Games Software Architects Play

Philippe Kruchten
Philippe Kruchten, Ph.D., P.Eng., CSDP

Professor of Software Engineering
NSERC Chair in Design Engineering
Department of Electrical and Computer Engineering
University of British Columbia
Vancouver, BC Canada
pbk@ece.ubc.ca

Founder and president
Kruchten Engineering Services Ltd
Vancouver, BC Canada
philippe@kruchten.com
Games Software Architects Play

Philippe Kruchten

Brought to you by

IEEE Software
1970
Games People Play
Eric Berne, 1964
Transactional analysis

- **PARENT EGO STATE**
 Behaviours, thoughts and feelings copied from parents or parent figures

- **ADULT EGO STATE**
 Behaviours, thoughts and feelings which are direct responses to the here and now

- **CHILD EGO STATE**
 Behaviours, thoughts and feelings replayed from childhood
“Games are ritualistic transactions or behavior patterns between individuals that indicate hidden feelings or emotions...”
—What time is it?

—Three o’clock.
—Can you pass me the salt, please?

—Why did not you think about the salt before you sat down! Go and fetch it yourself now. This will teach you something about anticipating.
Career path

• 1970-1975: developed 2 large apps -> bought a car
 (1975: mechanical engineering degree)
• 1983: very 1st Ada compiler (NYU)
• 1984: System architect at Alcatel
 (1986: PhD in information systems)
• 1987: joined Rational as a consultant in SW Arch
• 1990: developed Rational architectural method
• 1992-1996: Lead SW architect for the Canadian ATC
• 1996-2003: Development of Rational Unified Process
• 2004-now: Professor at UBC
Outline

- Games people play
- Design & decision making
- Reasoning tactics for software design
- Cognitive biases, reasoning fallacies, and political games
- A gallery of simple games
- Nastier games
- Debunking and debiasing
- Design Rationale
- Critical thinking
Design = Decisions

• Designers use a **decision-making process**
• The *rationale*, when expressed, makes it partially visible
 – Arguments for...

• Tactics, heuristics
Architecting is making decisions

The life of a software architect is a long (and sometimes painful) succession of suboptimal decisions made partly in the dark. (me)

AK = AD + ADD

(Hans van Vliet, Patricia Lago, me)
On the positive side:

- Divide and conquer
- Bring an outsider
- Reframe the problem
- Change level of abstraction
- Checklists, catalogues
- Remove constraints one by one
- Round-trip gestalt design
- Backtrack
- Spread 1/N
On the positive side (cont.)

• Time-bounded consensus seeking
• Write it down
• Formalize it (e.g., math)
• Explain it to a friend
• Sleep over it
• De Bono’s 6 hats (?)
• ...

May 2013

Copyright © 2005-13 by Philippe Kruchten

27
On the darker side

- Cognitive biases
- Reasoning fallacies
- Political games
On the darker side
Cognitive biases

• Software designers rely often on intuition
• But intuition may be flawed.

• Cognitive bias
 = a pattern in deviation of judgment from accuracy or logic
 => can lead to perceptual distortion, inaccurate judgment, or illogical interpretation
Cognitive biases

- Confirmatory bias
- Availability bias
- Representativeness bias
- ...

Illustration by Dinesh Katre
Cognitive biases

- Confirmatory bias
- Availability bias
- Representativeness bias
- ...
- Anchoring bias
- ...
- Bias bias
Reasoning Fallacies

- Flawed arguments, incorrect reasoning => Potentially wrong decision
- Argument /= belief or opinion
- Good argument
 - Relevant, accurate, fair premises
 - Logical

- Beliefs often presented as true facts.
- Reasoning fallacies are more likely to be accidental than deliberate, … or not?
Political games

• A set of arguments, all superficially plausible, possibly leading to a design decision, but with a concealed ulterior motivation, maybe unrelated to the design.
A gallery of games software people play

Biases, fallacies and political games found in real life software projects over a period of 30 years
Golden hammer

• When you have a hammer, everything looks like a nail
• aka: we have found the “silver bullet”
• An architect has developed some deep expertise in some technique/tool/technology, and this becomes the first or sometime only possible solution to any new problem presented to her.
• See Anchoring
Elephant in the room
Elephant in the room

• All architects are fully aware of some major issue that really must be decided upon, but everyone keeps busy tackling small items, ignoring the big issue, pretending it does not exist, hoping maybe that it will vanish by magic or that someone else will take care of it.
Not invented here

• Avoid using or buying something because it comes from another culture or company, and redo it internally.
• Sometimes used jointly with Golden hammer, as a way to justify the hammer.
• Can be used as a political game
• aka: reinventing the wheel
Anchoring

• Relying heavily on one piece of information, to the detriment of other pieces of information, to justify some choice.

