An Integrated View of Process and Measurement

Mark Kasunic
Software Engineering Institute
Carnegie Mellon University
Pittsburgh, Pennsylvania

Sponsored by the
U.S. Department of Defense
Some Common Misconceptions

Process maturity Levels 2-3 focus on process definition. Measurement is largely postponed until Levels 4 and 5.

Technical Working Groups (TWGs) should be organized by CMM/CMMI process areas – therefore there should be a separate “Measurement TWG.”

There should be two plans – one that guides process change and one that guides how measurement is introduced and implemented.

Only certain specialized roles require competency in measurement skills.
Measurement Activities in Process Improvement

Measurement is an essential construct of process – measurement must be woven into the fabric of process.

Definition of measurement should be an essential part of any process definition work.

Measurement focuses continuous process improvement – it should never be postponed (although the sophistication of data collection and storage mechanisms should evolve).

Everyone needs to understand how to effectively monitor and improve their work processes – measurement is the key.
Measurement Pinpoints Future Improvement Opportunities

It has generally been found that variation in a few of the process attributes has significant impact on overall performance. These significant-few process attributes are "key" process characteristics.

These key process characteristics are the ones we should be measuring.
The IDEALSM Approach

Stimulus for Change
- Set Context
- Build Sponsorship
- Charter Infrastructure

Initiating
- Characterize Current & Desired States
- Develop Recommendations
- Set Priorities

Diagnosing
- Develop Approach
- Plan Actions
- Implement Solution

Establishing
- Refine Solution
- Create Solution
- Pilot/Test Solution

Learning
- Propose Future Actions
- Analyze and Validate

Acting
- Solution
- Solution
- Solution

SM IDEAL is a service mark of Carnegie Mellon University

© 2001 by Carnegie Mellon University
The Initiating Phase

Stimulus for Change

Set Context Build Sponsorship Charter Infrastructure

Initiating

Characterize Current & Desired States Develop Recommendations

Diagnosing

Set Priorities Develop Approach

Establishing

Propose Future Actions Analyze and Validate

Learning

Implement Solution Refine Solution

Pilot/Test Solution Create Solution

Plan Actions

Acting

© 2001 by Carnegie Mellon University
Key Success Factors for Effective Launch

The Must Haves:

1. A compelling reason for change
2. Leadership of the change effort by the top executive in the organization — responsibility cannot be delegated
3. Informed commitment of the top management team
4. Designation of a primary change agent (the EPG Leader) and an adequate mandate for change
5. Sound performance measures that drive change
Performance Measures that Drive Change

Measures are integral to effective change. A goal-focused measurement system is the best vehicle for galvanizing management action and institutionalizing the targeted changes.

If you deploy a poor set of measures (or none at all), any positive accomplishment will be undermined by inefficiencies as managers chase an inconsistent and/or conflicting set of targets.

Performance measures must be:

- **Relevant.** Does the measure have a significant, demonstrable relation to strategy and business goals?
- **Reliable.** Will the measure identify strengths or weaknesses of one or more business processes?
Performance Measures: Reestablishing Your Business Goals

Performance measures must be tied to and reflect the new vision that is driving the change. And the right measures must be forged on business goals that are both real and inspirational.

For most organizations, development of performance measures must be preceded by reestablishing or refreshing the organization’s values, vision, mission and goals.

When these are undefined, are not communicated, or are not inspiring to people, it can undermine any effort to improve.

If the values, vision, mission and goals are poorly defined, then work will be needed before performance measures can be considered—or before other positive changes can be achieved.
Project Measures Should Ultimately Tie to Customer Satisfaction Assessment

Customer Needs

Organization’s Goals

Customer Wants

Strategy

Initiative

Project

Project

Project

Strategy

Initiative

Project

Project

Project

Strategy

Initiative

Project

Project

Project

Project Goals
Assessing Your Process Maturity

Stimulus for Change
- Set Context
- Build Sponsorship
- Charter Infrastructure

Initiating
- Characterize Current & Desired States
- Develop Recommendations

Diagnosing
- Set Priorities
- Develop Approach
- Plan Actions

Establishing
- Propose Future Actions
- Analyze and Validate
- Implement Solution
- Refine Solution
- Create Solution
- Pilot/Test Solution

Learning

Acting

Future Actions

© 2001 by Carnegie Mellon University
The Process Change Method

1. Organize and Prepare
2. Conduct Organizational Scan
3. Establish Technical Working Groups
4. Understand Project’s Current State
5. Redesign the Process
6. Develop Solution
7. Conduct Pilot(s) and Evaluate
8. Facilitate Organizational Learning
PCM 1: Organize and Prepare

We need to get our act together before we jump out there to help the rest of the organization.
When Discussion Turns to Problem-Solving

Problem solving is at the core of the SEPG’s activities.

