Technical Report

CMU/SEI-87-TR-15
ESD-TR-87-116

The Use of Representation Clauses
and Implementation-Dependent
Features in Ada:

lIA. Evaluation Questions

B. Craig Meyers
Andrea L. Cappellini

July 1987

Technical Report

CMU/SEI-87-TR-15
ESD/TR-87-116
July 1987

The Use of Representation Clauses
and Implementation-Dependent
Features in Ada:

lIA. Evaluation Questions

B. Craig Meyers
Andrea L. Cappellini

Ada Embedded Systems Testbed Project

Unlimited distribution subject to the copyright.

Approved for public release.
Distribution unlimited.

JPO approval signature on file

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, Pennsylvania 15213

This report was prepared for the SEI Joint Program Office HQ ESC/AXS
5 Eglin Street

Hanscom AFB, MA 01731-2116

The ideas and findings in this report should not be construed as an official DoD position. It is
published in the interest of scientific and technical information exchange.

FOR THE COMMANDER

(signature on file)

Thomas R. Miller, Lt Col, USAF, SEI Joint Program Office
This work is sponsored by the U.S. Department of Defense.
Copyright 1987 by Carnegie Mellon University.

Permission to reproduce this document and to prepare derivative works from this document for internal use is granted, provided the copyright and \'No Warranty\'
statements are included with all reproductions and derivative works. Requests for permission to reproduce this document or to prepare derivative works of this document

for external and commercial use should be addressed to the SEI Licensing Agent.
NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN \'AS-IS\' BASIS. CARNEGIE MELLON
UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO,
WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTIBILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON
UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT

INFRINGEMENT.

This work was created in the performance of Federal Government Contract Number F19628-95-C-0003 with Carnegie Mellon University for the operation of the Software
Engineering Institute, a federally funded research and development center. The Government of the United States has a royalty-free government-purpose license to use,
duplicate, or disclose the work, in whole or in part and in any manner, and to have or permit others to do so, for government purposes pursuant to the copyright license

under the clause at 52.227-7013.

This document is available through Research Access, Inc. / 800 Vinial Street / Pittsburgh, PA 15212. Phone: 1-800-685-6510. FAX: (412) 321-2994. RAI also maintains

a World Wide Web home page at http://www.rai.com

Copies of this document are available through the National Technical Information Service (NTIS). For information on ordering, please contact NTIS directly: National

Technical Information Service / U.S. Department of Commerce / Springfield, VA 22161. Phone: (703) 487-4600.

This document is also available through the Defense Technical Information Center (DTIC). DTIC provides acess to and transfer of scientific and technical information for
DoD personnel, DoD contractors and potential con tractors, and other U.S. Government agency personnel and their contractors. To obtain a copy, please contact DTIC

directly: Defense Technical Information Center / 8725 John J. Kingman Road / Suite 0944 / Ft. Belvoir, VA 22060-6218. Phone: 1-800-225-3842 or 703-767-8222.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

The Use of Representation Clauses
and Implementation-Dependent Features
in Ada:
lIA. Evaluation Questions

Abstract: This report is the second in a series on the use of representation clauses and
implementation-dependent features in Ada. It is the purpose of this document to specify a
set of questions relevant to the assessment of the support of representation clauses and
implementation-dependent features provided by an Ada compiler. The questions identified
are categorized according to functionality and address both qualitative and quantitative
aspects.

1. Introduction

The Ada language was developed as a general-purpose language with specific application to
mission-critical systems for the Department of Defense (DoD). The language is now mandated for
use in real-time, mission-critical systems, as specified in reference [1].

In spite of the attempt to define Ada as a general-purpose language, a need to support
implementation-dependent functionality remained. This amounted to the language providing for a
coupling to the specific underlying architecture. Much of this support is defined in terms of represen-
tation clauses and implementation-dependent features which are discussed in Chapter 13 of the
Reference Manual for the Ada Programming Language [2].

The support for a particular type of representation clause is an implementation-dependent issue. In
other words, the degree to which a type of representation clause is supported, if at all, is left to the
discretion of a compiler developer. In view of the fact that many systems may need to implement the
functionality supported through representation clauses, it is clearly advantageous to assess different
compilers from this perspective.

It is the purpose of this document to specify a set of issues relevant to the evaluation of the support of
representation clauses and implementation-dependent features for a given compiler. The questions
identified are categorized according to functionality and address both qualitative and quantitative
aspects.

