Motivation and Goals

- Cope with Cloud Computing paradigm in complex enterprise and industrial environments in the roles as customer, provider, and ISV
- Design guidelines for native cloud applications for industrial domains
 - Embedded systems integrated with cloud services
 - ISVs prepare their software for cloud operation
- Support for re-engineering existing on-premise applications for the Cloud Computing paradigm
- Coping with required break to existing IT and software architecture (data (storage, distribution), processing, transactions, caching, workflows, access control, etc.).
Reminder: Cloud Computing
….focus on automation, resource sharing and business

Novelty comes from the composition of existing technologies combined with new business models for software and service selling.

Cloud computing is a model for enabling convenient, on-demand network access to a shared pool of configurable computing resources (e.g., networks, servers, storage, applications, and services) that can be rapidly provisioned and released with minimal management effort or service provider interaction (Source: NIST Cloud Computing Project*)

Cloud Computing Business Challenge
Which applications profit from Cloud Computing?

Applications with these requirements are candidates:
- massive scale (computation, storage, …)
- high reliability and availability
- heavy load variations
- world-wide distribution
- non-deterministic life-time (start-up’s)
- collaboration across company boundaries
- application do not fit to company core business

Benefiting from:
- reduced administration effort
- contract flexibility (pay as you go)
- availability and elasticity
Cloud Computing Architecture
Our first definition

The Cloud Computing Architecture of a cloud solution is the structure of the system, which comprise on-premise and cloud resources, services, middleware, and software components, geo-location, the externally visible properties of those, and the relationships between them.

The term also refers to documentation of a system’s cloud computing architecture. Documenting facilitates communication between stakeholders, documents early decisions about high-level design, and allows reuse of design components and patterns between projects.

Context: High-level Architectural Approach
… aligned with common architectural approaches
Cloud Computing Architecture

Major building blocks

Reference Architecture
- Basis for documentation, project communication
- Stakeholder and team communication
- Payment, contract, and cost models

Technical Architecture
- Structuring according to XaaS Stack
- Adopting Cloud Platform paradigms
- Structuring cloud services and cloud components
- Showing relationships and external endpoints
- Middleware and communication
- Management and security

Deployment Operation Architecture
- Geo-location check (Legal issues, export control)
- Operation and monitoring

Cloud Computing Architecture vs. “XaaS”
... allows comparisons, maps to common dictionary
“XaaS” Stack Views
Customer View vs. Provider View

Cloud Reference Architectures
Allow comparison of vendors and technologies

e.g. Microsoft Windows Azure Platform e.g. Amazon Cloud Platform

Cloud Runtime

Client
Silverlight

Application
Your App, Office Online and Live, CRM

AppFabric
Queues, .net (Roles)

Cloud Runtime

Fabric Controller
Management

Windows Azure
(Server 2008 and Fabric Controller)
Infrastructure

Storage

BLOB & Table Store, SQL Azure, NTFS, ...

Windows Azure

SQL Azure, NTFS, ...

EC2: Windows Linux

S3, SimpleDB, RDS (MySQL)

CloudWatch, Elastic Load-balancer

Service Billing, Cloud Front, Notification

Management

Identity (LiveID), Access Control, STS (ACS)

Fabric Controller

AppFabric

Queues, .net (Roles)

Application

Your App, Office Online and Live, CRM

Cloud Runtime

Platform

Windows Azure

Service Bus, Search, Maps, Billing, CDN, ...

CloudWatch, Elastic Load-balancer

Service Billing, Cloud Front, Notification

Management

Identity (LiveID), Access Control, STS (ACS)

Windows Azure

Service Bus, Search, Maps, Billing, CDN, ...

CloudWatch, Elastic Load-balancer

Service Billing, Cloud Front, Notification

Management

Identity (LiveID), Access Control, STS (ACS)
Hybrid Cloud Architecture Model

... XaaS Stack extended by the location, provider dimensions

Cloud Migration Strategy

... which layer fits the demand?

STOP
Run on-premise

Replacement of Application
Abandon of legacy software
Data and process migration cost

Redesign for Platform*
High scalability and flexibility
Pay per use applications possible
(Architecture) change required
Migration cost could become high

Redeployment
Migrate software “as is”
Low migration cost
Application scalability not improved
No pay-per-use for applications per tenant

*... “Requires change of applications (own or partner application) or development of adapter layer”
Cloud Platforms - Simpler NFR Engineering
Software architecture becomes deployment architecture

Challenge: Traditional achievement of NFR (Non Functional Requirements) assurance

Problem
- Abstract problem focus and constraints
- Concept requirements have to be implemented, software focuses on efficient implementation
- Software constraints have to be encountered to fulfill SLA requirements
- Infrastructure is selected according to operation requirements

Advantage: Match of NFRs are verified at higher level (platforms plus SAL), miss-match adaptation is possible through change of concept or change of cloud platform.

Concept
- Cloud Platforms
- Concept must be aligned with Cloud Platform, blocking points show up at concept phase
- Platform assures non functional requirements as scalability, elasticity, reliability, and features as pay by use, and low cost through economies of scale.

Architecture for Elasticity
…elasticity and cost requirements impact architecture

Vertical Scale Up
- Add more resources to a single computation unit i.e. Buy a bigger box
- Move a workload to a computation unit with more resources

For small scenarios scale up is probably cheaper - code "just works"

Horizontal Scale Out
- Adding additional computation units and having them act in concert
- Splitting workload across multiple computation units
- Database partitioning

For larger scenarios scale out is the only solution 1x64 Way Server much more expensive than 64x1 Way Servers
Siemens Cloud-based Software Distribution

Some experiences …

Siemens Cloud Software Delivery Service provides saleable software distribution based on Windows Azure across enterprise boundaries (firewall friendly).

Outlook

- Cloud Computing approaches will spread because of lower TCO and higher flexibility (business, technical)
- Cloud Computing will massively change the future IT business in a way that many standard IT services will offered by big IT providers
- Cloud Computing platforms commoditize native Internet scale application development and operation
- Cloud Computing Architecture aspects will be integrated in Cloud platforms as framework, process, templates, guidance to lower the business, legal, and technical burden for application developers
Within Corporate Technology the Global Technology Field System Architecture and Platforms focuses on software architectures for a wide range of software-types. This includes embedded systems, distributed applications, and enterprise software.

In the recent field of cloud computing the focus is cloud computing architecture for cloud platform stacks and applications. Cloud computing architecture is key for scalability, cost efficiency, and meeting of legal and business requirements. These activities are completed by the industry focused evaluation of strategic cloud computing platforms in order to support customers on their way to cloud computing.