A problem is simply a gap between what is desired and what exists.

A group with an effective problem-solving process meets two conditions:

1. members use a systematic process for solving problems
2. all members focus on the same step of the problem-solving process at the same time

Adapted from [Senge 90, pp. 234-235]
Generic Problem-Solving Process

1. Define the problem
2. Establish criteria for evaluating solutions
3. Identify root causes
4. Generate alternative solutions
5. Evaluate alternative solutions
6. Select the best solution
7. Develop an action plan
8. Implement the action plan
9. Evaluate outcomes and the process

Adapted from [Schwarz 94, p. 159]
Evaluate Outcomes of the Process

Evaluation through measurement is the step most often underemphasized.

However, evaluation is essential for a group that values valid information.

When groups resist evaluation, several interventions are possible:

- help the group explore its reluctance to evaluate
- once barriers are identified, help group reframe the meaning of evaluation from threat to one in which members seek continuous improvement of their work
- help the group consider how comprehensive their evaluation needs to be
PCM 2: Conduct Organizational Scan

What do we have out there?
PCM 2: Conduct Organizational Scan

How are projects different or the same?
PCM 2: Conduct Organizational Scan

Where are our organization’s best practices?
Gather Data

Obtain artifacts. Process documentation is identified during the interviews. This documentation is collected immediately or, if necessary, at a later date.
PCM 3: Establish TWG(s)
PCM 4: Understand Project’s Current State

Defining the existing process

Project Partner
PCM 5: Redesign the Process

Business-based improvement opportunities

New Process Design

Gap Analysis

CMM

© 2001 by Carnegie Mellon University
New Design Emphasizes Measurement

The new, process-oriented organization puts an emphasis on customers and the value-added processes that serve them.

Measurement is built into all processes, providing a clear view of the current situation and how the process is performing.

Measurement enables you to assess proposed changes and the results of change.
Why the Emphasis on Metrics?

“Software Engineering” is the term used to describe the collection of techniques concerned with applying an engineering approach to the construction of software products. By engineering approach we mean:

- planning
- costing
- managing
- modeling
- analyzing
- designing
- implementing
- testing
- maintaining

It would be difficult to imagine how the disciplines of electrical, mechanical and civil engineering could have evolved without a central role for measurement.
Process and Product Metrics

Software metrics are often classified as either *process metrics* or *product* metrics.

Process metrics quantify attributes of the development process and of the development environment. For example:
- resources (such as level of effort)
- duration of the design phase

Product metrics are measures of the software product. For example:
- size of the product (such as lines of code, number of modules)
- complexity (such as flow of control, depth of nesting, or recursion)
- number of defects

In general, it is likely that a product metric is influenced by the process used and vice versa.
Ineffective Approach to Quality

Historically, many organizations have approached quality by performing *product measurement* only. But, this approach does not improve quality nor guarantee quality. It’s a strategy of defect *detection*, not defect *prevention*.

Measurement of final product attributes is too late...the quality, good or bad, is already in the product.

100% inspection is only 80% effective
— *Dr. Joseph Juran*
Traditional Approach is Wasteful

The emphasis is on fixing the product
Focus on the Process

Measurement used to understand and improve the process.

Treating the *cause* rather than the *symptoms*.

Input → Process → Acceptable product

Rework
Business Goals and Measures Drive Project Performance Measures

Customer Needs and Wants

Organization’s Goal

Measures tied to business goals that address customer wants and needs

Strategy

Initiative

Success measures for business line of organization

Initiative measures show support for strategy

Process and product measures

Project

Project

Project
Goal-Driven Measurement

The Goal/Question/Metric (GQM) paradigm provides a framework involving three steps.

1. List a major goal of the process
2. For each goal, derive questions that must be answered to determine if the goals are being met.
3. Decide what must be measured in order to be able to answer the questions adequately

[Basili 88]
Practical Software Measurement

Scope of PSM

Implement Process

Tailor Measures

Apply Measures

Evaluate Measures

Core Measurement Process

Technical and Management Processes

Information Needs

User Feedback

Analysis Results

New Issues

Measurement Plan

Analysis Results and Performance Measures

Scope of PSM

See http://www.psmsc.com/

© 2001 by Carnegie Mellon University
Software Metrics: Ten Traps to Avoid

1. Lack of management commitment
2. Measuring too much, too soon
3. Measuring too little, too late
4. Measuring the wrong things
5. Imprecise metrics definitions
6. Using metrics data to evaluate individuals
7. Using metrics to motivate, rather than to understand
8. Collecting data that is not used
9. Lack of communication and training
10. Misinterpreting metrics data

[Wiegers 00]
PCM 6: Develop Solution

Whole product solution

New Process Design from PCM 5

Guidebook for users of the process

Core Process

Change request system
Systems Integration
Process guide
Job Aids
Training
Policies
Installation Support
Tooling

SEPG

TWG

Guidebook

Core

Process

© 2001 by Carnegie Mellon University
PCM 7: Conduct Pilots and Evaluate

Pilot the solution

TWG
SEPG
Project Partner
How Will You Know if the Change Worked?