This report is one of a series dealing with the use of representation clauses and implementation-
dependent features in Ada. The first volume in the series, reference [3], provides an overview of the
use of representation clauses and implementation-dependent features. A number of case study
examples, drawn from existing systems, illustrate the application of the machine-dependent charac-
teristics of Ada. The following volume in the series deals with methodology and experimental
procedures for the assessment of representation clauses and implementation-dependent features [4].
A qualitative examination of the VAx Ada compiler, based on the framework developed here, has
been reported [5].

CMU/SEI-TR-15 1

This report has been prepared by the Ada Embedded Systems Testbed Project at the Software
Engineering Institute (SEI). The SEl is a federally funded research and development center (FFRDC)
sponsored by the Department of Defense and established and operated by Carnegie Mellon Univer-
sity. This report is based on work performed by the authors while they were on sabbatical leave at
the SEI.

2 CMU/SEI-87-TR-15

2. Discussion

A characteristic of many mission-critical systems is that they manifest a need to implement functional
capabilities which are directly related to the underlying machine architecture. This includes, for ex-
ample, the ability to process "packed" data structures, access data of specific lengths, and format
internal data representations in machine-dependent terms. Another example is provided by require-
ments to conform to constraints imposed by external hardware devices. Thus, some external device
may directly map data into memory which is available at some fixed address.

In the development of the Ada language, the developers recognized that there was a need to provide
a coupling between the language and the underlying machine architecture. This coupling is affected
through the use of representation clauses and other implementation-dependent features in Ada. For
example, pragma PACK may be specified which minimizes storage allocation for arrays and records.
There are also representation clauses for specifying the maximum amount of storage to be allocated
for objects of a particular type, specifying the values associated with enumerated data types, and
defining the precise layout of data within a record structure. Additionally, representation clauses may
be used to allow a program to access a specific address. Representation clauses also exist which
apply to information relative to tasking; however, discussion of this latter type of representation clause
is beyond the scope of this report.

We emphasize that the support for representation clauses and implementation-dependent features is
left to the developer of a particular compiler. The language does not require that a compiler provide
support for all of the representation clauses or implementation-dependent features which are defined
as part of the language. This has several implications, including the following:

1. The expected support for representation clauses may vary widely across different com-
pilers. Some compilers may provide a wide range of support, while others may provide
little support.

2. The manner of implementation for machine-dependent features may also be expected
to vary between different compilers. Note that it is in the area of representation clauses
where the ability to couple to the underlying architecture may be most noticeable.
Therefore, some compilers may provide more support for these language elements
than others; this may be an inherent reflection of the underlying machine. As an ex-
ample, a virtual machine architecture may not provide the support for a representation
clause to access a specific address.

The preceding clearly has an impact on application designers of mission-critical systems who are
required to use machine-dependent features. This impact may be manifest in either or both of the
following ways:

1. It is required that the application developer be clearly aware of the support provided for
representation clauses and implementation-dependent features. It is important for the
developer to understand the compiler support, as well as the limitations of a particular
compiler. In fact, one may go so far as to say that the choice of a particular compiler
may, in some cases, depend on the support provided for representation clauses and
implementation-dependent features.

2. It is expected that the application developer will need to examine alternative ap-

CMU/SEI-TR-15 3

proaches to the use of representation clauses for a particular problem. That is, if the
chosen compiler does not implement some language-defined aspect of representation
clauses, and if the associated functional capability is needed, the developer is forced to
consider alternative means in finding a solution to the problem.

It is recognized, therefore, that a need exists for the assessment of support provided for represen-
tation clauses and implementation-dependent features by various compilers. As implied above, this
assessment is especially needed since the language does not require any compiler to implement the
support for representation clauses and implementation-dependent features as defined in reference
[2]. The ability to assess a set of compilers can be of benefit to those involved in the development of
mission-critical systems.