• Related to “blind spot” or “golden hammer”

• Sometimes re-inforced by confirmatory bias
Blink

• Gladwell’s 2005 book: *Blink: the power of thinking without thinking*

• Aka. Fast and frugal (Gigerenzer)

• Extreme form of anchoring?
“Obviously...”

• When there is no relationship between the premises and the conclusion (or decision), and there is nothing obvious to any other stakeholder.
• Reasoning fallacy
• aka: Non sequitur
• See also:
 – post hoc ergo propter hoc: temporal succession implies a causal relation.
 – um hoc ergo propter hoc: correlation implies a causal relation
“Yes, but...”

• A delaying tactic which pushes back onto the requirements side to know more, get more details, sometimes on minute details or secondary use cases...

• Aka. Analysis paralysis (?)
Perfection or bust

- We need an optimal solution (the fastest, cheapest, nicest, etc. way to...)
- Aka: searching for the silver bullet
- Decision avoidance strategy or delaying technique. Though one ‘satisficing’ solution maybe known, rather than provisionally using it and moving on, architects continue the search for something better, or optimal.
- Unboundedly rational decision maker
Cargo cult

- A group of people who imitate the superficial exterior of a process or system without having any understanding of the underlying substance.
- A flawed model of causation, when necessary conditions are confused for sufficient conditions.
- Straddling between cognitive bias and reasoning fallacy.
It has worked before

• The conditions when it has worked before were significantly different, though.
• This is often following a “blink”, as a first line of defense.
• Related to “Hasty generalization”
• Representativeness bias with a sample of 1 ?
Not ripe and just good for scoundrels

- French: “Ils sont trop verts et bon pour des goujats” from a fable by La Fontaine (1668), where the fox, unable to catch some grapes, decides that they are probably “not ripe and just good for scoundrels”
Not ripe and just good for scoundrels

- Architects try to use a certain solution/tool/technology/method, but by lack of time, resources, understanding, training or other, they fail to make it work, and then decide that it is intrinsically a bad solution/tool/method. (Ironically, 3 months later, they are leapfrogged by their competition, who have successfully used the said technology.)

- See also Pilot study
Swamped by evidence

- Repeating something in public often enough that in the end, it becomes familiar and will look more likely to be true (seen as true) in a subsequent argument.

- Political game element, with intent to induce a reasoning fallacy
- Aka. Argumentum verbosium (?)
“It’s a secret”

• Impose a solution withholding any evidence, claiming that there are some business reasons to do it that cannot be disclosed at this state.

• Political game

• Milder form: “it is too hard to explain now...” and “Trust me on this...”

• Contemptuous form: “You would not be able to understand”
YOU WON'T READ MY TECHNICAL REPORT SO I SUMMARIZED IT IN THIS COMPLICATED SLIDE.

IF YOU STARE AT IT LONG ENOUGH YOU WILL EITHER EXPERIENCE THE ILLUSION OF UNDERSTANDING IT OR BE TOO EMBARRASSED TO ADMIT YOU DON'T.

DO YOU HAVE ANY QUESTIONS TO BETRAY YOUR IGNORANCE?

IS THE TRIANGLE THING MAD AT THE TUBE?
Teacher’s pet

• Aka: The boss will like it
• Though there is no technical evidence of it, a solution is adopted just because one stakeholder in position of power need to be appeased, pleased, and this can be used later to trade something else (maybe not at all related to this project)
• Political game
• May be played as an alternate to “it’s a secret”.

May 2013
Groupthink

• Within a deeply cohesive in-group whose members try to minimize conflict and reach consensus without critically testing, analyzing and evaluating ideas.

• aka: bandwagon effect, herd behaviour, lemming behaviour

• Cognitive bias
Let us have a vote

• Sometimes thought of a technique to resolve a deadlock, it is often a political strategy by the responsible person to avoid taking a personal risk.

• Related to: “they made me do it…”

• Political game
Conscious versus Unconscious
Accidental versus Deliberate
Naïve versus Malevolent
Assemble your own game

• Deliberate, maybe malevolent
• Exploit one or more bias to your advantage
• Active destruction of trust

• Example: the Pilot Project
Note: Straddlers

• Anchoring-and-adjustment
 – Possible reasoning tactic
 – Bad only when proper adjustments do not occur

• Blink
 – Practiced by inexperienced people
 – May leave out many great possibilities

• Divide-and-Conquer
 – When no integration occurs, or late

• ...

Debiasing, debunking

- Increased awareness could help
- Contrarian in the team (the debunker)
- Reframing problems so that more information is visible
- Re-structuring arguments
 - Premise 1, premise 2, ... premise n, => Conclusion
- Challenge the premises
- See “positive tactics” (earlier)

- Back to the importance of \textit{design rationale}
Critical thinking

Richard Paul & Linda Elder

www.criticalthinking.org
We think, we reason...

