to integrate programs into a computer and also to
integrate the computers that run those programs into an assemblage of other, heterogeneous,
computers that support various aspects of the project lifecycle.

6. Potential New Technologies

A system recently coming into use within the Ada community and elsewhere is the Interface
Description Language (IDL) data structure notation, used to specify the Diana representation for
Ada compiler intermediate representation [7]. IDL provides both a language-independent struc-
ture specification (allowing interface to multilanguage environments) and an interchange format
specification; however, for the latter case the specification does not preclude highly optimized
representations for tightly coupled systems. With certain careful engineering considerations
taken into account, an IDL support system incurs no more time or space overhead than conven-
tional language-specific record systems; and it can support upward-compatible changes with
automatically generated or fully generic readers and writers for a variety of interchange represen-
tations.

More speculative, but also more promising, are systems based on the object-oriented model.
Such systems include Smalltalk [4, 8, 6, 3], Actors, and Flavors. In these systems, one does not
so much act upon data as request data to act. This shift in emphasis allows richer structures to
be built and enhancements to be made over time while maintaining a consistent interface to the
user. In addition, the notion of active databases, in which the database has responsibility for
maintaining its consistency and integrity relations rather than the (distributed) applications code,
allows much more complex structures to be built. Systems such as CAIS demonstrate that this is
a highly promising direction for future development. CAIS (the node model) currently rests some-
where between the simpler structure representations and the fully general active database model.

For control, the notion of remote activation, of which RPC is but one instance, becomes impor-
tant. Active databases, which are themselves distributed, must be able to initiate activities on
other machines. When they are combined with object models and active databases, more
flexible and general paradigms can be developed. The concentration on costs of these
mechanisms thus becomes a structural and organizational issue (where, when, and how to act
upon information) rather than a construction issue (the cost of building these mechanisms). Cer-
tainly the various DBMS systems have accomplished this for their problem domain; a philosophi-
cally similar approach of developing basic mechanism packages with general applicability needs
to be followed.

CMU/SEI-87-TR-7 11

7. Rethinking the Problem

Some of the interesting implications of long-term information storage are the requirements of
traceability, accountability, and re-creatability. These requirements move away from the "file"
model in which a small number of files are "updated" (effectively changed-in-place). They also
move away from the database model in which records, relations, or values are "updated" (usually
changed-in-place) toward a model in which nothing is ever "discarded"; all versions of all infor-
mation are preserved. Logistically, this would entail consuming nearly infinite amounts of disk
space; pragmatically, one must regularly remove information to a long-term archive store.
However, it is currently the case that such "checkpoints" are determined by administrative action.
It must become the case that checkpoints and consistency are automatically maintained by the
system, and administrative choices for baseline points must be validated for consistency. As
systems grow in complexity, it becomes increasingly difficult for any one person or group to
maintain the consistency requirements across thousands of modules and millions of lines of code.
New approaches to the problems of information storage, independent of all other considerations,
must be considered. Thus, a multiversion, pervasive store may be an active database, an object
database, or a passive information database; it may be accessed via hand-coded interfaces,
automatically generated interfaces, message interfaces, or whatever — but it must be a new way
of thinking about the problem. Approaches such as HyperText/HyperData [2, 9] address many of
these questions, but by no means all of them. Considerable work remains.

8. A Taxonomy of Issues

The previous sections have discussed some of the topics in tool interface technology that are
presently important to software development environment technology. In summary, these topics
involve the following issues:

• transient vs. persistent data,

• data vs. control issues (local procedural communication vs. remote activation),

• strong typing (syntactic) vs. interpretation (semantic), and

• information structures passed (single word, fixed length text, variable length text,
structures, pointers, objects).

Each of these represents a different kind of interface problem. Many of the problems have
characteristics that make them appear to be information management problems rather than
simple information communication.

9. Conclusions

Tool interfacing is one of the core technologies that must be understood and treated properly for
software development environment technology to continue to evolve. Unfortunately, tool inter-
facing is not well understood, and the trade-offs between alternative interfacing methods are not
easily evaluated. A homogeneous system is attractive for obvious reasons, but system
homogeneity inhibits the ability of software development environment technology to evolve

12 CMU/SEI-87-TR-7

quickly as new technologies emerge in heterogeneous forms. Heterogeneity, on the other hand,
poses significant communications problems. The ideal solution should combine the strengths of
both approaches while bypassing the weaknesses. To date, there is no readily available tech-
nology that captures these characteristics. Although preliminary research results are encourag-
ing, much more work is needed before the important issues are resolved.

CMU/SEI-87-TR-7 13

References

[1] Adobe Systems.
PostScript Language Reference manual (ISBN 0-201-10174-2)
Addison-Wesley Publishing Company, Reading, MA, 1985.

[2] Steven Feiner, Sandor Nagy, and Andries van Dam.
An Integrated System for Creating and Presenting Complex Computer-Based Documents.
ACM Computer Graphics :181-189, August, 1985.

[3] Adele Goldberg.
Smalltalk-80: The Interactive Programming Environment.
Addison-Wesley, 1984.

[4] Adele Goldberg and David Robson.
A Metaphor for User Interface Design.
In Proceedings of the 12th Hawaii International Conference on System Sciences, pages

148-157. Conference on System Sciences, 1979.

[5] Imperial Software Technology.
ISTAR: Integrated Project Support Environment.
Internal Paper.
August, 1985

[6] Ralph L. London and R. A. Duisberg.
Animating Programs Using Smalltalk.
Computer 18(8):61-71, August, 1985.

[7] John R. Nestor, William A. Wulf, and David A. Lamb.
IDL - Interface Description Language.
Formal description.
1981

[8] S.K.Warren and D. Abbe.
Rosetta Smalltalk: A Conversational Extensible Microcomputer Language.
In Proceedings of the Second Symposium on Small Systems. October, 1979.

[9] N. Yankelovich, N. Meyrowitz, and A. van Dam.
Reading and Writing the Electronic Book.
Computer , October, 1985.

14 CMU/SEI-87-TR-7

CMU/SEI-87-TR-7 i

Table of Contents

Foreword 1
1. Introduction 1
2. Tool Interface Technology 2
3. Issues 4
4. Issues in Interfacing 6

4.1. Memory Resident Interfaces 6
4.2. Message Passing Interfaces 6
4.3. Persistent Interfaces 7
4.4. Structural Interfaces 7
4.5. Impact of Interface Considerations on Programming-in-the-Small 8

5. Flexibility Requirements 9
6. Potential New Technologies 10
7. Rethinking the Problem 11
8. A Taxonomy of Issues 11
9. Conclusions 11