As one element of an assessment process, those issues relevant to the assessment of representation
clauses and implementation-dependent features needed to be defined. These issues have been
identified in terms of a set of questions which appear in Appendix |. The questions specified in
Appendix | have been grouped in terms of functional support relating to the various aspects of
representation clauses and implementation-dependent features defined by the language. The areas
are the following:

1. general
2. data types supported
3. pragma PACK
4. length clauses
5. enumeration representation clauses
6. record representation clauses
7. address clauses
8. data conversion and assignment
9. representation attributes
10. miscellaneous

The questions listed in Appendix | may be grouped into two basic categories. On the one hand, there
are questions which are principally qualitative in nature. Characteristically, this type of question may
be answered by reference to the documentation provided by a particular compiler. In some cases,
these questions may involve a limited analysis of generated code as well. On the other hand, there
are questions which are essentially quantitative in nature. For this class of questions, a complete
evaluation is expected to require a possibly large amount of experimentation. It is this latter type of
guestion which provides details of execution timing and code size, for example. It is noted that in the
context of this work, a broad interpretation of quantitative is taken. That is, not only are typical

4 CMU/SEI-87-TR-15

performance issues included, but so too are evaluations of the manner in which a particular feature is
implemented.

The questions delineated in Appendix | refer to the assessment of a particular compiler; they are not,
for example, general issues dealing with a particular assessment methodology. However, one should
equally recognize that the development of a particular methodology also has certain associated
issues. Discussions along the preceding lines are provided in another document in this series [4].

CMU/SEI-TR-15 5

The gquestions specified in Appendix | form a basic starting point for the application of experimental
procedures to assess the support of representation clauses and implementation-dependent features
by any given compiler. In some sense, the questions appearing in Appendix | are an implicit set of
guidelines which an experimental procedure may be expected to follow. The details of an appropriate
methodology, and the associated experimental procedures, are found in reference [4].

The questions appearing in Appendix | apply to the larger issue of compiler assessment. It is to be
recognized, however, that either qualitative or quantitative assessments may be conducted. A start
has been made in this direction. Thus, reference [5] reports on a qualitative assessment for a par-
ticular compiler, and it is expected that others will follow. The qualitative assessments are based on a
subset of the questions appearing in Appendix I. The performance of quantitative assessments is a
considerably larger problem, although a methodology has been formulated in some detail and ap-
pears in reference [4].

It has been the purpose of this document to delineate those issues relevant to the assessment of
compilers from the perspective of support provided for representation clauses and implementation-
dependent features. This document is necessarily short to maintain focus on the issues relevant to
assessment. Other volumes in the series incorporate the issues delineated here into the larger
framework of a methodology.

6 CMU/SEI-87-TR-15

3. Summary

Although the Ada language was developed as a general-purpose language with application to
mission-critical systems, a need to provide a coupling between the language and the underlying
machine was recognized. This coupling is accomplished, in part, through the use of representation
clauses and implementation-dependent features. However, the amount of support provided for these
language features is left to the compiler developer.

The recognized need for representation clauses and implementation-dependent features by many
systems, as well as the expected variability of support among compilers, motivates the need for
assessment. This document delineates those issues which are believed germane to the assessment
of support provided by a given compiler for representation clauses and implementation-dependent
features. The issues are qualitative, as well as quantitative. This document, in addition to a discus-
sion of experimental procedures [4], provides a framework for conducting assessments.

CMU/SEI-TR-15 7

CMU/SEI-87-TR-15

References

1.

2.

DoD Instruction 5000.31, July 1986. DoD Directive 3405.2, March 30, 1987.

Reference Manual for the Ada Programming Language, Department of Defense MIL-
STD-1815, 1983.

. B. Craig Meyers and Andrea L. Cappellini, The Use of Representation Clauses and

Implementation-Dependent Features in Ada: I. Overview, CMU/SEI-87-TR-14, ESD-
TR-87-115, July 1987.

. B. Craig Meyers and Andrea L. Cappellini, The Use of Representation Clauses and

Implementation-Dependent Features in Ada: 1IB. Experimental Procedures,
CMU/SEI-87-TR-18, ESD-TR-87-126, July 1987.

. B. Craig Meyers and Andrea L. Cappellini, The Use of Representation Clauses and

Implementation-Dependent Features in Ada: IlIA. Qualitative Results for VAx Ada, Ver-
sion 1.3, CMU/SEI-87-TR-17, ESD-TR-87-118, July 1987.

CMU/SEI-TR-15

10

CMU/SEI-87-TR-15

Appendix I: Questions Relevant to the Use of

Representation Clauses and Implementation-Dependent

Features

In the following, we list questions which are pertinent to the considered use of representation clauses
and implementation-dependent features. These questions apply both to the support provided by the

Ada compiler as well as the run-time environment.

categories.

A.