Quite often, pilot studies are conducted without measurement either before or after the change was introduced.

Therefore, how do we know if the outcome was better or worse than the original situation?

In these cases, interpretation is based on opinion and impressions – but there is a lack of data to back it up!

Therefore, there is less confidence in the results of the pilot – interpretation is problematic and there’s a risk that consensus about the results are not achieved.
Typical Approaches to Pilot Study Evaluation

<table>
<thead>
<tr>
<th>Typical approaches that fail</th>
<th>Before the change</th>
<th>Change introduced</th>
<th>After the Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approach #1</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Approach #2</td>
<td></td>
<td>X</td>
<td>O</td>
</tr>
<tr>
<td>Approach #3</td>
<td>O</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

X represents the introduction of a change
O represents a measurable observation
“Engineering” Implies a Scientific Approach

In all three approaches, there is no way to tell if the outcome from the change was better or worse than the original situation.

<table>
<thead>
<tr>
<th>Typical approaches that fail</th>
<th>Before the change</th>
<th>Change introduced</th>
<th>After the Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approach #1</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Approach #2</td>
<td>X</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>Approach #3</td>
<td>O</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

How do you know the change worked?
Approaches to Validation

In the scientific and manufacturing world, improvements or innovations are validated using a rigorous statistical approach known as design of experiments (DOE)

- Extraneous variables that might impact the result you’re looking at can be held steadied or controlled
- The experimental design can employ techniques such as randomization and replication to add clarity and confidence to the assertions that are made about the change

<table>
<thead>
<tr>
<th>Run Number</th>
<th>Variable A</th>
<th>Variable B</th>
<th>Variable C</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>15</td>
</tr>
<tr>
<td>3</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>21</td>
</tr>
<tr>
<td>4</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>11</td>
</tr>
</tbody>
</table>
Scientific Methods Do Exist

Research designs called quasi-experimentation do exist for proper interpretation of results from pilot studies … but they are rarely applied!

<table>
<thead>
<tr>
<th>Good approach #1</th>
<th>Before the change</th>
<th>Change introduced</th>
<th>After the Change</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>O₁</td>
<td>X</td>
<td>O₂</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Better approach #2</th>
<th>Before the change</th>
<th>Change introduced</th>
<th>After the Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group #1</td>
<td>O₁</td>
<td>X</td>
<td>O₂</td>
</tr>
<tr>
<td>Group #2</td>
<td>O₃</td>
<td></td>
<td>O₄</td>
</tr>
</tbody>
</table>
Consider Better Approach #2

<table>
<thead>
<tr>
<th></th>
<th>Before the change</th>
<th>Change introduced</th>
<th>After the Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group #1</td>
<td>O₁</td>
<td>X</td>
<td>O₂</td>
</tr>
<tr>
<td>Group #2</td>
<td>O₃</td>
<td></td>
<td>O₄</td>
</tr>
</tbody>
</table>

Do two different groups obtain the same results to begin with?

If yes, then O₂ and O₄ data may be compared using a \(t \) test.

If no, then O₂ and O₄ data may be compared using analysis of covariance.

Note: A \(t \) test and the analysis of covariance method are statistical methods that provide a scientific basis for making assertions about the results of your pilot study.
Facilitate Organizational Learning

1. Select target project(s) and plan
2. Tailor process assets
3. Support and monitor project(s)
4. Conduct ongoing evaluations and identify new improvement opportunities
5. Conduct improvement activities
6. Communicate results and update the process asset library

© 2001 by Carnegie Mellon University
Conduct “Lessons Learned” Events

The SEPG should conduct regular lessons learned events after each major milestone of the PCM. Many organizations conducting PI also implement yearly “lessons learned” events to “check the pulse” of the organization.

- What are people’s attitudes about the changes now that they’ve been changed?
- Now that some are experienced with the new way of doing things, what ideas are there for improving what’s there?
Assessing PI Progress

The SEPG evaluates the progress of CMM based PI.

The **Interim Profile** method is a way to rapidly measure an organization’s SPI maturity between assessments, such as a CMM-Based Appraisal for Internal Process Improvement (CBA IPI).

[Whitney 96]
The Process Change Method

1. Organize and Prepare
2. Conduct Organizational Scan
3. Establish Technical Working Groups
4. Understand Project’s Current State
5. Redesign the Process
6. Develop Solution
7. Conduct Pilot(s) and Evaluate
8. Facilitate Organizational Learning
References

The following citations were made in this presentation:

Thanks for your time and attention

Contact Information:
Mark Kasunic
mkasunic@sei.cmu.edu