- for a *purpose*,
- within a *point of view*,
- based on some *assumptions*,
- leading to *implications* and consequences.
- We use *data*, facts, and experiences
- to make *inferences* and judgments
- based on *concepts* and theories
- to answer a *question* or solve a problem.
Intellectual standards

- Clarity
- Accuracy
- Precision
- Depth
- Breadth
- Relevance
- Logic-ness
- Significance
- Completeness
- Fairness
Research

• Evidence of cognitive biases in software engineering
• Experimentation on some specific biases
 – Lab, then practitioners
• Hypotheses on mitigation strategies
• Experimentations on mitigation strategies

• Interdisciplinary
Dual process: System one, system two

• S1
 – Unconscious, implicit, experiential
 – fast

• S2
 – Conscious, explicit, rational, analytical
 – Slow
 – result of evolution of Homo Sapiens, 50,000y
Cognitive bias mitigation refers to the prevention and reduction of the influences on human decision making that reliably produce 'reasoning errors'. There is no coherent, comprehensive theory or practice of Cognitive Bias initiatives, in academic and professional disciplines concerned with the effects of Bias Mitigation; most address Cognitive Bias Mitigation tacitly rather than explicitly. A long-standing debate regarding human decision making bears on the duality of human thinking. This debate contrasts the rational economic agent standard for decision making with the empirical evidence that human decision making is often irrational. The debate also contrasts the methods used to analyze and predict human decision making with those used to understand and predict human activity. This article identifies, where available, the perspectives on cognitive bias mitigation that are most fruitful for the development of effective decision making tools and techniques.
2011
Jim Benson
Modus Cooperandi

Why Plans Fail
Cognitive Bias & Decision Making
• Developing a large, software-intensive system is made of thousands of decisions, from tiny ones to large, wide-ranging ones.

• Contrary to what we believe, we (humans beings) are not fully rational agents. Our decision-making process is marred by cognitive biases and reasoning fallacies. Plus some of us play nasty political games, exploiting these biases.

• Our first line of defense is awareness.
References (1)

References (2)

References (3)

Slides at philippe.kruchten.com/Talks
The Frog and the Octopus

A Conceptual Model of Software Development

As of August 2012
Once upon a time, a frog and an octopus,
Met on a software project, that was deep in the bush.
The frog said, “you know, all these projects are the same;
Over time we fill with our work the gap that we find
Between the burgeoning product, and our dreamed intent.”

“Oh, no” objected the octopus, “they cannot be the same;
They come in all forms or shapes and sizes and colours,
And we cannot use the same tools and techniques
Like in the cobbler shop, one size does not fit all.”
“The purpose of science is not to analyze or describe but to make useful models of the world. A model is useful if it allows us to get use out of it.”

Edward de Bono
Frog: “All projects are the same”

<table>
<thead>
<tr>
<th>Intent</th>
<th>Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time</td>
<td>Time</td>
</tr>
<tr>
<td>Quality</td>
<td>Quality</td>
</tr>
<tr>
<td>Risk</td>
<td>Risk</td>
</tr>
<tr>
<td>Value</td>
<td>Value</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Work</th>
<th>People</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time</td>
<td>Time</td>
</tr>
<tr>
<td>Quality</td>
<td>Quality</td>
</tr>
<tr>
<td>Risk</td>
<td>Risk</td>
</tr>
<tr>
<td>Cost</td>
<td>Cost</td>
</tr>
</tbody>
</table>
Octopus: “All projects are different!”

- Size
 - Age of the system
 - Criticality

- Context
 - Rate of change
 - Business model
 - Stable architecture
 - Governance
 - Team distribution

- Domain, Industry
- Corporate & National Culture
- Degree of Innovation
- Organizational Maturity

May 2013
Copyright © 2005-13 by Philippe Kruchten
A project is all the work that people have to accomplish over time to realize in a product some specific intent, at some level of quality, delivering value to the business at a given cost, while resolving many uncertainties and risk.

All aspects of software projects are affected by context: size, criticality, team distribution, pre-existence of an architecture, governance, business model, which will guide with practices will actually perform best, within a certain domain and culture.
Adding Value and Cost

Intent
- Time
- Quality
- Risk

Product
- Time
- Quality
- Risk

Work
- Time
- Quality
- Risk

People
- Time
- Quality
- Risk

Value
Cost
“... a model is useful if it allows us to get use out of it.”

Edward de Bono
Reconciling Perspectives

Converging
- Reaching out
- Negotiating Consensus
- Consensus
- Mismatched Perspectives

Validating
- Bunkering
- Workproduct
- Accepted Workproduct

Legend:
- Process
- Artifact
- Precedes
- Transfer
- Property

From Steve Adolph

Legend:
- Cycle time
- Formality
- Scale
- Communication

May 2013
Copyright © 2005-13 by Philippe Kruchten 93