General:

. What is the basic unit of SYSTEM.STORAGE_UNIT? (This is useful when defining

record layouts.)

. What is the ordering of allocation for storage units? Is it left-to-right or right-to-left with

respect to each other? How are bits numbered within storage units? Is it left-to-right or
right-to-left? Does the numbering always begin with zero? (This is useful when defin-
ing record layouts and verifying the actual allocation of record layouts.)

. It is also appropriate to consider the role of the underlying architecture, particularly

regarding data conversions from representation clauses to other formats. Does the
machine include instructions for inserting and extracting bit-length fields? What are the
restrictions on the use of such instructions (for example, what is the maximum field size
to which an instruction may be applied)?

. Is pragma OPTIMIZE supported? If so, are there any restrictions on its use?

. The use of representation clauses may present unusual problems throughout design

and coding. What facilities exist for verifying results when representation clauses are
used? We are speaking here of the debugger; thus, are there restrictions on the use of
the debugger when representation clauses are used?

. Does the compiler provide a load map that contains sufficient details to identify the

location of quantities specified using representation clauses?

. Are there any restrictions on representation clauses?

. Compiler implementors currently have the option as to what degree, if any, the features

in Chapter 13 of the Reference Manual for the Ada Programming Language will be
supported. It is conceivable that upgraded versions of an implementation will enhance
the support originally available for such features as representation clauses. How is the
documentation upgraded? Is it by release notes or page changes? The manner in
which this is accomplished can affect the ease with which documentation can be used.

The questions below have been grouped into

CMU/SEI-TR-15

11

B. Data Types Supported:

1. What are the basic implementations of integer types?
2. What are the basic implementations of fixed-point types?
3. What are the basic implementations of floating-point types?

4. Does the compiler provide predefined, unsigned data types? If not, is it permissible for
a user to define these types? For example, is the following legal:

type Unsigned_Small_Intis range 0 .. 7,
for Unsigned_Small_Int'SIZE use 3;

C. Pragma PACK:

1. Does the compiler support the use of pragma PACK?

2. What restrictions are placed on the use of pragma PACK? For example, are there
certain types that may or may not be packed?

D. Length Clauses:

1. Does the compiler support the use of length clauses? What are the restrictions on their
use?

2. Are there restrictions on the use of the SIZE attribute designator in a length clause?

3. Are there restrictions on the use of the STORAGE_SIZE attribute designator in a length
clause?

4. Are there restrictions on the use of the SMALL attribute designator in a length clause?

5. When using a SIZE attribute designator in a length clause, the Reference Manual for
the Ada Programming Language states that the value of the expression specifies an
upper bound for the number of bits to be allocated. The presence of a range constraint
or the use of a predefined type implicitly defines the maximum number of bits required
to allocate objects. If extra bits are specified in the length clause, are these extra bits
allocated by the compiler?

6. Suppose a type, with associated length clause, has been specified storage where the
number of bits is not sufficient to store the specified range of values. For example,
suppose an integer type with range 10 .. 13 is defined, and three bits of storage are
allocated for that type. Is an error generated for this case? If no error is generated by
the compiler, how is a case such as this treated?

7. What impact does the length clause have on the packing algorithm of composite types?

8. What is the effect of pragma OPTIMIZE (TIME) on storage allocation when length
clauses are used?

12 CMU/SEI-87-TR-15

9

10

E.

1.

1.

. What is the effect of pragma OPTIMIZE (SPACE) on storage allocation when length

clauses are used?

. What is the effect of pragma PACK on storage allocation when length clauses are

used?

Enumeration Representation Clauses:

Does the compiler support the use of enumeration representation clauses? What are
the restrictions on their use?

. Consider an enumeration type and associated enumeration representation clause

where the enumerated values specified are not contiguous integers, such as:

type Name is (Name_1, Name_2, Name_3, Name_4);
for Name use
(Name_1=>1, Name_2 =>5, Name_3 => 12, Name_4 => 163);

The enumeration type may not be efficiently implemented because of the noncon-
tiguous nature of the integers specified in the enumeration representation clause, il-
lustrated above. Hence, how are enumeration types represented internally, particularly
in the case where enumeration clauses are specified with noncontiguous values?

. What is the effect of pragma PACK on storage allocation when enumeration represen-
tation clauses are used?

. What is the effect of pragma OPTIMIZE (TIME) on storage allocation when enumeration
representation clauses are used?

. What is the effect of pragma OPTIMIZE (SPACE) on storage allocation when enumera-
tion representation clauses are used?

Record Representation Clauses:

Does the compiler support the use of record representation clauses? What are the
restrictions on their use?

. What are the restrictions on the use of an alignment clause in a record representation
clause?

. What are the restrictions on the use of component clauses in a record representation
clause?

. Are there restrictions on the overlap of record components with respect to the basic
machine storage unit? For example, if a machine has a SYSTEM.STORAGE_UNIT
equal to 16 bits, is it permitted to have components of a record that are larger than this
value?

. Consider the case when a record is specified with a record representation clause.
Where is a record component placed that has no associated component clause?

. What is the effect of pragma OPTIMIZE (TIME) on storage allocation when record
representation clauses are used?

CMU/SEI-TR-15

13

7. What is the effect of pragma OPTIMIZE (SPACE) on storage allocation when record
representation clauses are used?

8. What is the effect of pragma PACK on storage allocation when record representation
clauses are used?

Address Clauses:

1. Does the compiler support the use of address clauses? What are the restrictions on
their use?

2. What is the type SYSTEM.ADDRESS?

3. What is the effect of pragma OPTIMIZE (TIME) on storage allocation when address
clauses are used?

4. What is the effect of pragma OPTIMIZE (SPACE) on storage allocation when address
clauses are used?

5. Does the compiler enforce strong typing in the presence of address clauses? For
example, is the following recognized as erroneous by the compiler:

type T_lisrange 0 .. 100;
O 1:T.1;
for O_1 use at 16#1000#;

type T_2is digits 2 range 0.0 .. 100.0;
0 2:T_2
for O_2 use at 16#1000%#;

6. Does the compiler or linker recognize potential conflicts when address clauses are
used? For example, suppose an address clause is present that references some ad-
dress, say X. Assume that the address X is such that it lies within the address space of
generated code. How is this case treated by the compiler and/or linker?

Data Conversion and Assignment:

1. How is conversion accomplished between values of a type specified by the default
representation and a type specified with a representation clause? (This refers to the
use of a new (derived) type that is defined in terms of a representation clause.)

2. For conversions between objects of different types, does the compiler produce in-line
code or generate a call to a library routine to accomplish the conversion?

3. Is support of the generic function UNCHECKED_CONVERSION provided?

4. Are there any restrictions on the use of UNCHECKED_ CONVERSION? For example,
are there any restricions on the source and target types for
UNCHECKED_CONVERSION? Do they have to be of the same size?

CMU/SEI-87-TR-15

Representation Attributes:

1.

1.

What are the restrictions on the use of the 'ADDRESS representation attribute? How
does the compiler interpret the use of this attribute?

. What are the restrictions on the use of the 'SIZE representation attribute? How does
the compiler interpret the use of this attribute?

. What are the restrictions on the use of the 'POSITION representation attribute for a
record component?

. What are the restrictions on the use of the 'FIRST_BIT representation attribute for a
record component?

. What are the restrictions on the use of the 'LAST_BIT representation attribute for a
record component?

. What is the effect of pragma OPTIMIZE (TIME) on the values of the representation
attributes?

. What is the effect of pragma OPTIMIZE (SPACE) on the values of the representation
attributes?

Miscellaneous:

Suppose an object has been allocated storage where the number of bits is not sufficient
to store the specified range of values. For example, suppose an object has been
allocated three bits of storage, but is specified to be in the range 10 through 13. Is an
error generated for this case? If no error is generated by the compiler, how is a case
such as this treated?

. Does the compiler support the use of pragma SUPPRESS?

. What restrictions are placed on the use of pragma SUPPRESS? For example, can
every check be suppressed?

. Is pragma STORAGE_UNIT supported? If so, are there any restrictions on the ar-
gument?

. Is pragma INTERFACE supported? If so, are there any restrictions on the allowable
forms and places of parameters and calls?

. Is pragma SHARED supported? If so, are there any restrictions on its use?

. Are there other implementation-dependent features supported such as pragmas or at-
tributes?

CMU/SEI-TR-15

15

16

CMU/SEI-87-TR-15

Table of Contents

1. Introduction 1
2. Discussion 3
3. Summary 7
References 9
Appendix I: Questions Relevant to the Use of Representation Clauses and 11

Implementation-Dependent Features

CMU/SEI-TR-15 i

